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Abstract
Background: Cancer stem cells (CSC) carry out a vital responsibility throughout the entire progress of
colorectal cancer (CRC), and ful�l an essential biological function. However, lncRNAs participate in
regulating CRC stem cells (CCSCs) and correlate strongly with the patients' prognosis. Therefore, it is
crucial to identify the CCRC-related lncRNAs in CRC.

Methods: We identi�ed CCRCs-related lncRNAs through the Cell marker and TCGA databases. And the
CCSC-related lncRNAs model was constructed by the differential, cox survival , and lasso regression
analysis. Combining the GEO dataset, we determined the prognostic value by Kaplan-Meier analysis,
univariate and multivariate cox survival analysis. Moreover, principal component analysis (PCA), clinical
characterization, nomogram, gene mutation, gene set enrichment analysis (GSEA), immune
microenvironment (TME), chemotherapy, intergroup differential gene, and protein-protein interaction (PPI)
analysis were conducted to analyze the risk model. Furthermore, the core genes in the sub-module were
comprehensively characterized.

Results: In this research, abnormally expressed, prognostic and CSC-related lncRNAs were �rstly
identi�ed. Through the lasso regression model, we obtained a robust risk signature consisting of 4 CCSC-
related lncRNAs (ZEB1-AS1 LINC00174 FENDRR and ALMS1-IT1). Then, the risk model was con�rmed
applicable in both TCGA and GEO cohorts. Further veri�cation, the signature can be veri�ed as a
independent prognostic factor for CRC. Based on the CCSC-related lncRNA model, the high- and low-risk
groups exhibited different stemness statuses, including gene expression, mutation status, signaling
pathways, TME and chemotherapy response. The HOX family and HOX4 were centrally located in the PPI
interaction and had an in�uential contribution in CRC.

Conclusions: We established a 4 CCSC-related lncRNA signature with a promising prognosis. And the
signature can appropriately estimate the gene mutation, TME, and chemotherapy outcomes for CRC
patients. Furthermore, the CCSC-related lncRNAs and HOX4 can serve as noble biomarkers and promote
the management of therapy clinically.

Introduction
Colorectal cancer (CRC) is the third most common cancer in the world, and the fatality rate has risen to
the second place[1]. It is widely accepted that CRC originate from the abnormal development of crypt-
derived polyps[2]. At the cellular level, the origin cells of CRC are thought to be stem cells or stem cell-like
cells, also known as cancer stem cells (CSCs)[3].

CSCs are a small fraction of cells bearing stem-like properties within tumor tissues. This concept was
proposed about 160 years ago, but limited by the technology at the time, scientists did not �nd procure
CSCs until Bonnet isolated it in acute myeloid leukemia (AML) in 1997[4]. Due to the widespread presence
of CSCs across cancers, increasing attention has been paid to exploring their biological function. In the
context of CRCs, O'Brien and Ricci-Vitiani �rst reported the existence of CSCs in 2007[5]. According to
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previous investigations, the de�ning markers of CSCs in CRC mainly include Lgr5, CD133, CD44, CD29,
CD166, EpCAM, etc[6]. It is well illustrated that the existence of CSCs is an essential cause of tumor
relapse and metastasis[7]. Studies have shown that the expression of Lgr5, CD44 and EpCAM leads to
cells possessing a high tumorigenic ability, and the expression of CD44/CD166 is positively correlated
with lymphatic metastasis as well as liver and lung metastasis in CRC patients[8]. In addition, CSCs also
have the characteristics of promoting drug resistance[9]. It has been reported that the drug resistance
mechanisms of CSCs include ABC transporter-mediated chemotherapeutic drug e�ux, enhanced ALDH
activity and reactive oxygen species scavenging, activation of pro-survival pathways, and more e�cient
DNA repair[10]. All these biological processes contribute to poorer prognosis for patients. Therefore, the
deepening insight into the characteristics of CSCs derives bene�ts for the clinical treatment of CRC
patients.

CSCs can modulate their surrounding microenvironment, achieving self-renewal and maintenance[11].
Within the complex interaction of CSCs and tumor microenvironment, lncRNA as a crucial regulatory
factor, is implicated in the regulation of many characteristics of tumors. Studies have shown that lncRNA
EPIC1 can interact with MYC through its 129–283 nt region, jointly regulating the transcription of MYC
target genes and, thus, promoting the cell cycle progression of tumor[12]. The lncRNA-MVIH has been
reported to facilitate tumor angiogenesis by inhibiting the secretion of PGK1[13]. In liver cancer, TGF-β
can induce the expression of lncRNA-ATB, up-regulate the expression of epithelial-mesenchymal
transition (EMT)-related protein ZEB1/2 and promote the invasive ability of liver cancer[14]. It has been
reported that lncRNAs can also inhibit the activity of killer T cells to indirectly mediate tumor immune
escape mechanisms. In addition to the tumor-promoting effects, some types of lncRNAs can also impede
tumor progression. Experiments have proved that lncRNA-MEG3 plays a tumor suppressor role by
activating the expression of p53[15]. The lncRNA-GAS5 can bind to the DNA-binding domain of
glucocorticoid receptors, thereby blocking the action of glucocorticoids and promoting tumor cell
apoptosis[16]. Given the essential role of lncRNAs in tumor regulation and different types of lncRNAs
mediating different biological functions, it is particularly important to investigate the activity of lncRNAs
in the biology of CSCs.

In this study, we identi�ed the CCSC-related lncRNAs by TCGA and Cell marker database, and established
a CSC-lncRNA risk model composed of 4 lncRNAs (ZEB1-AS1, LINC00174, FENDRR and ALMS1-IT1) by
the Lasso regression model. The clinical and mutation information were also retrieved from TCGA
database and Gene Expression Omnibus (GEO) database to validate the CSC-related lncRNA signature.
Our works showed that the risk model operate well in predicting the survival outcomes of CRC patients,
and is highly correlated with gene mutation, drug resistance, and tumor microenvironment landscape. In
addition, we focused on HOX family genes involving the cancer stemness through Metascape enrichment
analysis and PPI network interaction analysis. Our observations indicated that HOXB4 is highly correlated
with CSC markers and is involved in regulating the tumor microenvironment and the in�ltration of
immune cells in CRC. These results suggested that the four stem-related lncRNAs and HOX family are
potential biomarkers and therapeutic targets for CRC.
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Methods
Datasets

The data of the experimental group was collected from Colon Adenocarcinoma (COAD) cohorts in The
Cancer Genome Atlas (TCGA), including the RNA-seq, mutation matrix and clinical information. The data
of validation group was retrieved from the GSE39582 dataset in Gene Expression Omnibus (GEO)
database. R package was used to annotate transcriptome data and distinguish mRNA and lncRNA, then
extract the expression matrix of lncRNAs in COAD. Twenty-two cancer stem cell (CSC) genes were
obtained from the CellMarker database (http://bio-bigdata.hrbmu.edu.cn/CellMarker/), and a matrix of
CSC-related lncRNAs were acquaired by Pearson correlation analysis (Supplementary 1). Co-expression
analysis and visualization were performed, and the CSC-related lncRNAs were de�ned by coe�cient |r| >
0.4 and p < 0.001 as the screening criteria. Ethical approval is not required according to the guidelines of
these two databases.

Differential and survival analysis of the CCSC-related lncRNAs in COAD

In the TCGA database, the R packages "Limma" and "phearmap" were used to perform differential
analysis of CSC-related lncRNAs between the colon cancer and adjacent tissues, |logFC|= 0.585,
FDR=0.05 was considered statistically signi�cant. Next, the “survival” and “Glmnet” packages were used
to perform univariate Cox regression analysis on the differential CSC-related lncRNAs for the prognosis of
CRC patients. Then, the the core CSC-related lncRNAs of CRC patients were obtained.

Construction and evaluation of a CRC prognostic model based on CCSC-related lncRNAs

From the TCGA and GEO database, we extracted the transcriptome datas as the Train group and the Test
group respectively. The Train group (TCGA) was used to construct the prognostic model and then the Test
group was applied to verifying the accuracy. We �rst constructed the LASSO regression model through
the "glmnet" R package, and took the point with the smallest cross-validation error. The lncRNAs
corresponding to this point is the prognostic signature. The CSC-related lncRNAs model can be acquired
by adding up each lncRNA multiplied by its corresponding coe�cient (Table 1). According to the
expression of the signature lncRNAs, we can calculate the CCSC-related lncRNA score of the individual
patient, and then we divided the patients into high- and low- risk groups based on the median value.
Similarly, the GEO cohort was also divided into two groups according the CCSC-related lncRNA
score. Then, PCA analysis was used to validate the accuracy of the classi�cation. To evaluate the
prognostic predication of the CSC-related lncRNA signature, we made the Kaplan-Meier curves of overall
survival (OS) in the Train group. Furthermore, the OS analysis in the Test group and the disease-free
survival (DFS) in the Train group were also performed. Not only that, the univariate and multivariate cox
survival analysis, as well as the time-dependent and clinical trait-dependent receiver operating
characteristic (ROC) curves were conducted to evaluate the correlation between the CSC-related lncRNA
models and clinical prognosis. The results were visualized by “limma”, “ggplot2”, “survival”and
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“survminer” R packages. The differences of the clinical properties, including age, gender, stage and TNM
stage, between the high- and low- risk groups were thoroughly revealed. 

Concerning the age, TNM stage, and clinical grade and CSC-related lncRNA signature, a nomogram was
comprehensively established for the CRC patients. On this basis, the calibration curves was determined
by the "survival", "regplot" and "rms" R packages. In the nomogram, a nomogram score was gained
according to the personal rating scale. Then, the scores for all clinical characteristics were summed to
obtain the patient's composite risk score. We evaluated the 1, 3, and 5 year survival rates against the
scale of the composite risk score above. And the calibration curves for 1, 3, and 5 years were also
published for the demonstration. The closer the calibration curve is to the gray line, the more accurate the
prediction from the nomogram. "Survival", "survminer", and "timeROC" R packages were used to draw the
ROC curve of the nomogram. The area under the ROC curve represented the accuracy of survival
predication. Nest, "survival" R package was run to check the ability of the nomogram as an independent
prognostic factor, P values less than 0.05 were determined to be independent prognostic factors.

Mutation signature and functional enrichment analysis

We carried out GSEA enrichment analysis, immune microenvironment analysis, gene mutation signature
analysis, immune function difference analysis, KEGG pathway analysis, and microsatellite instability
difference analysis respectively between high and low CCSC-related lncRNA score groups. The R package
“limma”, ”reshape2”, ”ggpubr”, “GSEABase”, ”GSVA”, ”pheatmap”, ”pRRophetic”, and ”ggplot2” were
applied for the above researches.

Chemotherapy and immunotherapy analysis

CSCs are considered as a drug-resistant cancer cell population, which is the primary cause of the
therapeutic failure. To determine the sensitivity with different CCSC realted-lncRNA score, the drug
sensitivity analysis was performed using the R packages "limma", "ggpubr", "PRrophic" and "ggplot2". In
addition, differences of CSC-lncRNA scores between the mutant versus wild-type genes were also
analyzed, which can be assessed to the guidance of the immunotherapy. Protein-protein interaction (PPI)
network analysis and identi�cation of hub genes in CSC subsets

To begin with, we conducted the deferential expression analysis between the high- and low- risk groups.
Further, the up-regulated and down-regulated genes were respectively analyzed and visualized through
the Matascape website (https://metascape.org/gp/index.html#/main/step1). In addition, the DEGs were
input to construct a PPI network on the String website (https://string-db.org/). For systematically analyze
the interaction between proteins, we used the   MCOD plug-in of the cytoscape software to modular the
functionally similar genes. And the cytohubba plug-in was utilized to focus the most essential genes.
After we focused the critical gene, a series of single-gene analyses were performed, which contained
differential expression analysis, clinical correlation analysis, nomogram analysis, calibration analysis,
survival analysis, strati�ed survival analysis, CSC genes correlation analysis, and immune
microenvironment analysis.
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Results
Identi�cation of CCSC-related lncRNAs in CRC

According to the screening conditions, we isolated a total of 1768 CCSC-related lncRNAs from the TCGA
database and displayed the correlation of CSC markers through a Sankey diagram (Figure 1A). EdgeR
and the "DESeq2" R packages were used to screen 669 differential lncRNAs as differentially expressed
CCSC-related lncRNAs, of which 104 lncRNAs were down-regulated and 565 lncRNAs were up-regulated
(Figure 1 B, C). Univariate Cox regression analysis showed that a total of 5 lncRNAs were identi�ed to be
closely associated with patients’ survival in CRC, including LINC00174, ZEB1-AS1, MCM3AP-AS1, ALMS1-
IT1 and FENDRR. Among the above core CCSC-related lncRNAs, only FENDRR (HR=0.651, p=0.043) was a
protective factor for CRC patients, and the remaining four CCSC-related lncRNAs were risk factors for CRC
patients (Figure 1D). 

Establishment of a prediction model for CCSC-related lncRNAs in CRC

Based on Lasso regression model and iterative analysis of cross-validation method, we constructed a
CCSC-related lncRNA risk model composed of 4 lncRNAs (ZEB1-AS1, LINC00174, FENDRR and ALMS1-
IT1) (Figure 2 A, B). According to the risk score formula, we took the median of the score (2.25) as the
cutoff value to classify the CRC patients. Following that, the TCGA and GEO cohorts were separated into
high- and low- risk groups, respectively. In the PCA distribution diagram, the red scatter points (high-risk)
and the blue scatter points (low-risk) can be distinguished effectively (Figure 2C). In the training group,
survival analysis indicated that the OS of high-risk CRC patients was both inferior than the low-risk group
(p<0.001). Consistently, the OS analysis in the test group and the PFS analysis in the train group all
presented the same results (p<0.001) (Figure 2 D~F). In the cox univariate analysis, age, T stage, N stage,
M stage, and CSC-lncRNA risk score were all associated with the prognosis of CRC patients (p < 0.001).
By multivariate Cox regression analysis, the above factors can still served as survival independent factors
against the other clinical characters (Figure 3 A, B). The CCSC-related lncRNA model was further
evaluated by ROC curve analysis, and the results suggested that this model had the best accuracy in
predicting the 5-year survival of CRC patients, with AUC=0.751 (Figure 3C). Notably, our CCSC-related
lncRNA model had better predictive ability than any other clinical features (Figure 3D). In addition, clinical
traits such as distant metastasis, lymph node metastasis, and T stage had signi�cant statistical
differences between high- and low- risk groups (Figure 3E).

According to the scoring scale in Figure 4A, a clinically characteristic score was applied. The patient's
outcome can be estimated based on the composite scoring scale. In Figure 4B, The distance of the
calibration curve from the grey line indicated that the accuracy of predicting the surival rates. As we can
seen, the 5-year survival rate of patients is comparatively accurate. ROC curves and univariate Cox
regression analysis further con�rmed the reliability of this nomogram (Figure 4C, 4D). The AUC
comparison results showed that the nomogram (0.796) is prominently higher than other clinical traits
(Figure 4D). Therefore, our model has strong reliability and applicability for the survival prediction of CRC
patients.



Page 7/23

Mutation signature and functional enrichment analysis

We conducted the GSEA enrichment analysis between the high- and low- risk groups. The top 5
enrichment signaling pathways of the up-regulated and down-regulated genes were respectively listed
in Figure 5A and 5B. As the results showed, cell adhesion molecules, cytokine receptor interaction and
ECM receptor interaction were signi�cantly activited in the high-risk group. Among the differences of 22
types of immune cells, B cells naive was statically increased in the high-risk group (Figure
5C). Intriguingly, most immune-related functions are suppressed at high-risk group, such as stimulation of
antigen-presenting cells (APCs), chemokine receptors (CCRs), checkpoints, in�ammation, stimulation of T
cells, and type II interferons (IFNs) (Figure 5F). The above investigations re-con�rmed that the CSCs can
promote tumor progression by regulating the immune microenvironment. Mutation signature analysis
listed the top 20 genes with the highest mutation frequency (Figure 5D, E). The results demonstrated that
the mutation frequency of TP53 (a classic tumor suppressor gene ) in the high-risk group was higher than
the low-risk group. Whereas, the mutation frequencies of the other 19 oncogenes were lower than the low-
risk group. In addition, GSVA analysis indicated that the cancer related pathways, such as P53 signaling
pathway, cell cycle, DNA replication, PPAR signaling pathway, apoptosis death and biological
metabolism, possessed a higher activity in the high-risk group (Figure 5G). Moreover, the microsatellite
instability of the low-risk group is more unstable (Figure 5H), suggesting that the low-risk group may be
more sensitive to immunotherapy.

Analysis of chemotherapy and immunotherapy in CCSC-related lncRNA risk model

Consistent with conventional cognition, the IC50s of the chemotherapy drugs (Fluorouracil, Bleomycin,
Gemcitabine and Sunitinb) were all positively correlated with the CSC risk scores of patients (Figure
6A~D). The IC50 of the high-risk group is signi�cantly higher than that of the low-risk group (Figures
6E~6H). These results indicated that the high-risk group is less sensitive to the effects of chemotherapy
drugs and targeted therapy, which may be related to the consequence of CSCs. We also analyzed the
correlation between risk scores and gene mutation status (Figure 6I~6L). To further validate our
observations, we selected four genes among the genes with high mutation frequency including BIRC6,
PIK3CA, SOX9, and TP53. Patients with wild-type BIRC6, PIK3CA, and SOX9 consistently had higher risk
scores than mutants (Figure 6I~K). Conversely, patients with wild-type TP53 had lower risk scores than
those with mutant TP53 (Figure 6L), which is consistent with previous �ndings. Therefore, intervention
strategies targeting CSC are critical in oncology.

Metascape enrichment analysis, PPI network and Hub genes

To further explore the mechanism of CSC in each subgroup, we performed Metascape enrichment
analysis of DEGs between the high- and low- risk groups. The results indicated that the over-expressed
genes in the low-risk group were mainly involved in immune regulatory responses. Defense response to
bacterium, regulation of leukocyte-mediated immunity and adaptive immune response were mainly
enriched (Figure 7A). The over-expressed genes in the high-risk group are not only involved in cancer
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pathways (DNA damage, telomere stress-induced senescence, histone H3K27 trimethylation, and negative
regulation of epithelial to mesenchymal), but also in the CSC-related pathways growth (ovarian follicle
development, and ncRNAs involved in STAT3 signaling in hepatocellular carcinoma) (Figure 7B). The
interactions of the DEGs between the CSC-subsets were obtained from the String database and visualized
by Cytoscape software (Figure 7C). The top 10 genes at the core position in the network were acquired by
the cytohubba plugin: FABP1, GUCA2A, PNISR, AGT, HOXB4, CLCA4, GUCA2B, ZG16, AQP8 and HOXA5
(Figure 7D). The HOX family members are remarkably clustered into a relatively complete module and
their expression is up-regulated in the high-risk group. Interestingly, HOXB4 is at the center of this
module. 

On this basis, we found that the expression of HOXB4 gene was not only higher in tumor tissue, but also
in the high age group, and its expression level also exhibited a increasing trend with the progression of T
stage (Figure 8A~8D). Nomogram and calibration analysis of HOXB4 revealed that an accurate
prediction was met at 5-year survival (Figure 8E, F). The COAD cohort showed that, in terms of PFS, DSS,
OS, over-expressed HOXB4 indicate a worse prognosis (P<0.05). And the predictive ability consisted
a statistical difference in both early and advanced stages (Figure 8G~8L). These above results suggested
that HOXB4 has a predictive potential for CRC patients. Moreover, the correlation analysis between
HOXB4 and CSC genes revealed that HOXB4 was positively correlated with CD44, ALCAM, PROM1, ITGB1
and SOX2 (Figure 8M). Analysis of the tumor immune microenvironment showed that patients with
abundant HOXB4 have increased in�ltration of immune cells, including T cells, CD8+ T cells,
macrophages, NK cells and TH1 cells (Figure 8N). Interestingly, HOXB4 is positively correlated with the
in�ltration of the vast majority of immune cells, except Th17cells (Figure 8O). Finally, the single-cell RNA
sequencing (scRNA-seq) analysis of CRC showed that HOXB4 mainly exist in NK cells (Figure 8P~Q).
Therefore, HOXB4 is expected to be one of the candidate genes for potential biomarkers of CRC.

Discussion
Drug resistance and metastasis are two critical characteristics of tumors that lead the tumor di�cult to
cure[17]. Tumors are composed of heterogeneous cell subsets that display various responses to different
treatments[18]. Among them, CSC subsets are pluripotent, capable of self-renewal, highly resistant to
cytotoxic therapy, and promote tumorigenesis[19]. Therefore, a comprehensive understanding of the
molecular biological mechanism characteristic of CSCs will help to develop new speci�c targeted
therapies to eradicate CSCs. As a class of non-coding RNAs, the functions mainly rely on their RNA
expression, which provides a solid foundation for studying their potential functions by RNA-seq and
bioinformatics. Studies have shown that lncRNAs play an important role in the regulation of CSCs and
their surrounding microenvironment.

The CSC markers in CRC were achieved in the Cell Marker datasets, which is a dedicated collection of cell
sorting markers that have been used to de�ne. For identifying CSC-related lncRNAs, we �rstly isolated a
total of 1768 lncRNAs correlated with CSC markers from the RNA-seq expression pro�les of COAD, and
retained the lncRNAs sequenced simultaneously in the GEO cohort. Differential expression analysis and
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univariate Cox regression analysis screened out �ve core lncRNAs, including LINC00174, ZEB1-AS1,
MCM3AP-AS1, ALMS1-IT1 and FENDRR (Fig. 1A ~ D). According to existing research, LINC00174, ZEB1-
AS1, ALMS1-IT1 have been reported in CRC, breast cancer, liver cancer and lung cancer and other tumors.
Among them, ALMS1-IT1 can promote the malignant progression of lung adenocarcinoma by activating
the cyclin-dependent kinase pathway[20], while LINC00174[21] and ZEB1-AS1[22] have been reported to
promote tumor proliferation, metastasis and drug resistance by regulating microRNA. In contrast, the
expression of FENDRR is absent in most tumors and often acts as a tumor suppressor. Not only that,
FENDRR has been reported to directly inhibit the stemness of CRC through the SOX family (SOX2/SOX4)
[23]. For the �rst time, we link the CCSC-related lncRNAs to the recognized markers of CRC stem cells.

We constructed a CCSC-related lncRNA model by Lasso regression model and iterative analysis with
cross-validation method. Through PCA analysis, we could clearly observe that the model can signi�cantly
divide the patients into two different CSC-subtypes (Fig. 2C). According to the median value of the CCSC-
lncRNA risk score, we divided the two different cohorts into high- and low- risk groups. In the Train group
(TCGA), both OS and PFS in the high-risk group suffered a deteriorated prognosis (p < 0.001). The
predictive power remained robust in the validation cohort (GEO) (Fig. 2D ~ F). Multivariate cox regression
analysis and ROC curve analysis further con�rmed the risk model. And the ability of the CSC-signature
was superior than any other clinical characteristics including age, gender and TNM (Fig. 3D).
Furthermore, this signature can serve as a prognostic factor in CRC, independent of other clinical
features. In the nomogram constructed after overall consideration of other clinical information, the AUC
of this model reached 0.796, far exceeding the models constructed by Xu (0.701) and Li (0.745).

To further explore the reasons for the signi�cant clinical prognostic disparity in patients between CSC
subtypes of CRC, we performed mutational signature and functional enrichment analysis on high and low
risk groups of CRC patients identi�ed by the CCSC-related lncRNA model. (Fig. 5D, 5E). It is well known
that mutated TP53 in CRC not only loses its tumor suppressor function, but the mutated protein may
drive oncogenic mechanisms in tumorigenesis[24]. In this project, we found that patients of the high-risk
group correspond to a higher frequency of TP53 mutation, which re�ects that patients with high tumor
stemness can lose tumor suppressor function along with TP53 mutation. Studies have revealed that
TP53 mutants can drive the expression of CSC genes, which may also be one of the reasons for the
higher frequency of TP53 mutations in patients of the high-risk group in our model. PIK3CA is also a
common mutation in CRC[25], and in our model, the low-risk group had a lower mutation frequency of
PIK3CA than the high-risk group, which is consistent with previous reports that patients with PIK3CA
mutations have a better prognosis. Apoptotic proteins are also a research hotspot in cancer. Previous
studies have shown that in CRC, overexpression of BIRC6 promotes tumor growth and invasion, and is
associated with poorer overall survival[26]. In our analysis, the mutation frequency of BIRC6 in the low-
risk group was higher than that in the high-risk group (Fig. 6I), which also indicate its promoting role in
CRC. In our analysis of the tumor microenvironment, many immune-related functions, such as checkpoint,
in�ammatory response, type I and type II IFN, etc. were inhibited in the high-risk group of our model
(Fig. 5F). This result also con�rmed that CSCs can escape the killing function of the immune system by
regulating the immune microenvironment and immune cells surrounding them, thereby maintaining and
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promoting their growth. In summary, CSC-related lncRNA risk model we established can provide a new
platform for the study of immune regulation in the tumor microenvironment and immunotherapy.

5-Fluorouracil is the �rst-line drug for clinical chemotherapy in patients with CRC today[27]. We analyzed
the resistance of patients to 5-�uorouracil in the high- and low-risk groups of our model by pRRophetic
package. It is reasonable that patients in the high-risk group which means higher tumor cell stemness
have higher IC50 for 5-�uorouracil and are less sensitive to the effect of chemotherapy. We also analyzed
two other classic chemotherapy drugs (bleomycin, gemcitabine) and a targeted drug (sunitinib), and
patients in the high-risk group have the same trend with 5-�uorouracil for drug resistance (Fig. 6A-D). The
reason behind this may be related to a series of drug resistance mechanisms induced by CSCs, which still
needs further investigation. All these results indicate that the risk model we established has clinical
signi�cance and can be used to formulate more personalized treatment for patients with CRC.

The occurrence of canceri�cation is accompanied by abnormal regulation of important intrinsic cell
signaling. Wnt, Notch and Hedgehog are three highly conserved signaling pathways that affect cell
proliferation, differentiation and fate determination. CSCs are usually followed by persistent activation of
one or more of these signaling pathways. Mutations in the APC gene are found in most CRC patients,
which can lead to ectopic activation of the WNT signaling pathway, resulting in excessive proliferation of
stem cells and reducing cell adhesion, which is conducive to tumor migration and metastasis[28]. In our
Metascape enrichment analysis, the abnormal genes in the high-risk group were activated in cell growth,
DNA damage, and EMT (Fig. 7B), all of which were highly correlated with cancer progression. The over-
expressed genes in the low-risk group were mainly involved in metabolism and immune regulation-related
signaling pathways (Fig. 7A). The differences of the regulation between low- and high-risk groups are
relied on the complex microenvironment, which needs to be further studied.

Surprisingly, PPI network analysis Bring us to the attention of the HOX gene family. Between the CSC-
lncRNAs subgroups, HOXB4 is at the center of this network module. Previous studies have found that
HOXB4 can promote the self-renewal of hematopoietic stem cells (HSCs), and this function is achieved
through the activation of the WNT signaling pathway[29–31]. However, the regulatory mechanism of
HOXB4 in CSCs of CRC is not clear. Our correlation analysis showed that HOXB4 is highly correlated with
typical markers of CSCs of CRC (Fig. 8M), and its role remains to be further explored. The results of
single-gene analysis showed that high expression of HOXB4 was highly associated with worse prognosis
of CRC patients, and this phenomenon persisted at different stages of tumor development (Fig. 8G-8L),
which is consistent with previous studies reporting that high HOXB4 expression promotes cell
proliferation and migration, drives cell cycle progression, and is associated with poorer survival
probability. In addition, studies have shown that HOXB4 is involved in immune in�ltration, especially in
tumor-associated macrophages and cancer-associated �broblasts[32]. Our analysis of the tumor immune
microenvironment indicated that patients with high HOXB4 expression have high in�ltration in some
immune cells (such as CD8 T cells, macrophages, NK cells, etc.), and were positively correlated with the
degree of in�ltration of most immune cells (Fig. 8N-O). In conclusion, HOXB4 can serve as a potential
biomarker for CRC to assist in the diagnosis and prognosis of patients.
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Conclusion
In summary, we identi�ed four critical lncRNAs (LINC00174, ZEB1-AS1, MCM3AP-AS1, ALMS1-IT1)
related to the CSC. And the CCSC-related lncRNA model can reliably predict the prognosis of CRC patients
and apply to evaluate the chemotherapeutic responses, TME, and mutation alternations, therefore
optimizing the prognosis and treatment. In addition, we also found that HOXB4 can be related with CSC,
and a potential marker for the CRC patients.
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Figure 1

Identi�cation of abnormally expressed, prognostic, cancer stem cell (CSC) related lncRNAs in colorectal
cancer (CRC). (A) The ggalluvial diagram of the CSC-related lncRNAs and the CSC markers in CRC. (B)
The heap-map of the differential expressed CSC-related lncRNAs. (C) The volcano of the differential
expressed CSC-related lncRNAs. (D) The univariate cox analysis of the differential expressed CSC-related
lncRNAs.
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Figure 2

Construction and prognostic validation of the CSC-related lncRNA signature. (A) Lasso coe�cient pro�les
of the CSC-related lncRNAs were determined for constructing a CSC-related lncRNA signature. (B) The
selection of the tuning parameter of the Lasso model. (C) The principal component analysis (PCA) of the
Train group (TCGA). (D) Kaplan-Meier analysis of the Train group based on overall survival. (E) Kaplan-
Meier analysis of the Test group (GEO) based on overall survival. (F) Kaplan-Meier analysis of the Train
group based on progression free survival.
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Figure 3

The clinical aspects validation of the CSC-related lncRNA signature. (A) Univariate cox survival analysis
of the CSC-related lncRNA signature. (B) Multivariate cox survival analysis of the CSC-related lncRNA
signature. (C) The time-dependent ROC curves in terms of 1-, 3- ,5- years. (D) The clinic-dependent ROC
curves in terms of age, gender, T, N, and M. (E) Differences of clinical characteristics between high and
low risk groups.
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Figure 4

The nomogram analysis of the CSC-related lncRNA signature. (A) The nomogram of the CSC-related
lncRNA signature. (B) The calibration of CSC-related lncRNA nomogram. (C) The ROC curve of the CSC-
related lncRNA nomogram. (D) Univariate cox survival analysis of the CSC-related lncRNA nomogram.
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Figure 5

The comprehensive functional analysis of the CSC-related lncRNA signature. (A) The top 5 activated
signalling pathways in GSEA. (B) The top 5 inhibited signalling pathways in GSEA. (C) Immunocyte
differential analysis between the high and low risk groups. (D) Mutations in the top 20 mutated genes in
the low risk group. (E) Mutations in the top 20 mutated genes in the high risk group. (F) The immune-
related function analysis between the high and low risk groups. (G) GSVA analysis between the high and
low risk groups. (H) The MSI situations between the high and low risk groups.
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Figure 6

Differences in chemotherapy response and critical gene mutations between high and low colorectal
cancer stem cell related lncRNA score (CCSC-related lncRNA score) groups. The correlation between IC50
and CCSC-related lncRNA score. (A) 5-�uorouracil, (B) Bleomycin, (C) Gemcitabine, (D) Sunitinib.
Differences in IC50 between high and low CCSC-related lncRNA score groups. (E) 5-�uorouracil, (F)
Bleomycin, (G) Gemcitabine, (H) Sunitinib. The differences in critical gene mutations between high and
low CCSC-related lncRNA score groups. (I) BIRC6, (J) PIK3CA, (K) SOX9, (L) TP53.
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Figure 7

The metascape and protein-protein interaction (PPI) analysis of the differential expressed genes between
the high and low CCSC-related lncRNA score groups. (A) The metascape analysis of the over-expressed
genes in the high risk group. (B) The metascape analysis of the over-expressed genes in the low risk
group. (C) The PPI analysis of the differential expressed genes. (D) The central genes in the PPI network
sub-module.
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Figure 8

Comprehensive and integrative analysis of HOXB4 in CRC. (A) Expression of HOXB4 in unpaired cancer
and paracancer samples. (B) Expression of HOXB4 in paired carcinoma and paracancer samples. (C)
Expression of HOXB4 in patients of advanced and junior age. (D) Expression of HOXB4 at different T-
stages. (E) The nomogram of HOXB4. (F) The calibration of HOXB4. (G) Kaplan-Meier analysis of HOXB4
in progression free interval (PFI). (H) Kaplan-Meier analysis of HOXB4 in disease speci�c survival (DSS).
(I) Kaplan-Meier analysis of HOXB4 in overall survival (OS). Kaplan-Meier analysis of HOXB4 in advanced
CRC patients. (J) OS, (K) PFI. (L) Kaplan-Meier analysis of HOXB4 in early stage CRC patients. (M)
Correlation of HOXB4 with CSC markers in CRC. (N) In�ltration of immune cells between high- and low-
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HOXB4 expression groups. (O) Correlation of HOXB4 with immune cell in�ltration. (P) Single cell
distribution map of GSE146771. (Q) Distribution of HOXB4 in single cell sequencing.
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