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Abstract

Background
Phosphorylation is the most important and studied post-translational modi�cation (PTM), which plays a crucial role in
protein function studies and experimental design. Many signi�cant studies have been performed to predict
phosphorylation sites using various machine-learning methods. Recently, several studies have claimed that deep
learning-based methods are the best way to predict the phosphorylation sites because deep learning as an advanced
machine learning method can automatically detect complex representations of phosphorylation patterns from raw
sequences and thus offers a powerful tool to improve phosphorylation site prediction.

Results
In this study, we report DF-Phos, a new phosphosite predictor based on the deep forest to predict phosphorylation sites.
In DF-Phos, the feature vector taken from the CkSAApair method is as input for a deep forest framework for predicting
phosphorylation sites. The results of 10-fold cross-validation show that the deep forest method has the highest
performance among other available methods.

Conclusions
We implemented a python program of DF-Phos, which is freely available for non-commercial use at
https://github.com/zahiriz/DF-Phos Moreover, users can use it for various PTM predictions.

Background
Phosphorylation is the most important post-translational modi�cation[1] and it is a key mechanism in many biological
processes, including DNA repair, transcriptional regulation, environmental stress response, apoptosis, metabolism,
immune responses, signal transmission, cellular differentiation[2]. In eukaryotes, phosphorylation occurs in serine(S),
threonine (T), and tyrosine (Y) residues, like eukaryotes in Prokaryotes, phosphorylation mainly occurs on S, T, and Y;
but in prokaryotic, phosphorylation also occurs on additional types of amino acids, including arginine (R), histidine (H),
cysteine(C) and aspartic acid (D) residues.

In the last few decades, phosphorylation site prediction research has attracted much attention, and the development of
accurate phosphorylation site prediction methods has become very important. Existing methods can be generally
divided into two categories: biological experimental methods, which are expensive and time-consuming, and
computational methods, which are fast speed and low cost. moreover, identi�cation based on experimental methods is
labor-intensive and requires specialized equipment and technical knowledge. In this regard, phosphosite prediction
algorithms are becoming popular and used to predict the list of possible phosphorylation sites in a protein of interest,
then experimental methods are applied in verifying the phosphorylation sites that were predicted. So far, many
predictors have been introduced to predict PTM sites (such as phosphorylation and methylation, etc.) [3], [4]. But it
seems that the speci�c phosphorylation predictors provide more accurate results.

Computational Phosphorylation site prediction tools are divided into three categories, general (non-kinase speci�c) site
prediction, kinase-speci�c site prediction, and global prediction, while general tools predict sites that can be
phosphorylated and kinase-speci�c tools predict sites that can be phosphorylated by a speci�c kinase and also a
global Prediction predict a General and Kinase-speci�c Phosphorylation Sites [5].
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Non-kinase-speci�c tools may be able to predict phosphosites for which the associated kinase is unknown or the
number of new substrate sequences of the associated kinase is few [2]. Moreover, by the recent advances in
sequencing technology, many genomes of non-model organisms have been sequenced, and more kinases in those
reconstructed genomes have been discovered, some of which have no su�cient substrate information to train the
kinase-speci�c prediction algorithms. Thus, there is an increased interest in developing non-kinase-speci�c tools for a
wider variety of species and high speci�city for whole-genome annotation [6].

Until now, a few general phosphorylation site prediction models have been proposed, most of the existing methods are
different in choosing the machine learning algorithms and feature engineering extraction, which have been used to
capture the complex and de�nite patterns surrounding the phosphorylated residues for phosphorylation site prediction.
The most widely used machine learning methods in general prediction tools include arti�cial neural networks (ANNs),
support vector machines (SVMs), linear regression (LR), and random forest (RF). For instance, NetPhos uses neural
networks to identify phosphorylation sites [7], while DISPHOS uses the amino acid frequency and disorder information
to train an LR model for predicting the phosphorylation sites [8], Biswas et al. in PPRED combine the evolutionary
information of the proteins with the SVMs to predict phosphorylation sites [9]. Musite, integrates three sets of
parameters, including K nearest neighbor scores, protein disorder scorers, and amino acid frequencies, as features to
train an SVM [4] and Phospho- SVM, which is one the most recent prediction tools based on SVMs, combines eight
different sequence-level scoring functions using SVMs[6]. RF algorithms can provide insights into the relative
importance of each feature; thus, RF classi�ers have been applied to Various bioinformatics problems [10]. For
example, in RF-Phos the random forest with sequence and structural features has been used to predict the general
phosphorylation site [11].

A major recent advance in machine learning is introducing deep arti�cial neural networks. Deep learning is now one of
the most effective �elds in machine learning and has made breakthroughs in image and speech recognition, natural
language processing, and most recently, computational biology [12]. Compared to traditional machine learning
techniques, a deep neural network takes the raw data at the lowest (input) layer and automatically discovers the
complex representations, and captures the high-level abstraction adaptively from the training data for classi�cation.
Thus, the application of deep learning for biological sequence analysis is growing. For example, DeepBind uses a
convolutional neural network (CNN) for predicting sequence speci�cities of DNA- and RNA-binding proteins [13],
MusiteDeep chooses a CNN with a two-dimensional attention mechanism for site prediction [14], DeepNitro uses a
multi-layer deep neural network to predict nitration and nitrosylation sites [15], DeepPhos improved upon the
performance of MusiteDeep, utilizing a multi-layer CNN architecture [16], DeepPSP extracts both local and global
features from protein sequences with two parallel modules [17].

In addition to the deep learning methods that have been introduced based on neural networks, deep networks based on
other learning methods have also been introduced, including deep forests [18]. Deep Forest is a classi�cation method
that consists of several layers and each layer contains several random forests. This method has fewer parameters
than conventional deep learning methods, and the complexity of the model can be automatically identi�ed through the
data. Another advantage of this method is that it can produce good results without using backpropagation [19].

In this study, we focused on developing a new phosphorylation site predictor by seeking a more informative encoding
scheme and the best machine-learning method. After our preliminary assessment of 37 different encoding schemes for
training one of the 9 machine learning methods (The architecture of our phosphorylation predictor is shown in Fig. 1),
we found that the composition of k-spaced amino acid pairs (CKSAAP) and the deep forest is suitable for
phosphorylation prediction. Then we present DF-Phos, a general protein phosphorylation site predictor that uses a deep
Forest and CkSAApair feature extraction method to predict the phosphorylation sites using protein sequence
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information. We collect human and muse data from two databases the dbpaf [20], and the P.ELM[21]. To avoid a
biased classi�er, the training set was created with a positive-to-negative ratio of 1:1. The optimal window length was
determined using 10-fold cross-validation and independent test methods. Then we evaluated our predictor using a 10-
fold cross-validation procedure and compared this method with several phosphosite predictors.

Results And Discussion
To evaluate the performance of phosphorylation site prediction, several well-known performance measures were used,
including sensitivity (SN), speci�city (SP), accuracy (ACC), Precision (PR), F1 measure, Mattews correlation coe�cient
(MCC), area under the receiver operating characteristic curve (AUC), and they are de�ned as follows:

1

2

3

4

5

6

where, TP and TN are the numbers of positive and negative phosphorylation sites that were correctly predicted by the
model, respectively. FN and FP indicate the numbers of positive and negative phosphorylation sites that were wrongly
classi�ed as negative and positive, respectively. Therefore, SN refers to the percentage of positive phosphorylation
sites correctly classi�ed by a predictor. PR represents the ratio of true positive samples produced by the predictor. MCC
and F1-measure are two types of combined classi�cation performance measures that take all four basic parameters
(TP, TN, FP, and FN) into account.

37 feature vectors and 9 classi�cation methods were studied in this research which contained a total of 333 different
results. To achieve the best result, 10-fold cross-validation was used and the assessment of the results was done using
ACC and AUC. As can be seen in Figs. 2 and 3, CkSAApair as a feature extraction method and Deep Forest as a
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machine learning method have obtained the highest accuracy. The CKSAAP encoding strategy calculates the
composition of k-spaced amino acid pairs. In other words, it computes all amino acid pairs frequency with k spaces,
which has been successfully employed for the prediction of ubiquitination sites[22] and phosphorylation sites [23]–
[25] and Deep Forest has been successfully employed for Detecting Blood Methylation Signatures [18] and prediction
of RNA velocity [26].

It should be noted that the data selected in the test part and the training part are considered the same for all the above
methods. More details about these two methods are given below.

This section �rst evaluates our method and �nds the best window length. The training process of this model was done
by two databases P.ELM and dbPAF separately and with Different window lengths 21, 25, 29, 33, 37, 41 and its results
include the ACC, PR, SN and MCC, and SP of the DF-Phos using 10-fold cross-validation and the independent test is
shown in Table 1. The obtained results show that the best results occurred on window length 37 and the independent
test method.

Table 2 shows the accuracy results of the introduced model on human and mouse species. As can be seen, Mus-
muscles data have better results than Homo-sapiens data. In addition, by calculating the performance for each of the
S, T, and Y residues, it can be seen that the prediction accuracy of S and T residues is higher than Y, and this issue can
be seen in both Homo-sapiens and Mus-muscles species.

Table 1
The results obtained on the P.ELM and dbPAF databases with different window lengths (WL).

  Cross Validation Independent Test

  P.ELM WL ACC PR SN MCC SP ACC PR SN MCC SP

database 21 0.73 0.73 0.73 0.46 0.62 0.73 0.73 0.73 0.46 0.63

25 0.75 0.75 0.75 0.49 0.67 0.75 0.75 0.75 0.50 0.64

29 0.770 0.770 0.770 0.52 0.70 0.79 0.79 0.79 0.57 0.720

33 0.774 0.774 0.774 0.53 0.71 0.776 0.776 0.776 0.54 0.729

37 0.783 0.783 0.783 0.55 0.724 0.80 0.80 0.80 0.59 0.73

41 0.782 0.782 0.782 0.58 0.73 0.79 0.79 0.79 0.62 0.75

dbPAF 21 0.72 0.673 0.673 0.45 0.71 0.673 0.673 0.673 0.45 0.71

25 0.69 0.69 0.69 0.5 0.74 0.69 0.69 0.65 0.51 0.741

29 0.74 0.740 0.740 0.47 0.78 0.74 0.74 0.74 0.56 0.71

33 0.742 0.742 0.742 0.48 0.79 0.746 0.746 0.746 0.48 0.79

37 0.75 0.75 0.75 0.51 0.79 0.755 0.755 0.755 0.53 0.80

41 0.75 0.75 0.75 0.52 0.8 0.74 0.74 0.74 0.55 0.81

In other articles, it has been mentioned that the prediction accuracy of S, and T is higher than that of Y [27], [4], [14],
[17].
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Table 2
ACC results obtained by separating amino acids

in the ELM database.
Species S T Y Total

Mus-muscles 0.86 0.84 0.78 0.83

Homo-sapiens 0.78 0.82 0.73 0.75

All data 0.81 0.81 0.74 0.79

The performance of the DF-Phos method was compared with eight of the best methods available for predicting the
location of other phosphorylation sites, including two traditional machine-learning methods (Netphos3.0, Musite) and
six deep-learning methods (PPSP, MusiteDeep, DeepPhos, DeepPhos71, PhosIDNseq, PhosIDN). Table 3 gives the value
of SN, ACC, MCC, PR, and F1 that were reported for these methods and the result of DF-Phos with our database. As can
be seen, DF-Phos has better results in SN, ACC, MCC, and F1 indices than other methods, while PR does not have good
results. However, DeepPhos, which has good results in PR, does not have good Sensitivity.

Table 3
Comparing the results of previous methods and the current

method.
Model SN ACC MCC PR F1

PPSP 27.8 58.9 22.55 73.15 40.15

Netphos3.0 19.85 54.9 13.4 65.6 30.3

Musite 16 55.7 18.4 76.7 26.35

MusiteDeep 34.7 62.35 29.2 76.5 47.25

DeepPhos 47.8 64.5 41.4 87.7 48.77

DeepPhos-71 52.1 71.5 33.3 83.5 64.3

PhosIDNSeq 40.25 65.15 34.65 79.5 53.05

PhosIDN 52.1 71.1 45.5 83.9 64.3

DF-Phos 78 78 51 76 74

Note: best-performing method in bold

To more accurately compare the performance of the proposed predictor, we divided the sequences extracted from the
P.Elm database with a window length of 37 into two training and testing groups, and then the DeepPhos and DF-Phos
methods, were trained using the training data and the evaluation results of models using test data is given in Table 4.
The results show that DF-Phos performs is better than the DeepPhos method in all parameters.

Table 4
The value of evaluation results for the DeepPhos and

DeepForest methods.
Model MCC ACC PR SP SN

DF-Phos 0.74 0.74 0.742 0.742 0.743

DeepPhos 0.653 0.69 0.682 0.632 0.673
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According to the results, in all cases, DF-Phos exhibit the highest performance among all the methods evaluated. For
instance, DF-Phos compared to DeepPhos was able to improve by 5–10% in parameter evaluation.

Conclusions
However, it's very easy to predict the protein phosphorylation sites, but creating a highly accurate prediction is di�cult.
Thus, many computational methods have been used to predict phosphorylation sites with higher accuracy, so far. In
this study, 9 classi�cation methods and 37 different feature vectors were used to predict phosphorylation sites. Results
show that the deep forest method with the CkSAApair feature extraction method, had a much better performance
(assessing by Accuracy, and AUC) compared to other available methods. Then, a new phosphorylation site predictor
named DF-Phos was developed to predict protein phosphorylation sites using only the primary sequence information.
The highlight of DF-Phos was to utilize the CkSAApair method as the encoding scheme, and then the deep forest
architecture was used as the predictor. The performance of DF-Phos was measured with a sensitivity of 78%, a
precision of 76%, and an accuracy of 78% for all data. Experimental results obtained from 10-fold cross-validation
suggested that DF-Phos is a powerful tool to predict the phosphorylation site for both Homo sapiens and Mus-muscles
species.

The approach presented in this paper provides an e�cient way to identify phosphorylation sites in a given protein
primary sequence and deep forest approach that would be a piece of valuable information for the molecular biologists
working on protein phosphorylation sites and for bioinformaticians developing generalized prediction systems for the
post-translational modi�cations like glycosylation, nitration, and phosphorylation.

Methods
To collect the training data set, we used two databases dbPAF [20] and Phospho.ELM [21]. dbPAF contains known
phosphorylation sites in Homo sapiens, Rattus norvegicus, Mus musculus, Drosophila melanogaster, Caenorhabditis
elegans, Schizosaccharomyces pombe, and Saccharomyces cerevisiae[20] that are integrated from nine public
databases in eukaryotes, including dbPTM, PHOSIDA, Phospho.ELM, PhosphositePlus, PhosphoPep, PhosphoGRID,
SysPTM, HPRD, and Uniprot, with manual curation of the literature. Phospho.ELM contains experimentally veri�ed
phosphorylation sites manually curated from the literature and is developed as part of the ELM (Eukaryotic Linear
Motif) resource [28]. In this study, we focused on human and mouse phosphorylation site prediction and, consequently,
extracted all Homo sapiens and Mus musculus phosphorylation datasets from the above datasets then randomly
select the same number of phosphorylation sites from each species and combined all phosphorylation on S, T, and Y
as the positive instances. The same amino acids without annotated phosphorylation sites from the same proteins were
considered negative instances. These sites have been used to construct a sequence of length 33 in which the positive
or negative site is located at the central position. Due to the larger number of negative sites than positive sites, it is very
likely to train a biased classi�er that would lead to predicting most of the unknown sites as negative [9]. Thus, to
overcome the problem, we randomly selected negative sites to match the number of positive examples [29],[16]. Finally,
the data obtained from human and mouse species were combined, and to reduce sequence redundancy in the
extracted datasets and avoid potential bias in model training, the redundant sequences were removed using the CD-HIT
tool [30] with a similarity threshold of 90%. Table 5 shows the number of �nal data after applying CD-HIT for different
species. These data are used as the �nal data for the training phase of the classi�cation.
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Table 5
phosphorylation data collected in this study.

    Homo sapiens Mus musculus

  Total S Y T Total S Y T

Database Phospho.ELM 7482 2505 2343 2630 5518 2395 1526 1597

dbpaf 20476 6855 6412 7209 15856 5232 4915 5709

Feature extraction
The brief name of each feature extraction method for sequences and its description are listed in Table 6. All of these 37
feature vectors were extracted by the ftrCool library [31].
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Table 6
Feature extraction methods.

Row Brief Feature name Feature Description

1 AAutoCor Amino Acid Autocorrelation-Autocovariance

2 CkSAApair Composition of k-spaced Amino Acids pairs

3 CkSGAApair Composition of k-Spaced Grouped Amino Acids pairs

4 CTD Composition Transition Distribution

5 CTDC Composition Transition Distribution

6 CTDD CTD Distribution

7 DDE Dipeptide Deviation from Expected Mean value

8 EAAComposition Enhanced Amino Acid Composition

9 EGAAComposition Enhanced Grouped Amino Acid Composition

10 PseKRAAC_T13 Pseudo K_tuple Reduced Amino Acid Composition Type_13

11 PseKRAAC_T14 Pseudo K_tuple Reduced Amino Acid Composition Type_14

12 PseKRAAC_T15 Pseudo K_tuple Reduced Amino Acid Composition Type_15

13 PseKRAAC_T16 Pseudo K_tuple Reduced Amino Acid Composition Type_16

14 PseKRAAC_T3A Pseudo K_tuple Reduced Amino Acid Composition Type_3A

15 PseKRAAC_T3B Pseudo K_tuple Reduced Amino Acid Composition Type_3B

16 PseKRAAC_T4 Pseudo K_tuple Reduced Amino Acid Composition Type_4

17 PseKRAAC_T5 Pseudo K_tuple Reduced Amino Acid Composition Type_5

18 PseKRAAC_T6A Pseudo K_tuple Reduced Amino Acid Composition Type_6A

19 GrpDDE Group Dipeptide Deviation from Expected Mean

20 kGAAComposition k Grouped Amino Acid Composition

21 LocalPoSpKaaF Local Position Speci�c k Amino Acids Frequency

22 PseKRAAC_T1 Pseudo K_tuple Reduced Amino Acid Composition Type_1

23 PseKRAAC_T10 Pseudo K_tuple Reduced Amino Acid Composition Type_10

24 PseKRAAC_T11 Pseudo K_tuple Reduced Amino Acid Composition Type_11

25 QSOrder Quasi Sequence Order

26 SAAC Split Amino Acid Composition

27 PseKRAAC_T6B Pseudo K_tuple Reduced Amino Acid Composition Type_6B

28 SGAAC Split Group Amino Acid Composition

29 SOCNumber Sequence Order Coupling Number

30 PseKRAAC_T12 Pseudo K_tuple Reduced Amino Acid Composition Type_12
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Row Brief Feature name Feature Description

31 PseKRAAC_T9 Pseudo K_tuple Reduced Amino Acid Composition Type_9

32 ExpectedValueGKmerAA Expected Value for Grouped K-mer Amino Acid

33 ExpectedValueKmerAA Expected Value for K-mer Amino Acid

34 PseKRAAC_T7 Pseudo K_tuple Reduced Amino Acid Composition Type_7

35 PseKRAAC_T8 Pseudo K_tuple Reduced Amino Acid Composition Type_8

36 ExpectedValueGAA Expected Value for each Amino Acid

37 ExpectedValueAA Expected Value for each Amino Acid

Machine Learning Methods
In this study as shown in Fig. 1, for each feature extraction method, the following classi�cation methods were used
and Best Accuracy and AUC were determined; Ada Boost (ADA) [32], K nearest neighbor (KNN) [33], Naive Bayes (NB),
Support Vector Machine (SVM) [34], Random Forest (RF)[35], multi-Layer perceptron (MLP) [36], Logistic Regression
(LR) [37], Decision Tree (DT)[38] and Deep Forest [18].

ADA
Ada boost is one of the learning methods that used a mixture of classi�ers, for better and more accurate prediction.
Each learner method creates an output (a class) for each sample. Then the linear sum of these learners is selected to
minimize the classi�er error.

KNN
KNN is one of the simplest learning algorithms. The basic idea of this algorithm is to calculate the distance of an
object to the k nearest neighbors and then �nd the �rst k-nearest samples and determine the category of the new
instance.

NB
This classi�er is based on Bayes’ theorem and independence assumptions between the data for a given class. This
assumption can highly reduce the computational cost. NB method has been used for PTM prediction [39].

SVM
SVM is one of the most applicable machine learning methods for binary problems and has high accuracy and also
high performance. This method utilizes an optimized hyperplane to distinguish classes and it is widely used for the
prediction of PTM [25], [40] and phosphorylation [41].

MLP
Multi-layer perceptron (MLP) is a type of arti�cial neural network that consists of three types of layers, an input to
receive the input signal to be processed, an output layer that the result of prediction and classi�cation that could be
extracted from this layer, and hidden layers that are placed in between the input and output layer are the true
computational engine of the MLP. This method can solve problems that are not linearly separable. One of the
important applications of MLP is pattern classi�cation and prediction [42].

LR
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Logistic Regression is a “Supervised machine learning” algorithm that can be used to model the probability of a
speci�ed class. It is usually used for Binary classi�cation problems. That means Logistic regression is usually used
when the outcome is binary. LR has shown good results in phosphorylation predictors [43], [44].

DT
DT is a model that gives interpretable decision rules. It creates a classi�cation model based on the IF-THEN structure to
discover the relation between feature vectors and classes [45].

RF
RF is a collection of decision trees. Each decision tree is trained by some randomly selected features and samples from
the original dataset. For a test sample, the majority of votes are used, to calculate the predicted value.

DF
The deep forest is a deep model based on decision trees. Compared with deep neural networks, the training process of
deep forest does not depend on backpropagation and gradient adjustment and it has fewer hyper-parameters.

Various architectures have been introduced for the deep forest, one of the newest architectures is called gcForest. In
this method, the layers are placed next to each other in a cascade manner. The layered structure created in gcForest
gives the network the ability to learn more di�cult patterns. In other words, in this method, each layer receives feature
info from its previous layer, similar to conventional deep learning methods. Figure 4 shows this issue.

Abbreviations
PTM                            Post-Translational Modi�cation

S                                   Serine

T                                   Threonine

Y                                   Tyrosine

CkSAApair                 Composition of k-spaced Amino Acids pairs

ADA                             Ada boost

KNN                             K-Nearest Neighbors

NB                                Naive Bayes

SVM                            Support Vector Machine

MLP                             Multi-Layer Perceptron

LR                                 Logistic Regression

DT                                Decision Tree

RF                                 Random Forest

DF                                Deep Forest
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SN                                Sensitivity

SP                                 Speci�city

ACC                              Accuracy

PR                                Precision

MCC                            Mattews Correlation Coe�cient

AUC                             Area Under the receiver operating Characteristic curve

F1                                 F1 measure
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Figures

Figure 1

The architecture of our phosphorylation predictor. The predictor input consists of N sequences of length L from our
database. Then using the feature extraction methods, the feature vector of these sequences was extracted and the
resulting matrix was fed into a machine learning block and trained, we used the 10-fold cross-validation methods to
evaluate the model.
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Figure 2

ACC of different feature extraction and machine learning methods.

Figure 3

AUC of different feature extraction and machine learning methods.
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Figure 4

shows the gcforest structure. assume that each level of the cascade consists of two random forests (blue) and two
completely random forests (red). Suppose that there are two classes to predict; therefore, each forest will output a 2D
class vector, which is then concatenated for re-representation of the input. In the last layer, mediation is done between
all the previous layers and �nally, its max is introduced as the prediction result.
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