Boltovskoy D, Kling SA, Takahashi K, and Bjørklund K (2010) World Atlas of Distribution of Recent Polycystina (Radiolaria). Palaeontologia Electronica 13 (3), 18A. http://palaeo-electronica.org/2010_3/215/index.html
Chinzei K, Fujioka K, Kitazato H, Koizumi I, Oba T, Oda M, Okada H, Sakai T, Tanimura Y (1987) Postglacial environmental change of the Pacific Ocean off the coasts of central Japan. Mar Micropaleontol 11(4):273–291.
Deser C, Alexander MA, Timlin MS (1999) Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12, 1697-1706.
Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave IN, Hodell D, Piotrowski AM, 2012. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337: 704–709 http://dx.doi.org/10.1126/science.1221294.
Ferretti, P., Crowhurst, A.J., Naafs, B.D.A. and Barbante, C. (2015) The Marine Isotope Stage 19 in the mid-latitude Northern Atlantic Ocean: astronomical signature and intra-interglacial variability. Quat. Sci. Rev. 108: 95–110.
Giaccio B, Regattieri E, Zanchetta G, Nomade S, Renne PR, Sprain CJ, Drysdale RN, Tzedakis PC, Messina P, Scardia G., Sposato A, Bassinot F (2015) Duration and dynamics of the best orbital analogue to the present interglacial. Geology 43: 603e606. https://doi.org/10.1130/G36677.1
GSSP Proposal Group (2019) A summary of the Chiba Section, Japan: a proposal of Global Boundary Stratotype Section and Point (GSSP) for the Middle Pleistocene Subseries. Jour Geol Soc Japan 125: 5-22.
Haneda Y, Okada M, Kubota Y, Suganuma Y (2020) Millennial-scale hydrographic changes in the northwestern Pacific during marine isotope stage 19: teleconnections with ice melt in the North Atlantic . Earth Planet Sci Lett 531, 115936. https://doi.org/10.1016/j.epsl.2019.115936
Hammer O, Harper D, Ryan PD (2001) PAST: Paleontological Statistic Software Package for Education and Data Analyses. Paleontologia Eletronica 4: art. 4. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Hyodo M, Bradák B, Okada M, Katoh S, Kitaba I, Dettman DL, Hayashi H, Kumazawa K, Hirose K, Kazaoka O, Shikoku K, Kitamura A (2017) Millennial-scale northern Hemisphere Atlantic-Pacific climate teleconnections in the earliest Middle Pleistocene. Sci Rep 7: 10036. https://doi.org/10.1038/s41598-017-10552-2.
Hyodo, M., Kitaba, I. (2016) Timing of the MatuyamaeBrunhes geomagnetic reversal: Decoupled thermal maximum and sea-level highstand during Marine Isotope Stage 19. Quat Inter 383: 136–144. http://dx.doi.org/10.1016/j.quaint.2015.01.052.
Hyodo M, Katoh S, Kitamura A, Takasaki K, Matsushita H, Kitaba I, Tanaka I, Nara M, Matsuzaki M, Dettman DL, Okada M (2016) High resolution stratigraphy across the early-middle Pleistocene boundary from a core of the Kokumoto Formation at Tabuchi, Chiba Prefecture, Japan. Quat Inter 397: 16–26. https://doi.org/10.1016/j.quaint.2015.03.031.
Imbrie J, Kipp NG (1971) A new micropaleontological method for paleoclimatology: application to a Late Pleistocene Caribbean core. In: Turekian, K.K. (Ed.), The Late Cenozoic Glacial Ages. Yale University Press, New Haven, pp. 71–181.
Isono D, Yamamoto M, Irino T, Oba T, Murayama M , Nakamura T, Kawahata H (2009)The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene Geology 37: 591–594, doi: 10.1130/G25667A
Itaki T (2009) Last glacial to Holocene polycystine radiolarians from the Japan Sea. News Osaka Micropaleontol (NOM) 14:43–89
Itaki T, Sagawa T, Kubota Y (2018) Data report: Pleistocene radiolarian biostratigraphy, IODP Expedition 346 Site U1427. In Tada, R., Murray, R.W., Alvarez Zarikian, C.A., and the Expedition 346 Scientists, Proceedings of the Integrated Ocean Drilling Program, 346: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/iodp.proc.346.202.2018
Izumi K, Haneda Y, Suganuma Y, Okada M, Kubota Y, Nishida N, Kawamata M, Matsuzaki T (submitted) Multiproxy geochemical analysis across the Lower–Middle Pleistocene boundary: Chemostratigraphy and palaeoenvironment of the Chiba composite section, central Japan. PEPS.
Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317: 793–796. https://doi.org/10.1126/science.1141038.
Kameo K, Kubota Y, Haneda Y, Suganuma Y, Okada M (submitted) Calcareous nannofossil biostratigraphy of the Lower–Middle Pleistocene boundary of the GSSP, Chiba composite section in the Kokumoto Formation, Kazusa Group, and implications for sea-surface environmental changes. PEPS.
Kazaoka O, Suganuma Y, Okada M, Kameo K, Head MJ, Yoshida T, Kameyama S, Nirei H, Aida N, Kumai H (2015) Stratigraphy of the Kazusa Group, Central Japan: a high-resolution marine sedimentary sequence from the Lower to Middle Pleistocene. Quat Int 383: 116-135.
Kleiven HF, Hall IR, McCave IN, Knorr G, Jansen E (2011) Coupled deep-water flow and climate variability in the Middle Pleistocene North Atlantic. Geology 39, 343–346. https://doi .org /10 .1130 /G31651.1
Koizumi I (2008) Diatom-derived SSTs (Td′ ratio) indicate warm seas off Japan during the middle Holocene (8.2–3.3 kyr BP). Mar Micropal 69: 263–281.
Kuroyanagi A, Kawahata H, Nishi H, Honda M (2002) Seasonal changes in planktonic foraminifera in the northwestern North Pacific Ocean: sediment trap experiments from subarctic and subtropical gyres. Dee-Sea Res 49, 5627-5645. https://doi.org/10.1016/S0967-0645(02)00202-3
Matsuzaki KM, Itaki T (2017) New Northwest Pacific radiolarian data as a tool to estimate past sea surface and intermediate water temperatures. Paleoceanogr Paleoclimatol 32(3):218–245 https://doi.org/10.1002/ 2017PA003087
Motoyama I, Itaki T, Kamikuri S, Taketani Y, Okada M (2017) Cenozoic biostratigraphy, chronostratigraphy and paleoceanography in the Boso Peninsula and Bandai Volcano in the Aizu region, East Japan. Sci. Rep., Niigata Univ. (Geology), No. 32 (Supplement), 1–27.
Nigrini C (1970) Radiolarian assemblages in the North Pacific and their application to a study of Quarternary sediments in core V20–130, Geol. Soc. Am. Mem., 126, 39–175, doi:10.1130/MEM126-p139.
Nishibe Y, Takahashi K, Shiozaki T, Kakehi S, Saito H, Furuya K (2015) Size-fractionated primary production in the Kuroshio Extension and adjacent regions in spring. Journal Oceanography, 71: 27-40.
Nishida N, Kazaoka O, Izumi K, Suganuma Y, Okada M, Yoshida T, Ogitsu I, Nakazato H, Kameyama S, Kagawa A, Morisaki M, Nirei H (2016) Sedimentary processes and depositional environments of a continuous marine succession across the Lower-Middle Pleistocene boundary: Kokumoto Formation, Kazusa group, central Japan. Quat Int 397: 3-15
Nishikawa H, Usui N, Kamachi M1, Tanaka Y and Ishikawa Y (2016) Link between the interannual variability in the Kuroshio-Oyashio layered structure and the chlorophyll-a concentrations in the Kuroshio Extension during spring. Oceanography in Japan,25(5), 133-144 (in Japanese with English abstract).
Nomade S, Bassinot F, Marino M, Simon Q, Dewilde F, Maiorano P, Isguder G, Blamart D, Girone A, Scao V, Pereira A, Toti F, Bertini A, Combourieu-Nebout N, Peral M, Bourles DL, Petrosino P, Gallicchio S, Ciaranfi N (2019) High-resolution foraminifer stable isotope record of MIS 19 at Montalbano Jonico, southern Italy: A window into Mediterranean climatic variability during a low-eccentricity interglacial. Quat. Sci. Rev. 205: 106–125. https://doi.org/10.1016/j.quascirev.2018.12.008.
Okada M, Suganuma Y, Haneda Y, Kazaoka O (2017) Paleomagnetic direction and paleointensity variations during the Matuyama-Brunhes polarity transition from a marine succession in the Chiba composite section of the Boso Peninsula, central Japan. Earth, Planets, Space 69 (45). https://doi.org/10.1186/s40623-017-0627-1.
Okazaki Y, Takahashi T, Onodera J, Honda MC (2005) Temporal and spatial flux changes of radiolarians in the northwestern Pacific Ocean during 1997–2000. Deep-Sea Research II 52: 2240–2274.
Prokopenko AA, Hinnov LA, Williams DF, Kuzmin MI (2006) Orbital forcing of continental climate during the Pleistocene: a complete astronomically tunedclimatic record from Lake Baikal, SE Siberia. Quat. Sci. Rev. 25: 3431–3457. https://doi.org/10.1016/j.quascirev.2006.10.002.
Regattieri E, Giaccio B, Mannella G, Zanchetta G, Nomade S, Tognarelli A, Per-chiazzi N, Vogel H, Boschi C, Drysdale RN, Wagner B, Gemelli M, Tzedakis P (2019) Frequency and dynamics of millennial-scale variability during Marine Isotope Stage 19: insights from the Sulmona Basin (central Italy). Quat. Sci. Rev.214, 28–43. https://doi .org /10 .1016 /j .quascirev.2019 .04 .024.
Sánchez Goñi MF, Rodrigues T, Hodell DA, Polanco-Martínez JM, Alonso-García M, Hernández-Almeida I, Desprat S, Ferretti P (2016). Tropically-driven cli-mate shifts in southwestern Europe during MIS19, a low eccentricity inter-glacial. Earth Planet. Sci. Lett.448: 81–93. https://doi .org /10 .1016 /j .epsl .2016 .05 .018
Simon Q, Bourles DL, Bassinot F, Nomade S, Marino M, Ciaranfi N, Girone A, Maiorano P, Thouveny N, Choy S, Dewilde F, Scao V, Isguder G, Blamart D (2017) Authigenic 10Be/9Be ratio signature of the MatuyamaeBrunhes boundary in the Montalbano Jonico marine succession. Earth Planet. Sci. Lett. 460: 255–267. https://doi.org/10.1016/j.epsl.2016.11.052.
Simon Q, Suganuma Y, Okada M, Haneda Y, ASTER team (2019) High-resolution 10Be and paleomagnetic recording of the last polarity reversal in the Chiba composite section: Age and dynamics of the Matuyama–Brunhes transition. Earth Planet Sci Lett 519: 92–100. https://doi.org/10.1016/j.epsl.2019.05.004.
Suganuma Y, Haneda Y, Kameo K, Kubota Y, Hayashi H, Itaki T, Okuda M, Head MJ, Sugaya M, Nakzato H, Igarashi A, Shikoku K, Hongo M, Watanabe M, Satoguchi Y, Takeshita Y, Nishida N, Izumi K, Kawamura K, Kawamata M, Okuno J, Yoshida T, Ogitsu I, Yabusaki H, Okada M (2018) Paleoclimatic and Paleoceanographic records of Marine Isotope Stage 19 at the Chiba composite section, central Japan: A reference for the Early-Middle Pleisotocene boundary. Quat Sci Rev 191: 406–430. https://doi.org/10.1016/j.quascirev.2018.04.022.
Suganuma Y, Okada M, Horie K, Kaiden H, Takehara M, Senda R, Kimura J, Haneda Y, Kawamura K, Kazaoka O, Head MJ (2015) Age of Matuyama-Brunhes boundary constrained by U-Pb zircon dating of a widespread tephra. Geology 43: 491-494
Tanaka I, Hyodo M, Kitaba I, Ueno U, Sato H (2017) Diatom-based paleoceanographic variability across the Early-Middle Pleistocene transition from the Chiba section, central Japan. Quat Int 455: 141-148
Tompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25: 1297-1300.
Tzedakis PC, Channell JET, Hodell DA, Kleiven HF, Skinner LC (2012) Determining the natural length of the current interglacial. Nat. Geosci. 5: 138–141. http://dx.doi.org/10.1038/ngeo1358.
Valet JP, Bassinot F, Bouilloux A, Bourles D, Nomade S, Guillou V, Lopes F, Thouveny N, Dewilde F (2014) Geomagnetic, cosmogenic and climatic changes across the last geomagnetic reversal from Equatorial Indian Ocean sediments. Earth Planet. Sci. Lett. 397: 67–79. https://doi.org/10.1016/j.epsl.2014.03.053.
Wennrich V, Minyuk PS, Borkhodoev V, Francke A, Ritter B, Nowaczyk NR, Sauerbrey MA, Brigham-Grette J, Melles M (2014) Pliocene to Pleistocene climate and environmental history of Lake El’gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data. Clim. Past 10: 1381–1399. https://doi.org/10.5194/cp-10-1381-2014.
Yasudomi Y, Motoyama I, Oba T, Anma R (2014) Environmental fluctuations in the northwestern Pacific Ocean during the last interglacial period: evidence from radiolarian assemblages. Mar Micropaleontol 108:1–12