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Abstract
Background: Sleep disturbances are among the most common non-motor symptoms of Parkinson’s disease (PD). Deep
brain stimulation (DBS) of the subthalamic nucleus (STN) reduces local �eld potential (LFP) activity in the STN,
particularly in the beta frequency range (13 – 30 Hz). Although well-characterized in the short term, little is known about
how beta frequency oscillations change chronically, across the sleep-wake cycle. Better understanding of these
pathological signals in sleep may permit optimization of stimulation to improve sleep in PD.

Objectives: Here, we sought to characterize LFPs over several days and nights while patients remained in the home
setting.

Methods: LFPs were recorded from the subthalamic nucleus in 13 PD subjects (18 hemispheres) over an average of
14.7 ± 4.2 days. Fluctuations in LFP activity were characterized by arousal state, as determined by actigraphy.

Results: Beta frequency LFPs showed a clear and consistent diurnal pattern. In all subjects, beta power was higher
during wakefulness than during sleep, with little overlap in the magnitude of beta power between these two activity
states. LFP snapshots obtained across a broad frequency range at subject-indicated going-to-bed and waking-up times
showed signi�cant differences in power across multiple canonical frequency bands, though these differences were not
signi�cant at the group level.

Conclusions: Beta frequency LFPs �uctuate in a clear and consistent manner that is closely linked to time of day and to
activity state. These �uctuations can be detected in the home setting using commercially available devices, including in
patients who have been treated with deep brain stimulation for several years.

Introduction
Sleep disturbances are among the most common non-motor PD symptoms, and have a signi�cant impact on quality of
life for patients as well as caregivers.1–6 Though numerous symptomatic therapies exist, the treatment of sleep
disorders in PD is limited by a lack of adequately powered, randomized studies providing high quality evidence.7 DBS is
an established, effective therapy for the motor symptoms of PD,8–10 though studies have shown that DBS improves
sleep as well,11–13 and nascent research has begun to explore how DBS might be tailored speci�cally to treat sleep.

In recent years, recording of LFPs has identi�ed unique patterns in oscillatory activity that provides novel insight into
sleep architecture and basal ganglia physiology in PD. During non-rapid eye movement (NREM) sleep, power in the beta
frequency range (typically 13–30 Hz) is reduced compared to wakefulness, while power in the delta (0–3 Hz), theta (4–
8 Hz), and alpha (9–12 Hz) ranges is increased.14–16 REM sleep is characterized by increased beta frequency power,
though the magnitude of the beta power is variable and may be lower than or similar to that during wakefulness.14–16

In parkinsonian primates, a similar increase in alpha and low beta activity during NREM sleep was associated with a
decrease in the power of slow oscillatory �ring of the basal ganglia, and higher beta power was associated with
decreased propensity for sleep and an increased frequency of awakenings.17 Furthermore, beta frequency LFP power
gradually decreased across the basal ganglia at the time of sleep onset and became more prominent preceding
awakening.17 Thus, a potential mechanism for sleep disturbance in PD emerges, whereby synchronized beta
oscillations from the basal ganglia are relayed to the cortex, disrupting cortical slow oscillations that are characteristic
of NREM sleep.17,18

Several limitations hamper our current understanding of basal ganglia electrophysiology in sleep. Prior studies were
conducted via externalized DBS leads for recording, thus restricting data collection to a single night and limiting
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conclusions about the signi�cance of between-night differences in individuals.14–16 Recordings were also acquired in a
hospital or sleep laboratory setting, creating an unfamiliar environment that likely affected naturalistic sleep behavior.
Experiments were carried out between two days and one month following DBS implantation, making it di�cult to know
with certainty whether lesional effects, in�ammation, or other peri-procedural factors in�uenced the results. Although
devices capable of chronic sensing and recording are now commercially available, it is still unknown whether these
devices can faithfully capture the diurnal �uctuations of LFPs in the home setting, and how these signals will vary
across multiple nights of recording.19,20

In this study, we sought to determine whether LFP beta �uctuations within the subthalamic nucleus (STN) exhibited
tight coupling with the circadian pro�le validated via actigraphy monitoring. We obtained long-term recordings of beta
frequency STN LFPs from subjects implanted with the Medtronic Percept PC device, and correlated these with daily
tracking of wakefulness and sleep. We show that beta frequency LFPs vary signi�cantly in a manner that is closely
linked with sleep-wake behavior. These �ndings provide key insight into the chronic behavior of LFPs across the
circadian cycle.

Materials And Methods

Subjects
Thirteen subjects with idiopathic PD treated with STN DBS were recruited at the University of Colorado Hospital
Movement Disorders Center from March 2021 to April 2022. The study was approved by the Colorado Multiple
Institutional Review Board. All participants provided written, informed consent before any study procedures. Inclusion
criteria included: (i) an established clinical diagnosis of idiopathic PD according to UK Brain Bank criteria, (ii) treatment
with STN DBS and a Percept PC implanted pulse generator (Medtronic, Minneapolis, MN, USA), (iii) active stimulation
parameters that would allow chronic sensing (a monopolar con�guration using either of the middle two contacts of a
quadripolar electrode, or both in a double monopolar con�guration), (iv) ability and willingness to wear and use a
wristband-style monitor and log events in the DBS patient programmer. Exclusion criteria included: (i) diagnosis of
dementia, (ii) current or recent (within the last 30 days) use of a sedative-hypnotic agent for sleep, and (iii) ful�llment of
criteria for circadian sleep-wake rhythm disorder, as de�ned by the International Classi�cation of Sleep Disorders, Third
Edition.21 PD subtype was determined using Movement Disorders Society Uni�ed PD Rating Scale, as previously
described.22 Levodopa equivalent dose (LED) was calculated according to a previously published systematic review.23

Subjective sleep quality was assessed with the Epworth Sleepiness Scale (ESS),24,25 the Pittsburgh Sleep Quality Index
(PSQI),26 the Fatigue Severity Scale (FSS),27 and the PD Sleep Scale, version 2 (PDSS-2),28 which were completed prior
to the in-home study. If participants had a bed partner, the partner was asked to complete the Mayo Sleep Questionnaire
(MSQ).29 Question 1 of the MSQ speci�cally screens for the present of dream-enactment behavior suggestive of RBD
(“Have you ever seen the patient appear to ‘act out his/her dreams’ while sleeping?”).

Local �eld potentials
Peak frequency bands for chronic LFP recording via BrainSense TimeLine and BrainSense Events functions were
selected in power spectra generated by the BrainSense signal test, which automatically computes a fast Fourier
transform (FFT) of 20-second LFP recordings from the possible bipolar recording con�gurations in each hemisphere.
During open loop stimulation, chronic sensing is only possible when the active electrode con�guration is a monopolar
setting using one or both of the middle two contacts (1 or 2) as the cathode(s). Stimulation settings were not changed
as a part of this study. Therefore, the active contact was used as the recording contact, regardless of whether larger
beta peaks were identi�ed on adjacent contacts. Sensing was enabled only for hemispheres that met these parameter
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restrictions. Using BrainSense TimeLine for the active contact, a 5 Hz window was extrapolated, based on hardware
con�guration, around the largest peak frequency for chronic sensing of LFP power in microvolts peak (µVp). We chose
to record LFPs from the largest available peak in order to obtain the highest possible quality of recording, rather than
limit recording to exclusively the beta range. Medications and stimulation amplitude were not adjusted as part of the
study, but patients were permitted to adjust stimulation amplitude at home within predetermined ranges, as per
standard of care.

The Percept PC system also allows for the annotation of LFP data with the ‘Events’ function. Events are pre-speci�ed by
a clinician and available to subjects in their DBS patient programmer device. When a subject uses their programmer to
mark an event, a 30-second snapshot of LFPs is recorded. These time domain data are then converted to the frequency
domain across a range of frequencies (approximately 0–82 Hz). Participants in this study were provided with two
events, “going to bed” and “waking up” and instructed to mark events upon lying down in bed to sleep and upon waking
in the morning, respectively.

TimeLine data pre-processing
Local �eld potential data were extracted from the Percept PC as JSON �les using the ‘Export Report’ routine in the
clinician programmer. The Percept formatted JSON �les were imported into the Matlab (2021a-2022b; Mathworks,
Natick, MA) programming environment. In the JSON �le, raw BrainSense TimeLine data were accessed from the
following data �eld tree: DiagnosticData → LFPTrendLogs → HemisphereLocationDef_Left (‘_Right’ was used for right
hemisphere recordings). From these data, the following were obtained: 1) 144 samples per day representing each 10-
minute average of the LFP power spectrum data for the 5 Hz frequency band of interest, 144 annotations per day for
stimulation amplitude (corresponding to the averaged bins), 144 time stamps per day with a resolution of seconds.
Sharp positive de�ections that exceeded two standard deviations of the daily LFP average, re�ecting artifactual
�uctuations, were infrequent. To mitigate these �uctuations the following process was used: for any 10-minute sample
that exceeded the threshold of two standard deviations, the value was replaced with the average of activity in the
preceding one hour (six samples) and following one hour (six samples), in effect interpolating the time point of interest
with respect to LFP power. In addition, a Savitzky-Golay �lter30 was applied to a moving window of six samples as a
�nal pre-processing step to smooth the raw data. This was the �nal form of the data used in subsequent analyses and
for comparison with actigraphy data.

Events data pre-processing
Similar to TimeLine data, Events data were exported from the clinician programmer as a JSON �le. In the JSON �le, raw
BrainSense Events data were accessed from the following data �eld tree: DiagnosticData →
LfpFrequencySnapshotEvents → HemisphereLocationDef_Left (‘_Right’ was used for right hemisphere recordings) →
FFTBinData. FFTBinData were the raw power spectra data (frequency resolution 0.98 Hz; range 0–82 Hz). Each
individual Event power spectra was smoothed with a Savitzky-Golay �lter with a moving window of 5 samples (3.91
Hz).

Actigraphy
Subjects wore an actigraphy monitor (Actiwatch Spectrum Pro, Philips-Respironics, OR) on the wrist (side per patient
preference) throughout the study. The device has a 30 second resolution. Subjects were instructed to use the monitor’s
event marker button to record going-to-bed and waking-up times, to mirror the LFP event capture.

Actigraphy data pre-processing



Page 5/14

Raw CSV (comma delimited) �les were exported from the Philips Respironics software. In addition to the ‘activity’ data,
which is an integer representation of accelerometer-based changes in position, each epoch had a corresponding
timestamp in seconds resolution. Timestamps from the raw actigraphy data were used to calculate aligned time bins
with the TimeLine LFP data. A Python package ‘pyactigraphy’31 was used to apply standard sleep/awake extraction
algorithms to the raw actigraphy data. Given the implied rhythmicity of the actigraphy data, we applied a single
component cosinor. The cosinor is a least-squares regression model commonly applied to circadian rhythms and is a
standard approach for modeling chronobiological data.32–34 In addition, to classify epochs as awake and sleep we
used the combination of two algorithms: 1) Roenneberg,35 a threshold based algorithm that applies a series of cosine
�ts correlated with various bout lengths to determine the optimal consolidated periods of sleep and awake, and 2)
Crespo,36 a two-stage, threshold-based algorithm that uses a binary closing-opening �lter, of a speci�c window size in
minutes, to interpolate or remove extraneous short periods of activity or rest bracketed by long periods of rest or
activity.

Data Analysis

TimeLine and Actigraphy analysis
The degree of lag between actigraphy and LFP activity was assessed by computing the cross correlation between the
two signals, with actigraphy binned to the same resolution as the LFP and time synchronized. Further, blocked sleep
and awake bins were isolated into epochs based on the combination of the Roenneberg and Crespo actigraphic
algorithms. These epochs were then used to the conduct cross correlation between the actigraphy and LFP data
separated by sleep and awake epochs.

Comparison of LFP between sleep and awake epochs based on actigraphic classi�cation was conducted by
normalizing all LFP data across subjects (range 0–1). Summary data were calculated from normalized LFP data
including: 1) mean difference in LFP power (µVp) between sleep and wakefulness, probability density functions of
normalized LFP for sleep and wakefulness, and the fraction of overlap between probability density histograms between
sleep and wakefulness.

Finally, to assess the co-variance between sleep and wake epochs between LFP and actigraphy, dynamic time warping
was used to estimate the distance between the two time series signals, across all individual epochs and as an average
per individual subject.37,38 Dynamic time warping matches data in two different time series, from which the minimum
Euclidean distance between data points in each series can be calculated.

Events analysis
For Events data, the FFT output from the JSON �le was used to quantify the difference between ‘Going to bed’ and
‘Waking up’. FFT data were normalized within each subject for all recordings, and individual frequency bands of interest
were isolated: theta (4–8 Hz), alpha (9–12 Hz), beta (13–30 Hz) and gamma (31–82 Hz).

Comparison of TimeLine data within a single subject for two
stimulation periods
In one subject (11) whose stimulation parameters were changed, two separate stimulation con�gurations were
acquired. For this within-subject analysis, we did not have access to actigraphy data for both stimulation conditions.
Therefore, to assess the impact on TimeLine LFP data between stimulation conditions we applied an analysis
employed by van Rheede et al.39 which models LFP activity as a function of circadian cycling and estimates the degree
of variance that is accounted for by time of day.
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Statistical analysis
Individual frequency band analysis of ‘Going to bed’ and ‘Waking up’ events were compared with a one-way ANOVA
(frequency band × event marker) and post-hoc comparisons for each frequency by event marker were made using
Tukey’s honestly signi�cant difference (HSD) test. Individual 10-minute epochs determined by actigraphy to be
associated with sleep or wakefulness were compared across all subjects using a paired t-test and within subject using
a Kolmogorov-Smirnov test to assess whether epoch distributions were derived from separate populations. Pearson
correlations were conducted to compare both the peak frequency by scaled LFP difference and mean stimulation by
scaled LFP difference. Minimum distance between LFP and actigraphy blocks as measured by Euclidean distance
following dynamic time warping was compared between sleep and awake using a paired t-test. Group differences
between ‘Going to bed’ and ‘Waking up’ events were compared with a one-way ANOVA (frequency band × event marker)
and post-hoc comparisons for each frequency by event marker were made using Tukey’s HSD test. To account for the
variability in LFP data recorded during event marker detection, for each subject a one-way ANOVA (frequency band ×
event marker) and post-hoc comparisons for each frequency by event marker were made using Tukey’s HSD post-hoc
test. To assess the difference between the �rst and second stimulation settings for subject 11, we estimated the
average variance explained by time of day for all days separately in the �rst and second stimulation periods, using the
“Circa Diem” toolbox.39 Scaled LFP data collected from the 10 minute bins were compared between the �rst and
second stimulation period using a Kolmogorov-Smirnov test.

A multivariate correlation analysis was used to evaluate correlations between subjective sleep quality (ESS, PSQI, FSS,
and PDSS-2), temporal measures of disease (disease duration and DBS duration) and the scaled difference in LFP
power between wakefulness and sleep.

Results
We successfully recorded LFP data from all 13 participants during the study period. In �ve participants, LFPs were
recorded from both hemispheres, resulting in a total of 18 hemispheres of recording. Demographic and clinical
information is summarized in Table 1. In most cases (15 out of 18), the largest LFP peak frequency occurred in the beta
range (average peak frequency 17.8 ± 3.7 Hz), but for some subjects (three out of 18) the largest peak was found at
lower frequencies in the alpha range (average peak frequency 9.4 ± 1.1 Hz). Stimulation parameters and sensing
frequencies are provided in Table 1. Data were collected for an average of 14.7 ± 4.2 days.
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Table 1
Participant demographics and historical characteristics

Participant
ID

Age
(years)

Gender Disease
Duration
(years)

PD
Subtype

LED
(mg)

H&Ya

Stage
Survey Results

PSQI ESS FSS MSQ,
q1

PDSS-
2

1 67 M 14 PIGDb 625 3 9 22 6.67 Y 32

2 71 M 14 PIGD 900 2 5 15 2.89 - 6

3 71 M 7 TDc 450 2 10 2 2.78 - 17

4 65 F 21 PIGD 750 2 10 14 6.33 Y 28

5 60 F 14 TD 1100 2 7 5 2.89 Y 13

6 66 M 16 PIGD 300 3 18 4 5.89 Y 36

7 59 M 9 PIGD 520 2 10 13 2.44 - 14

8 71 M 18 PIGD 348 3 6 14 2.89 N 13

9 71 F 21 PIGD 150 3 6 4 2.44 Y 18

10 78 M 14 PIGD 500 2 8 4 3.67 Y 23

11 63 M 11 TD 1375 2 5 16 5 Y 12

12 65 M 10 PIGD 1200 2 7 7 1.33 Y 16

13 46 M 12 PIGD 1203 2 3 16 5.33 N 11

aH&Y: Hoehn and Yahr

bPIGD: postural instability and gait disturbance

cTD: tremor dominant

Data from a representative subject are shown in Fig. 1, including long-term beta power measurement overlaid with
sleep and wake times derived from actigraphy, as well as activity counts, results of cross-correlation analyses, LFP
power spectra obtained at the time of DBS event marking, and probability densities for different LFP frequencies during
these events. Clear circadian �uctuation in beta frequency LFP power is seen and is strongly linked to activity state as
de�ned by actigraphy as well as self-recorded going-to-bed and waking-up times. Beta power is consistently higher
during wakefulness and reduced during sleep. LFP spectra obtained at bed and wake times show higher beta power at
the time of waking than of going to bed. For the subject whose data is shown in Fig. 1, there is a statistically signi�cant
difference in scaled beta frequency LFP power between going-to-bed and waking-up, while this difference in other
frequency bands was not signi�cant. However, this does not hold true across all subjects.

Although there is signi�cant variability both between subjects and between individual nights for each subject, all
subjects had an observable difference in beta frequency LFP power between wakefulness and sleep. Figure 2A shows
beta power for all subjects separated by arousal state, as well as results of the Kolmogorov-Smirnov test for each
subject. We also calculated the degree of overlap in beta LFP power between wakefulness and sleep. A histogram from
a representative subject showing the probability densities for LFP power separated by arousal state is shown in Fig. 2B.
Overall, there was little overlap in LFP power between wakefulness and sleep, with all but one recorded hemisphere
showing less than 25% overlap (Fig. 2C).
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To examine whether the variability in LFP signals between subjects was associated with identi�able
electrophysiological or subjective clinical attributes, we compared the scaled difference in beta LFP power between
wakefulness and sleep against several parameters. There was a statistically signi�cant positive correlation between the
value of the beta frequency peak (Hz) recorded and the scaled LFP difference between sleep and wakefulness (Fig. 3A,
r = 0.602, p = 0.008). That is, participants with an LFP peak in the higher range of beta displayed a larger difference in
the LFP power at this frequency between wakefulness and sleep. We also found a statistically signi�cant negative
correlation between average stimulation amplitude (mA) used and the difference in LFP power between sleep and
wakefulness (Fig. 3B, r = -0.513, p = 0.029). There was a statistically signi�cant negative correlation between the
sample lag between actigraphy and LFP data and the scaled LFP difference between sleep and wakefulness (r = -0.605,
p = 0.017, not shown in �gure). That is, the larger the difference in LFP power between sleep and wakefulness, the better
the alignment between actigraphy and LFP data. We believe this to be a measure of the reliability of data collection, as
those participants with a large difference in LFP power between wakefulness and sleep (i.e., those in whom the
underlying physiology seems to be captured most faithfully) showed very little lag between actigraphy and LFP data.

Figure 4 shows scaled LFP power across canonical frequency bands, which was captured using the Percept PC’s
‘Events’ function. Recordings which contained signi�cant ECG artifact were not included in this analysis. In contrast to
the data from a single participant shown in Fig. 1, where a statistically signi�cant difference in LFP power between
going-to-bed and waking-up was seen in the beta frequency range but not in any other frequency band, LFP power was
not signi�cantly different between going-to-bed and waking-up in any frequency band when averaged for all
participants (Fig. 4A). We also compared LFP power across frequency bands for individual subjects, which is shown in
Fig. 4B. In four of 12 hemispheres which did not have signi�cant ECG artifact, beta LFP power was signi�cantly higher
at the time of going to bed than waking, while in three hemispheres beta power was signi�cantly lower at the time of
going to bed compared to waking. In �ve hemispheres, the difference was not statistically signi�cant.

To assess the validity of our two time series data, we performed a dynamic time warping analysis. Figure 5 shows the
minimum distances between LFP and actigraphy data, separated by activity state (wakefulness vs. sleep) for individual
epochs across all subjects (Fig. 5A) and as an average for each participant over the recording period (Fig. 5B, p = 5.8 ×
10− 6). In both cases, the distances were larger and there was much more variability in the difference between LFP and
actigraphy data during wakefulness than during sleep.

In subject 11, stimulation parameters were changed part way through the study period. This was done due to feelings
of anxiety, irritability, and emotional lability that had newly developed after initial DBS programming and enrollment in
the study. Decreasing stimulation amplitude did not alleviate these symptoms. He was asked to wean and then
discontinue taking methylphenidate, which had been prescribed previously for fatigue.40 Subsequently, BrainSense
survey performed 10 days after initial programming revealed more prominent beta peaks in both hemispheres than had
been seen previously, with the highest power in contact 2 in both the left and right STN. These changes improved his
mood and personality changes within days. Initial and subsequent stimulation settings and sensing parameters are
found in Table 2, and further details of this case have been described elsewhere.40 In this subject, LFP recordings
demonstrated consistent �uctuations both before and after the change in parameters. These data are shown in Fig. 6.
Clear circadian �uctuations in beta frequency LFP power were seen both before and after the change in stimulation,
though overall higher beta power was seen after the change, particularly during wakefulness (Fig. 6B, 6C). The
proportion of variance in LFP power explained by the time of day in left STN was 0.53 before parameter change and
0.70 after parameter change, and in the right STN was 0.65 before parameter change and 0.70 after parameter change.
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Table 2
DBS historical characteristics and LFP recording settings

Participant
ID

Recorded
hemisphere

DBS Duration
(years)

Lead
model

Stimulation settings Sensing
contacts

Sensing
frequency (Hz)

1 Right 8 3389 C + 1-,
3.0mA/130µs/90Hz

0, 2 10.7

2 Left 5 3389 C + 1-,
3.2mA/60µs/130Hz

0, 2 21.5

3 Left 7 3389 C + 1-,
2.0mA/60µs/140Hz

0, 2 20.5

4 Right 8 3389 C + 2-,
2.6mA/100µs/60Hz

1, 3 24.4

5 Right 8 3389 C + 2-,
3.1mA/70µs/180Hz

1, 3 13.7

6 Right 12 3389 C + 1-,
2.0mA/270µs/90Hz

0, 2 12.7

7 Bilateral R: 5

L: 5

3389 R: C + 1-,
3.8mA/60µs/130Hz

L: C + 2-,
4.4mA/60µs/130Hz

R: 0, 2

L: 1, 3

R: 15.6

L: 8.8

8 Left 16 3389 C + 1-,
3.4mA/60µs/130Hz

0, 2 14.7

9 Bilateral R: 12

L: 12

3389 R: C + 2-,
6.0mA/60µs/130Hz

L: C + 2-,
4.6mA/90µs/130Hz

R: 1, 3

L: 1, 3

R: 14.7

L: 8.8

10 Right 7 3389 C + 2-,
2.6mA/60µs/135Hz

1, 3 19.5

11 Bilateral R: <1

L: <1

B33005 R: C + 1-,
2.0mA/60µs/130Hz

L: C + 1-,
2.5mA/60µs/130Hz

R: 0, 2

L: 0, 2

R: 20.5

L: 21.5

      B33005 R: C + 2ABC-,
2.0mA/60µs/125Hz

L: C + 2ABC-,
1.5mA/60µs/125Hz

R: 1, 3

L: 1, 3

R: 19.5

L: 21.5

12 Bilateral R: <1

L: <1

B33005 R: C + 2ABC-,
1.8mA/60µs/125Hz

L: C + 1ABC-,
1.0mA/60µs/125Hz

R: 1, 3

L: 0, 2

R: 14.7

L: 13.7

13 Bilateral R: <1

L: <1

B33005 R: C + 2ABC-,
1.5mA/60µs/130Hz

L: C + 2ABC-,
1.8mA/60µs/130Hz

R: 1, 3

L: 1, 3

R: 20.5

L: 19.5



Page 10/14

A multivariate correlation analysis between subjective sleep scale scores, disease duration, DBS duration, and the
scaled difference in LFP power between wakefulness and sleep found no signi�cant correlations between any of the
sleep scales and the scaled LFP metric. Further, there was no signi�cant correlations between the temporal measures of
disease and the scaled LFP metric. The only signi�cant correlations were the following: disease duration and
stimulation duration (r = 0.70, p < 0.05), PSQI and PDSS-2 (r = 0.80, p < 0.05), and FSS and PDSS-2 (r = 0.60, p < 0.05).

Discussion
In this study, we used a commercially available DBS device to sense and record LFPs in the home setting during
continuous therapeutic stimulation. We demonstrate that beta frequency oscillations follow a consistent diurnal
pattern. Actigraphy demonstrated that these �uctuations were associated with activity state and not simply with time
of day, as has been demonstrated previously.39 These �ndings provide important insight into basal ganglia
electrophysiology during sleep and highlight the importance of accounting for circadian variation in LFP signals in the
development of closed loop DBS systems.

Beta frequency LFP power recorded from the STN was consistently elevated during wakefulness and decreased during
sleep (Figs. 1, 2, 6). This is consistent with existing literature on the physiological basis of LFP activity in relation to
sleep.14,15,41 Nonetheless, there was signi�cant variability in our data, with some recordings showing a large difference
in LFP power between wakefulness and sleep, and others a smaller difference (Fig. 2). We sought to identify potential
causes for this variability. One possible explanation is that poorer quality of the recording limited our ability to detect
differences between wakefulness and sleep. This is supported by the fact that participants with little difference in
scaled LFP power between wakefulness and sleep consistently had higher lag between actigraphy and LFP data, a
marker of general recording quality and reliability. Another possible explanation for the variability in the magnitude of
differences in LFP power between wakefulness and sleep is the effect that chronic stimulation has on basal ganglia
oscillatory activity. We found a signi�cant positive correlation between the value of the LFP peak recorded (in Hz) and
the difference in LFP power between wakefulness and sleep (Fig. 3A). This may bolster the notion that DBS
differentially modulates STN activity in the low beta (13–20 Hz) and high beta (21–30 Hz) ranges. Feldmann et al.42

recently demonstrated a more pronounced reduction in low beta power compared to high beta power by STN DBS,
which was associated with clinical improvement in a �nger-tapping task. Furthermore, in a linear mixed effects model,
low beta suppression was a superior predictor of improvement in bradykinesia over high beta suppression. It remains
unknown whether differential suppression of high versus low beta activity has a meaningful impact on other motor or
non-motor symptoms, including sleep. Our �ndings suggest this is a possibility that warrants further investigation.
Speci�cally, we found participants with LFP peaks in the low beta range had a smaller magnitude of difference in LFP
power between wakefulness and sleep. If indeed STN DBS produces a more dramatic improvement in parkinsonian
symptoms when low beta LFPs are targeted, this would result in greater overall suppression of LFP power and thus a
smaller difference in LFP power between wakefulness and sleep, which is consistent with our results.

STN DBS may also shift LFP peaks to lower frequencies.42 Our �nding that larger differences in beta LFP power
between wakefulness and sleep are correlated with lower stimulation amplitudes and higher beta frequency peaks
(Fig. 3B) would be concordant with this, particularly if higher stimulation amplitudes are shifting LFP peaks to lower
frequencies and also suppressing the circadian variation in beta power. In this scenario, it is the higher stimulation
amplitude that suppresses beta oscillatory activity and thus minimizes the observed difference in LFP power between
wakefulness and sleep. Alternatively, it could be hypothesized that stimulation delivered in an optimal location, where
more prominent beta oscillations are seen and thus the difference in LFP power between wakefulness and sleep is
more pronounced, lower stimulation amplitudes may be used to adequately control motor symptoms. The exact nature
of this relationship will need to be clari�ed by future studies.
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Our data make several important contributions to understanding the role of LFP activity in sleep physiology. Whereas
prior studies utilized an externalized DBS lead for LFP recording and were thus limited to a single night of monitoring in
a hospital setting, we have demonstrated that LFP recording can be done in the home setting, without the need for
externalization of the DBS, thus providing a more accurate picture of naturalistic sleep. We recorded LFP data in
patients chronically treated with DBS, thus minimizing any chance of lesional or other peri-procedural effects of DBS
implantation on the data. In doing so, we demonstrate that a clear difference can be seen in beta frequency LFP power
between wakefulness and sleep, regardless of duration of disease or duration of treatment with DBS.

Further studies will need to establish how best to incorporate diurnal �uctuations in beta power into closed-loop DBS.
Because beta activity is not eliminated during sleep, and because DBS likely delivers at least some improvement in
sleep in PD patients,11,12,43 it will likely be advantageous for closed-loop DBS to continue delivering some amount of
stimulation during sleep. One conceivable way to do this is by incorporating some representation of a beta LFP
chronotype into the adaptive controller, where the chronotype is de�ned as an individual’s natural inclination to sleep at
a particular phase of the day-night cycle.39,44,45 The optimal timescale for measuring and responding to this
chronotype remains to be determined, but our results suggest that a 10-minute interval provides su�cient signal to at
least detect it. Similarly, recent studies suggest that longer feedback time scales for closed-loop DBS may improve
signal-to-noise ratios and thus better differentiate pathological from physiological changes in oscillatory activity, at
least for addressing motor symptoms, though no direct comparison has been made with dynamic, burst control
algorithms.46–48

In conclusion, beta frequency LFP activity shows signi�cant and consistent �uctuation across the sleep-wake cycle.
Although variability exists between subjects and across individual nights, diurnal �uctuations in STN oscillatory activity
can reliably be recorded using commercially available devices and does not seem to be negatively impacted by
concurrent stimulation, duration of disease, or duration of DBS therapy. Incorporation of diurnal LFP �uctuations will be
critical to optimize closed-loop DBS algorithms.
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