The black rockfish (Sebastes schlegelii) is an important commercial fish distributed in Northwest Pacific enjoying high popularity in China, Korea and Japan (Yoshida et al. 2005). In recent decades, commercial exploitation and environmental changes have caused a decline in its population. Thus, demand for hypervariable molecular markers to provide a population-genetic perspective on conservation and management efforts of the species (FAO, 1993) becomes urgent.
With the rapid development of next-generation sequencing technologies (NGS) (Davey et al. 2011), single nucleotide polymorphisms (SNPs) have been largely developed and widely used for genetic studies in aquaculture species such as Megalobrama terminalis (Yang et al. 2020), Coilia ectenes (Yu et al. 2019) and Ochetobius elongatus (Yang et al. 2018). For S. schlegelii resource conservation, we implemented restriction-site associated DNA (RAD) sequencing to facilitate the genetic evaluation.
In this study, a total of 50 S. schlegelii wild individuals were collected from northern Yellow Sea in China. Muscle tissues were sampled and stored in 95% molecular grade ethanol. Total genomic DNA was extracted from tissue samples using the TIANamp Marine Animals DNA Kit (Tiangen, Beijing, China) following the manufacturer’s instructions. 20 samples were used to constructed the RAD libraries. Then, the libraries were sequenced on the Illumina HiSeq 4000 platform using 150 base pair (bp) paired-end reads. We trimmed the adapter sequences and low-quality reads (Phred score < 20) with Cutadapt (Martin 2011). Finally, 3,014,591 putative SNPs with the highest scores were generated, from which we randomly selected 90 candidate SNPs to test their applicability. The polymorphism of these candidate SNPs was further characterized in the remaining 30 samples mentioned above. Primer sequences for SNP loci were designed by Primer 5.0 software. The PCR reactions were conducted in 25 µL volume containing 50 ng of genomic DNA, 1 × PCR buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 200 nM of each primer, and 1U of Taq polymerase (Takara, Dalian, China). Amplicons were checked by 1.0 % agarose gel electrophoresis and sequenced on ABI 3730 DNA Analyzer (Applied Biosystems).
The observed heterozygosity (Ho), expected heterozygosity (He), minor allele frequency (MAF), and P value representing the deviations from the Hardy–Weinberg equilibrium were estimated using POPGENE 32 (Yeh et al. 2007). The polymorphism information content (PIC) was calculated using Cervus 3.0 (Kalinowski et al. 2007). Among the test SNP markers in S. schlegelii, 38 polymorphic SNP markers were characterized in Table 1. The Ho and He were ranged from 0.1400 to 0.6400 and 0.1487 to 0.4978, respectively. The MAF raged from 0.1429 to 0.4694. The PIC varied from 0.174 to 0.365, with an average of 0.286. Four SNPs were found to be deviated significantly from the HWE (P<0.05). These results will be useful for understanding the genetic diversity of S. schlegelii to assist in the management of this germplasm resource.
Table 1 Summary information for the 38 SNP markers developed for the S. schlegelii
Primer ID
|
Primer sequences
|
SNP type
|
Size (bp)
|
Ho
|
He
|
MAF
|
PIC
|
PHWE
|
HYF1
|
F: TATCTGAGGTTTGGCTCCCAC
R:CTCACTTGCTTAAGGTCATTCAGG
|
G/A
|
335
|
0.3400
|
0.2851
|
0.2093
|
0.198
|
0.1617
|
HYF6
|
F: AAGACATTCAGGTCCAGCTCTG
R: AGCAAACCCTTGACTTTCTGGC
|
C/T
|
401
|
0.6400
|
0.4396
|
0.3600
|
0.341
|
0.0011
|
HYF8
|
F: GAATACACCCACCTGTCACTC
R: AGCTTTCTTCAACTCAAAGTGG
|
A/G
|
447
|
0.2800
|
0.2982
|
0.2917
|
0.258
|
0.6586
|
HYF9
|
F: ATGAATTGACAAGAATAGCCTG
R: CATATGTTTCAGCGACTCCA
|
C/T
|
414
|
0.3000
|
0.3982
|
0.3333
|
0.332
|
0.7655
|
HYF11
|
F: ACTGCTGGCAACTAGTTCATGG
R: TGCTGTTGAGGACACACGG
|
T/C
|
278
|
0.2800
|
0.2715
|
0.2857
|
0.226
|
0.8202
|
HYF13
|
F: AAGCAGTCATGAGGCTTGAG
R: TAGTCAATGCCATGGTTGGC
|
G/A
|
426
|
0.2600
|
0.2576
|
0.2826
|
0.236
|
0.9453
|
HYF14
|
F: TTCTGGTTCCAGTCAGCGTC
R: CAGTACCAGAAGATTCAGCACAC
|
A/G
|
388
|
0.4200
|
0.3788
|
0.2927
|
0.265
|
0.4339
|
HYF18
|
F: ATCATTTCCGAGCAGTGACC
R: CATCAGTGAATGAAAGTGGTGC
|
C/A
|
304
|
0.3200
|
0.2982
|
0.3200
|
0.252
|
0.2812
|
HYF23
|
F: AACACTTTTGGACACAAGCTCC
R: AATGGTGATGCAAGTTCGCTG
|
C/T
|
378
|
0.4400
|
0.3887
|
0.4082
|
0.308
|
0.3427
|
HYF25
|
F: AGCTAAGGTCAAGGTGATGC
R: AGAACTATACAGGAGAGGTGCC
|
G/A
|
333
|
0.1400
|
0.4160
|
0.1429
|
0.335
|
0.0000
|
HYF26
|
F: ATAGTGGTCAGCTGCATCAAG
R: GACTGATCATACCGACGAGTC
|
G/A
|
287
|
0.4400
|
0.4655
|
0.4082
|
0.354
|
0.6956
|
HYF27
|
F: AGCTGTCTACACTAGGTCCAG
R: TAGGCCTCTGTTATCTTGGGTC
|
T/C
|
417
|
0.1600
|
0.1487
|
0.2162
|
0.174
|
0.5670
|
HYF29
|
F: CAGATTGATGTGAGTGGTCCTG
R: ATGACATCCACCTCGTCTTGG
|
C/G
|
389
|
0.3400
|
0.3982
|
0.3400
|
0.317
|
0.2939
|
HYF30
|
F: GATTGTAGGGCTGCAGTTTGTC
R: ATAGCTCTGCCACAGTCAATGG
|
A/T
|
344
|
0.1800
|
0.1655
|
0.1633
|
0.153
|
0.5116
|
HYF33
|
F: CTCACTCCTATTACAGTGCAGAG
R: GTCTCGTAACTGTAGAAGGACC
|
T/C
|
308
|
0.4000
|
0.3685
|
0.4000
|
0.298
|
0.5381
|
HYF34
|
F: TTTGTCTCTCCAGTCGCTGG
R: TCTCTGTGGTACCTGTAGCG
|
C/T
|
411
|
0.4600
|
0.3578
|
0.4000
|
0.269
|
0.3956
|
HYF35
|
F: TGAGATGGTTGTTCAGTTCAGAC
R: TAGAACATGACAGAGCATGCAG
|
G/A
|
325
|
0.1400
|
0.1978
|
0.2800
|
0.177
|
0.0310
|
HYF37
|
F: TCTGTTAGTCTTCCACTGCTG
R: ATGCCAGTATCTTCAGTCTACC
|
G/A
|
305
|
0.3000
|
0.2851
|
0.3478
|
0.256
|
0.7034
|
HYF39
|
F: CAAATGTCAAAGTGTCCTCGG
R: ATTTCACACCTCACTATGACGG
|
A/G
|
270
|
0.4400
|
0.3685
|
0.4082
|
0.295
|
0.1624
|
HYF42
|
F: TCTCAGCTTTACAGTGATACCC
R: GAAATGCTAGAGTGCGTCTG
|
C/T
|
436
|
0.4200
|
0.4596
|
0.3913
|
0.347
|
0.5375
|
HYF47
|
F: TACAGACTGTTCTCATTCAGGG
R: GAGTTCAGAGTGATTGACAGC
|
C/G
|
311
|
0.3800
|
0.3109
|
0.3800
|
0.252
|
0.1078
|
HYF48
|
F: ACGAGATCATCAGCGAGAAGACC
R: TTCCACCGTTTGACCACTACG
|
G/A
|
277
|
0.4800
|
0.4242
|
0.4694
|
0.330
|
0.3459
|
HYF50
|
F: ACATCACCAAAGTGATCCTCAC
R: ACATTCAAGCTCACAGAGGC
|
G/A
|
415
|
0.3600
|
0.3685
|
0.3864
|
0.318
|
0.8684
|
HYF65
|
F: ACAAACAGCGGTCTCCTGAG
R: ccacctgtgttcagttacagtc
|
A/T
|
321
|
0.3000
|
0.3578
|
0.3000
|
0.298
|
0.2447
|
HYF69
|
F: TTGTAACATTGCAGTTAGGAACC
R: gcataactttgtagaagggacc
|
A/C
|
307
|
0.4600
|
0.4596
|
0.4694
|
0.354
|
0.9950
|
HYF70
|
F: TAACATTGCAGTTAGGAACCTC
R: ttgagtcattggtgtaattctacc
|
T/C
|
389
|
0.3200
|
0.4242
|
0.3404
|
0.331
|
0.0781
|
HYF71
|
F: ATCTCTGTGAATGCTGATGTAGC
R: atgcaatgcactgtactcctg
|
C/A
|
355
|
0.3400
|
0.3788
|
0.3415
|
0.316
|
0.4614
|
HYF74
|
F: TGAGGGCATAACCCATGCTGTAGC
R:tgacaaagtggcagtatgtgacgag
|
G/A
|
383
|
0.3600
|
0.3887
|
0.3600
|
0.311
|
0.5958
|
HYF75
|
F: AAGCAATATCAATAAGCCTCCCG
R: gacaaagtggcagtatgtgacg
|
G/T
|
309
|
0.3400
|
0.3352
|
0.3400
|
0.277
|
0.9168
|
HYF76
|
F: TACTTCCCTCTGCTGCAGTC
R: tagcaaatccaccatgtcctacc
|
T/G
|
301
|
0.3600
|
0.4978
|
0.3750
|
0.368
|
0.0480
|
HYF77
|
F: TCTCAGATTTGGAGGTAGCCAC
R: tcatttggcactttgtgtccg
|
C/G
|
441
|
0.2600
|
0.2576
|
0.2889
|
0.228
|
0.9453
|
HYF78
|
F: CCTTGGCATCTGACCTCAAGA
R: AAcaatactgctggttctgctagg
|
G/A
|
302
|
0.4800
|
0.4242
|
0.4082
|
0.335
|
0.3459
|
HYF79
|
F: AACCAATGAGGAAACTCCAACAG
R: cttgttccatttaggtgagccag
|
A/G
|
286
|
0.3000
|
0.2851
|
0.3000
|
0.242
|
0.7034
|
HYF80
|
F: TATCACCGATACCCAATCCAG
R: tggagttaaagagtgtccagtc
|
C/T
|
271
|
0.4200
|
0.3982
|
0.4000
|
0.311
|
0.6939
|
HYF81
|
F: TGAAGACAGAGCTAGTGTAGATGGG
R: tgataagtgcatccgactctgc
|
C/T
|
239
|
0.2400
|
0.2715
|
0.2857
|
0.261
|
0.3986
|
HYF85
|
F: AGATCTGACAGAGATTCCAATCGG
R: gcaatagtagttctcaagctatggg
|
T/A
|
311
|
0.3400
|
0.3352
|
0.3400
|
0.277
|
0.9168
|
HYF86
|
F: TGCCATCATTGGTTCACATTAGGC
R: agtttggctgtttggtcatgcg
|
C/T
|
224
|
0.4000
|
0.4848
|
0.4000
|
0.365
|
0.2109
|
HYF90
|
F: ACTGTTCGTGAAGCTCAAACTCAG
R: agaaattccgctaagggcagc
|
T/A
|
428
|
0.3600
|
0.3685
|
0.3750
|
0.305
|
0.8684
|
Ho observed heterozygosity, He expected heterozygosity, MAF minor allele frequency, PIC polymorphism information content, PHWE the P value of the deviations from the Hardy–Weinberg equilibrium