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Abstract We rigorously investigate closed Minkowski/Finsler billiard trajec-
tories on n-dimensional convex bodies. We outline the central properties in
comparison and differentiation from the Euclidean special case and establish
two main results for length-minimizing closed Minkowski/Finsler billiard tra-
jectories: one is a regularity result, the other is of geometric nature. Building
on these results, we develop an algorithm for computing length-minimizing
closed Minkowski/Finsler billiard trajectories in the plane.
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1 Introduction and main results

Minkowski/Finsler billiards are the natural extensions of Euclidean billiards
to the Minkowski/Finsler setting.

Euclidean billiards are associated to the local Euclidean billiard reflection
rule: The angle of reflection equals the angle of incidence (here, we assume that
the relevant normal vector as well as the incident and the reflected ray lie in
the same two-dimensional affine flat). This local Euclidean billiard reflection
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rule follows from the global least action principle. For a reflection in a hyper-
plane this principle means that a billiard trajectory segment (pj_1,p;,Pj+1)
minimizes the Euclidean length in the space of all paths connecting p;_; and
pj+1 via a reflection at this hyperplane.

In Finsler geometry, the notion of length of vectors in R™, n > 1, is given
by a convex body T < R™, i.e., a compact convex set in R which has the
origin in its interior (in R™). The Minkowski functional

pr(x) =min{t >0: 2z €T}, x € R",

determines the distance function, where we recover the Euclidean setting when
T is the n-dimensional Euclidean unit ball. Then, heuristically, billiard trajec-
tories are defined via the global least action principle with respect to ppr—we
specify this in a moment—, because in Finsler geometry, there is no useful
notion of angles.

There is generally much interest in the study of billiards: Problems in al-
most every mathematical field can be related to problems in mathematical bil-
liards, see for example [12], [I6] and [26] for comprehensive surveys. Euclidean
billiards in the plane have been investigated very intensively. Nevertheless, so
far not much is known about Euclidean billiards on higher dimensional billiard
tables. But even much less is known for Minkowski/Finsler billiards. Although
the applications are numerous and important in many different areas, to the
authors’ knowledge, [21[8/4L516[7,9,1T,1321] are the only publications con-
cerning different aspects of Minkowski/Finsler billiards so far.

After Minkowski/Finsler billiards were introduced in [I3], their study was
intensified when in [7] the relationship to the EHZ-capacity of convex La-
grangian products in R?" was proven. When studied isoperimetric Minkowski /Finsler
billiard inequalities, this opened the connection to Viterbo’s conjecture (cf. [27])
within symplectic geometry. With [8], this consequently also allowed to analyze
the famous Mahler conjecture (cf. [I9]) from convex geometry.

In this paper, we prove fundamental properties of Minkowski/Finsler bil-
liards. Particular attention is paid to length-minimizing closed Minkowski/Finsler
billiard trajectories. As part of the investigation of the latter, we state two main
results: one mainly is a regularity result, the other is geometric in nature. To-
gether they can be seen as the generalization of Theorem 1.2 in [I7] to the
Minkowski/Finsler setting. Based on these results, we derive an algorithm for
computing length-minimizing closed Minkowski/Finsler billiard trajectories in
the plane.

Before we state the main results of this paper, let us precisely define
Minkowski/Finsler billiards, while we suggest from now on to call them just
Minkowski billiards following [7] and [9].

In the further course of this paper, we will see that it makes sense to
differentiate between weak and strong Minkoswski billiard trajectories. We
begin by introducing weak Minkowski billiard trajectories.

Definition 11 (Weak Minkowski billiards) Let K < R” be a convex body
which from now on we call the billiard table. Let T < R™ be another convex
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body and T° < R™ its polar body. We say that a closed polygonal curveﬂ with
Vertices qi, .., ¢m, M € Nxo, on the boundary of K (denoted by 0K ) is a closed
weak (K, T)-Minkowski billiard trajectory if for every j € {1,...,m}, there is a
K -supporting hyperplane H; through q; such that q; minimizes

pre(Q5 — gj—1) + pre(gj+1 — @), (1)

over all ; € Hj (cf. Figure[1). We encode this closed weak (K, T)-Minkowski
billiard trajectory by (qi1,...,qm) and call its vertices bouncing points. Its {p-

lengtiEI s given by

(a1, s am)) = D e (@541 — 45)-
j=1

q5—1

qj+1

Fig. 1 The weak Minkowski billiard reflection rule: ¢; minimizes over all g; € Hj, where
H; is a K-supporting hyperplane through g;.

We call a boundary point ¢ € 0K smooth if there is a unique K-supporting
hyperplane through ¢q. We say that 0K is smooth if every boundary point is
smooth (we also say K is smooth while we actually mean 0K).

Concerning the definition of weak Minkowski billiards, we remark that, in
general, the K-supporting hyperplanes H; are not uniquely determined. This
is only the case for smooth and strictly convex T' (cf. Proposition .

We note that the weak Minkowski billiard reflection rule defined in Def-
inition [TI] does not only generalize the Euclidean billiard reflection rule to
Minkowski/Finsler geometries, it also extends the classical understanding of

L For the sake of simplicity, whenever we talk of the vertices q1, ..., gm of a closed polygonal
curve, we assume that they satisfy q; # qj4+1 and g; is not contained in the line segment
connecting ¢;—1 and g;j41 for all j € {1,...,m}. Furthermore, whenever we settle indices
1,...,m, then the indices in Z will be considered as indices modulo m.

2 This length-definition can be generalized to any closed polygonal curve.
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billiard trajectories to non-smooth billiard table boundarief’} In the latter
case, there can exist infinitely many different K-supporting hyperplanes through
non-smooth bouncing points at the billiard table boundary, and consequently,
from a constructive viewpoint, the weak Minkowski billiard reflection rule may
produce different bouncing points following two already known consecutive
ones.

In the case when T° is smooth and strictly convex, the definition of weak
Minkowski billiards yields a geometric interpretation of the billiard reflection
rule: On the basis of Lagrange’s multiplier theorem, one derives the condition

Va, 25(@5)1g,=q; = Viro(aj — ¢j—1) — Vure(gj41 — 45) = #jnm;,

where p; > 0, since the strict convexity of 7° implies

Vurs(q; — qj—1) # Vure(gi+1 — 4;),

and where ny; is the outer unit vector normal to H;. This implies that the
weak Minkowski billiard reflection rule can be illustrated as within Figure [2]
For smooth, strictly convex, and centrally symmetric 7° < R™, this interpre-
tation is due to [13, Lemma 3.1, Corollary 3.2 and Lemma 3.3] (this inter-
pretation has also been referenced in [6]). For the extension to just smooth
and strictly convex T° < R™, it is due to [11, Lemma 2.1]. However, from the
constructive point of view, this interpretation has its limitations.
We come to the definition of strong Minkowski billiards.

Definition 12 (Strong Minkowski billiards) Let K,T < R" be convez
bodies. We say that a closed polygonal curve q with vertices q1, ..., ¢m, M € Nxo,
on 0K is a closed strong (K, T)-Minkowski billiard trajectory if there are points
D1y -y P 00 0T such that

{q.m —qj € Nr(p;), (2)

Pj+1 —Pj € =Nk (gj+1)

is satisfied for all j € {1,....,m}. We call p = (p1,...,pm) @ closed dual bil-
liard trajectory in T. We say that ¢ = (q1,...,qm) is a closed strong (K, T)-
Minkowsk: billiard trajectory with respect to Hy, ..., Hy,, if Hy, ..., H,, are the

K -supporting hyperplanes through q1, ..., ¢m which are normal to nk (q1), .., nk (¢m),
where

Pj+1 = Pj = —Hj+1nk(gj+1), pj+1 =0, (3)
forall je{1,...,m}.
This definition appeared implicitly in [I3] Theorem 7.1], then later the

first time explicitly in [7]. It yields a different interpretation of the billiard
reflection rule. Without requiring a condition on T, the billiard reflection rule

3 Classical billiard trajectories are usually understood as trajectories with bouncing points
in smooth boundary points (billiard table gangs) while they stop in non-smooth boundary
points (billiard table holes).
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Vo (g — qj—1)

nH

4i—1 Viuro (gi+1 — g5)

Vo (gi+1 — qj)

Fig. 2 T° is a smooth and strictly convex body in R? and its boundary plays the role of the
indicatrix, i.e., the set of vectors of unit Finsler (with respect to T°) length, which therefore
is an 1-level set of u7o. Note that the two T'°-supporting hyperplanes intersect on H; due
to the condition V,LLTO (qj — qj—l) — V}LTO (qj+1 — q]') = /.l,jnH]. .

can be represented as within Figure [3] From the constructive point of view,
this interpretation is much more appropriate in comparison to the one for weak
Minkowski billiards.

We remark that, in general, the closed dual billiard trajectory in 7T is
not uniquely determined. This is only the case when T is strictly convex
(cf. Proposition . Further, we remark that under the condition that 7T is
strictly convex and smooth, the closed dual billiard trajectory p in Definition
[12]also is a closed Minkowski billiard trajectory—we refer to Proposition [35] for
the precise statement.

The natural follow-up question concerns the relationship between weak
and strong Minkowski billiards. The following theorem gives an answer to this
question.

Theorem 11 Let K,T < R™ be convexr bodies. Then, every closed strong
(K, T)-Minkowski billiard trajectory is a weak one, more precisely, if ¢ =
(q15---,qm) is a closed strong (K, T)-Minkowski billiard trajectory with respect
to Hy,...,H,,, then q fulfills the weak Minkowski billiard reflection rule with
respect to Hq, ..., H,,.

If T is strictly convezx, then every closed weak (K, T)-Minkowski billiard
trajectory is a strong one, more precisely, if ¢ = (q1,...,qm) s a closed weak
(K, T)-Minkowski billiard trajectory fulfilling the weak Minkowski billiard re-
flection rule with respect to the K-supporting hyperplanes H1, ..., Hy,, then q is
a closed strong (K, T)-Minkowski billiard trajectory with respect to Hy, ..., Hy,.
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Fig. 3 The pair (q,p) fulfills , namely: q; — gj—1 € NT(pj—l): qj+1 — g5 € NT(Pj):
pj —Pj—1 € =Nk (4¢;), and pj+1 —pj € =Nk (gj+1)-

Theorem is sharp in the following sense: One can construct convex
bodies K,T < R™ (where T is not strictly convex) and a closed weak (K,T)-
Minkowski billiard trajectory which is not a strong one (cf. Example A in
Section @)

In the following, if the risk of confusion is excluded, we will call strong
Minkowski billiards trajectories just Minkowski billiard trajectories. Although
the connection to the least action principle, which is the basis for the definition
of the weak version, is lost for non-strictly convex bodies, we make the strong
version to the center of our investigations, since one can use them to compute
the EHZ-capacity of convex Lagrangian products (cf. [23]).

In the following theorem, the main properties of closed Minkowski billiard
trajectories are collected. We recall that for a convex body K < R", we denote
by F(K) the set of subsets of R™ which cannot be translated into K and by
F.®,(K) the set closed polygonal curves in R™ with at most n + 1 vertices
which cannot be translated into K. Furthermore, we denote by M, 1(K,T)
the set of closed (K,T)-Minkowski billiard trajectories with at most n + 1
bouncing points.

Theorem 12 Let K, T < R™ be convex bodies.
(i) [Proposition[3]]] Let q be a closed (K, T)-Minkowski billiard trajectory with
dual billiard trajectory p. Then, we have
tr(q) = Lk (p)-

(i) [Proposition Let T be strictly convex and smooth. Let q be a closed
(K, T)-Minkowski billiard trajectory with dual billiard trajectory p. Then,
p is a closed (T, —K)-Minkowski billiard trajectory.

(iii) [Proposition[39] Let q be a closed (K, T)-Minkowski billiard trajectory with
dual billiard trajectory p. Then, we have

ge F(K) and pe F(T).
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(iv) [Proposition Let g = (q1,---,Gm) be a closed (K, T)-Minkowski billiard
trajectory with respect to Hy,...,H,, and let U be the inclusion minimal
linear subspace of R™ containing the outer unit vectors ng(q1), ..., nx (¢m)
which are normal to Hy, ..., H,,. Then, there is a selection {i1, ..., iqimu+1} S
{1,...,m} such that

{qh’ ""qidimu+1} S F(K)

(v) [Theorem Let T be strictly convex. Then, every £r-minimizing closed
(K, T)-Minkowski billiard trajectory is an {p-minimizing element of F);" | (K)
and, conversely, every {p-minimizing element of F,", | (K) can be translated
in order to be an p-minimizing closed (K, T)-Minkowski billiard trajectory.
Especially, one has

P00 1O = e My 1) @

We note that in [23, Theorem 2.2], we actually prove that (4) holds without
the condition of strict convexity of 7' (in the general case, the other part of the
statement in Theorem [12|(v) holds slightly changed). However, for the purposes
of this paper, this formulation is enough for us.

The main interest we pursue in the following part of this paper is the inves-
tigation of the subsequent questions (in analogy to the questions in [I7]). Given
an ¢p-minimizing closed (K, T)-Minkowski billiard trajectory—depending on
the conditions on K < R" and T' < R™:

(a) What can be said concerning the number of bouncing points?

(b) What can be said concerning the convex cone which is spanned by the
normal vectors related to the Minkowski billiard reflection rule? Is it a
subspace? What is its dimension?

(¢) What can be said concerning the dimension of the inclusion minimal affine
section of K containing this billiard trajectory?

(d) What can be said concerning the regularity of the bouncing points? Are
they smooth? Are they smooth within the inclusion minimal section of K
containing this billiard trajectory?

All these questions are important in order to develop an algorithm for com-
puting ¢r-length-minimizing closed (K, T)-Minkowski billiard trajectories.
Our first main result is the following regularity result:

Theorem 13 Let K,T < R™ be convex bodies, where T is additionally as-
sumed to be strictly convex and smooth. Let ¢ = (q1, ..., ¢y ) be an bp-minimizing
closed (K, T)-Minkowski billiard trajectory (which fulfills the Minkowski bil-
liard reflection rule with respect to Hy, ..., H,,) and let U be the convex cone
spanned by the outer unit vectors ng(q1),..., Nk (gm) which are normal to
Hy,...,H,,. Then, U is a linear subspace of R™ with

dimU =m—-1

and
dim (Nic(q;) 0 U) = 1 (5)
forall je{1,...,m}.
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Since in general dim U < n, it follows that
m<n+ 1.

In fact, is a regularity result: If m = n + 1, meaning that U = R™, then

becomes
dim (Nk(g;)) =1

for all j € {1,...,m}, i.e., ¢ is regular, meaning that all bouncing points of ¢
are smooth boundary points of K.

Some special cases of Theorem [I3] were already known: For T equals the
Euclidean unit ball in R™, Theorem 13| coincides with [I7, Theorem 1.2], since
by [I7, Proposition 2.6], in this Euclidean case, U equals V{ which is the
underlying linear subspace of the affine subspace V' € R™ which is chosen such
that K n V is the inclusion minimal affine section of K containing ¢. In the
situation of Theorem for {p-minimizing closed (K, T)-Minkowski billiard
trajectories ¢ = (q1, ..., ¢m), it has been proven in [3] that m is bounded by
n+1, and in [2, Theorem 4.8], that the {7-minimizing closed (K, T')-Minkowski
billiard trajectories with n + 1 bouncing points are regular. In [6], it has been
proven the statement of Theorem [13|for n = 2.

As in the less general Euclidean case, Theorem [13] refutes the presumption
which at first appears to be intuitively correct, that every {r-minimizing closed
(K, T)-Minkowski billiard trajectory with more than two bouncing points is
regular within the inclusion minimal section of K containing this billiard tra-
jectory.

For the sharpness of Theorem [13] we refer on the one hand to the sharpness
of [T, Theorem 2.1]. There, for T equals the Euclidean unit ball, we showed
that an fp-minimizing closed (K,T)-Minkowski billiard trajectory may not
be regular within the inclusion minimal sections of K containing the billiard
trajectory (which in this case is a translate of U). This can even appear for the
unique ¢7-minimizing closed (K, T)-Minkowski billiard trajectory. Then, we
also showed that an ¢p-minimizing closed (K, T')-Minkowski billiard trajectory
can have bouncing points in vertices as well as in more than 0-dimensional faces
of K.

On the other hand, we can prove that in Theorem [I3] the smoothness of T
is a necessary condition. For that, we refer to Example F. Furthermore, we can
show that within the weaker situation of weak Minkowski billiard trajectories,
in general, the statement of Theorem [I3]is not true without requiring the strict
convexity of T'. For that, we refer to Example G (cf. Section @ In this latter
example, we will see that without requiring the strict convexity of T', even the
notion of ¢p-minimizing closed weak (K,T)-Minkowski billiard trajectories
does not make sense: There are configurations for which such minimizers do
not exist.

The second main result generalizes a property of length-minimizing closed
Euclidean billiard trajectories on K (cf. [17, Theorem 2.1]) to the Minkowski/Finsler
setting (K, T') under the condition that both K and T are strictly convex and
smooth:
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Theorem 14 Let K,T < R" be strictly convexr and smooth bodies. Let q =
(q1y---,qm) be an Lp-minimizing closed (K, T)-Minkowski billiard trajectory
and V an affine subspace of R™ such that K n'V is the inclusion minimal
affine section of K containing q. Then, we have

dimV =m — 1,

i.e., q s maximally spanning, meaning that the dimension of the convex hull
of the bouncing points qi, ..., ¢y, is m — 1.

From Theorem [I3] and a consideration in the context of Theorem [I4] we
immediately derive the following corollary for n = 2:

Corollary 15 Let K,T < R? be convex bodies, where T is additionally as-
sumed to be strictly conver and smooth. Then, every {r-minimizing closed
(K, T)-Minkowski billiard trajectory q¢ = (q1, ..., Gm) has two or three bouncing
points, i.e., m € {2, 3}, where in the latter case the billiard trajectory is regular.
Furthermore, when q fufills the Minkowski billiard reflection rule with respect
to Hy, ..., H,,, then we have:

(i) If U is the conver cone spanned by the unit vectors ng(q1), ..., Nk (qm)
which are normal to Hy,...,H,,, then U is a linear subspace of R? with

dimU =m — 1.

(ii) If V. < R? is an affine subspace such that K NV is the inclusion minimal
affine section of K containing q, then

dimV =m — 1.

Here, (i) follows from Theorem [13|and (ii) from the fact that, by definition,
both 2- and 3-bouncing Minkowski billiard trajectories are maximally spanning
(so, for (i7), the strict convexity of K, as required in Theorem [14] for general
dimension, is not necessary).

Corollary can be used for the construction of /r-minimizing closed
(K, T)-Minkowski billiard trajectories when K < R? is a convex polytope.
In Section [7.1] we describe an algorithm, while in Section [7.3] we provide a
detailed survey concerning the efficiency and methods used within the im-
plementation. We remark especially that our implemented algorithm is the
solution to the open problem of finding the Fagnano triangle in a Minkowski
triangle stated in [6].

Let us briefly give an overview of the structure of this paper: In Section 2]
we enumerate properties of the polar body and the Minkowski functional that
we will use repeatedly within this paper. In Section [3] we prove fundamental
properties of Minkowski billiard trajectories which we utilize in Sections [
and [5] for the proofs of Theorems [13] and respectively. In Section [6] we
give various examples in order to show the sharpness of the statements in
Section [3 as well as the sharpness of the main results. In Section [7], we discuss
the algorithm for computing fp-minimizing closed (K,7T')-Minkowski billiard
trajectories for K,7T — R2. In Section |8, we present a note on the existence
of closed regular Minkowski billiard trajectories with three bouncing points in
obtuse triangles.
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2 Preliminaries from convex geometry

In this section, we collect some useful properties of the polar body and the
Minkowski functional. Since these properties are well-known, we will just state
them and refer for the proofs to the usual literature on this topic.

Let T'< R™ be a convex body. Then, the polar body of T is

T° ={xeR":{x,yy < 1lforal yeT}cR"
The polar body satisfies the following properties:

Proposition 21 Let P,Q c R™ be convex bodies. Then:
(i) P° isin C(R™).

(ii) For ¢ # 0 we have (cP)° = 1P°.

(iii) If P < Q, then P° 2 Q°.

(iv) It is (P°)° = P.

The Minkowski functional pr, defined by
pr(z) :=min{t > 0: 2 €T}, x € R",

determines a distance function, where we recover the Euclidean distance when
T is the n-dimensional Euclidean unit ball. The support function hp of T is
given by

hr(z) :== max{{z,yy: ye T}, x € R"™.

The following lemma clarifies the connection between the Minkowski functional
and the support function and will be useful throughout many proofs of the
following sections:

Proposition 22 Let T < R™ be a convex body.

(i) One has
hr(z) = pre(x)
for all x e R™.
(i3) The following equivalence holds for all x € R™: One has

hr(@) = (a.y) = =& Nr(y)
under the constraint y € 0T .
The next proposition collects properties of the Minkowski functional:

Proposition 23 Let S,T < R™ be convez bodies.
(i) If T is additionally assumed to be strictly convex and if

z,y € R™\{0} with = # A\yVAeR,

then
pre(x +y) < pre(2) + pre (y)- (6)
We note that, when just requiring convexity of T', one has < in (@
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(i) With S < T we have T° = S°. This implies
pse(z) < pre(z) VYreR™.
(i1i) For ¢ # 0 we have
pre(cx) = puerye (x) = cure(x) Yo e R™.

(iv) The map
pre = (R™,[]) = (R0, |- [)

18 continuous.

3 Properties of closed (K, T)-Minkowski billiard trajectories

We begin with the following lemma:

Lemma 31 Let T < R™ be a strictly convex body and p;,p; € 0T. Then one
has the equivalence

¢ # q; = Nr(q:) n Nr(q;) = {0}.

Proof From
Nr(q:) n Nr(g;) = {0},
together with
{0} & Nr(gi) and {0} & Nr(qj),

it directly follows g¢; # g;.
Let ¢; # g;. If there is a nonzero

n € Nr(gi) N Nr(g5),
then it follows from the definition of strict convexity that
<n7217q1'><0 VzleT

and
(n,zo —qj) <0 VzeT.

Choosing z1 = ¢; and zp = ¢; yields
and therefore

0>{n,q —q;) = —<{n,q; — q;) >0,
a contradiction. Therefore, it follows

Nr(g:) n Nr(q;) = {0}.

The subsequent proposition clarifies the uniqueness of closed dual billiard
trajectories.
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Proposition 32 Let K,T < R" be convex bodies, where T is additionally
assumed to be strictly convex. Let q be a closed strong (K, T)-Minkowski bil-
liard trajectory. Then, the closed dual billiard trajectory p in T is uniquely
determined.

Proof Referring to , p = (p1, ..., pm) fulfills

¢i+1 — 45 € Nr(p;)

for all j € {1,...,m}. Using Lemma [31| (T is assumed to be strictly convex),
this implies that pq, ..., p,, are uniquely determined.

Without requiring the strict convexity of 7', p is not necessarily uniquely
determined (cf. Example B in Section [6).

We proceed with the proof of Theorem which clarifies the relationship
between weak and strong Minkowski billiards.

Proof (Proof of Theorem We first prove that every closed strong Minkowski
billiard trajectory is a weak one. For that, let 7" be an arbitrary convex
body in R™. Given a closed strong (K, T)-Minkowski billiard trajectory ¢ =
(g1, -+, @m) together with its dual billiard trajectory p = (p1,...,pm). We let
ng(q1),...» Nk (gm) be the unit vectors in Ni(q1), ..., Nk (¢m) for which

Pi+v1 —Pj = —Hi+1nk(g+1), pjr1 =0,

holds for all j € {1,...,m}. Now, let j € {1,...,m} be arbitrarily chosen and
let H; be the K-supporting hyperplane through ¢; which is normal to nx(g;).
Then, one has

{4 — 4} pj —pj—1)=0
for all ¢f € H; (since p; —pj—1 = —p;nk(g;)) and therefore together with

q; —qj—1 € Nr(pj—1) and g¢j41 —q; € Nr(pj)
and Proposition 22] that

Yjlg;) =pre(g; — gj—1) + pre(gj+1 — ;)
=(gj — ¢j-1,Pj-1) +{qj+1 — ¢, D;)
=(qj — qj-1,Pj—1) +{qi+1 — 5, ) +{qj — q;‘,pj —pj-1)
=g} — qj—1,25-1) +{qjr1 — 4} Pj)
=} = q¢j-1,051) +4q] — ¢j—1,Pj—1 —P}_1)
+{gj+1 — 45, p;) +<{aj+1 — ¢ p; — P})
=Y;(q}) +4a} — @j-1.pj—1 — Pj_1) +{qj+1 — ¢} pj — D))

for all ¢} € Hj, where p¥,p¥ | € 0T were chosen (possibly not uniquely) to
fulfill

*_

q; —qj—1€ Nr(pj_y) and g¢j11 —q; € Nr(p]). (7)
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By , it follows from the definition of the normal cone and p;,p;—1 € 0T
together with the convexity of T" that

(g} — gj-1,pj—1 —Pj_1) <0 and {gj+1 —q¢},p; —p;) < 0.

This implies

Yilgs) < Zj(q})
for all ¢} € H;. We conclude that the polygonal curve segment (-1, ¢+1)
fulfills the weak Minkowski billiard reflection rule in g; with respect to the
K-supporting hyperplane H, through ¢; which is normal to ng(g;). This
eventually means that (qi,...,¢m) is a closed weak (K, T)-Minkowski billiard
trajectory.

We proceed by proving that for strictly convex body T = R™, every closed
weak Minkowski billiard trajectory is a strong one. So, let ¢ = (¢1,...,¢m) be a
closed weak (K, T)-Minkowski billiard trajectory. We define a closed polygonal
curve p = (p1,...,Pm) by

gj+1 — qj € Nr(pj). (8)
We note that due to the strict convexity of T (cf. Lemma, p is uniquely de-
termined. Let j € {1, ...,m} be arbitrarily chosen. Since there is a K- supporting
hyperplane H; through g;j such that ¢; minimizes X; ( ¥) over all ¢} € H;, we
conclude by Lagrange s multiplier theorem that there 1s apjeR w1th

vq;" Zj(q;‘)\qj‘:qj = KjnH;,

where ny, is the outer unit vector normal to H;. We note that the differentia-
bility of E follows from the strict convexity of T cf. the following calculation
or, more basmally, the duality between strict convexity of 7" and smoothness
of T° (cf. [22, Theorem 11.13]). We calculate the left side:

Ve 2i(45)

laf =q;

a)
= Vq;k (<q;‘ - Qj—lapj—l(Q;» + <<Ij+1 - Q;Fapj(Q;)>)|q;k=qj

®)
&) (aq;k,i [<a} = gj-1.pj-1(a})) + {gj+1 — q;*‘7pj(q;*)>]|q;<_qj>

€{l,...,n}

©
( hm [<(1g +ee; —qj—1,pj-1(q; +eei)) —<{qj — qj—1,Pj-1)

+{qj+1 — g5 —€ei, piq; +eei)) —{gj+1 — Qj,pj>]>
€{l,...,n}

<hm [<(IJ Qj—1.0j—1(qj +€e;) —pj—1) + {qj+1 — 45, p;(q; + €e;) — pj)

+(eei,pj—1(q; +ces) — pj(q; + 5ei)>]>
i€{l,...,n}

d) (.

«@ (gl_r)r%)@iyqu(% +ee;) —pilg; + 56i)>>

ie{1,...,n}
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(e
= (<ei’pj—1 - pj>)z'e{1,...,n}

=Pj—1 — Pj>
where in equality (a), for every ¢f € R™ p;_1(q}), pj(q}) (here p;_; and p,

are acting as functions) are the boundary points of T (uniquely determined
for ¢f € R” near ¢; due to the strict convexity of 7' and Lemma [31) fulfilling

*_

q; —aj—1 € Nr(pj—1(g;)) and gj+1 —qj € Nr(p;(q;)), 9)

where we note
pj-1(qj) = pj—1 and p;(q;) = pj,

in equality (b), by 0« ; we denote the i-th partial derivative with respect to
¥,

qf, and in equality (c), by e; we denote the i-th standard unit vector in R".
In equality (d), we used

1
ili% g<qj' —qj—1,0j-1(qj +€e;) —pj—1) =0 (10)
for all i € {1,...,n}.
Indeed, if
dim NT(pjfl) = 1, (11)
then
lim pj-1(g; +c€i) —pj—1
e—0 e

is a tangent vector at 0T in p; and therefore

pi—1(q; +€€e;) —pj—1
E b

<qj - Qj—lagi_r)% = O’

and consequently

1
ili% g<(1j —qj—1,0j-1(q; + ce;) —pj—1)

pi—1(qj + €€;) —pj—1
6 b

={qj — qj-1, lim
=0.

If
dim NT(pjfl) >1 and qgj —qj—1 € NT(pjfl), (12)

then it follows
Pi-1(g; +eei) =pj-1 =pj1 —pj-1 =0
for |e| small and therefore (10). If

dim NT(pj—l) >1 and q; — qj—1 € 6NT(pj_1),
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then for ¢ > 0 (10) follows from the argument either made for the case ([11))
or for the case (12)). Similarly, for £ < 0 (10)) follows from the argument either
made for the case or for the case

By similar reasoning, we derive

.1 .
21_1)% g<(1j+1 —q;,p(q; +¢ce;) —pjy =0 forallie{l,..,n}.

In equality (e), we applied the continuity (which holds due to the strict con-
vexity of T') of the functions p; and p;_; defined by (ED Therefore, we conclude

Pj —Pj—1 = —ping;. (13)
It remains to show p; > 0. For that, scalar multiplication of by npy,
implies

pj = Pj—1,nH;) = — 1
From
{g; —qj—1,mm,y >0 and {(gj+1 —q;j,npm,) <0

together with
¢ — ¢j—1 € Nr(pj—1) and gj4+1 —q; € Nr(p;),

it follows from the convexity of T' that

{pj —pj-1,nm;) <0,

and therefore 1; > 0.

or

— /
vd
aTH,— //

.

Fig. 4 Illustration of 6THfr and 6TH‘,. By HJ_ and HJ"’ we denote the closed half-spaces
of R* bounded by H;. ’

Indeed,

<qj — qj_l,nHj> >0 together with q; —qj—1 € NT(pj—l)
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implies that
Pj-1 € {p/ e oT : <n,nHj> >0Vne NT(pI)} =: 6TH+, (14)
J

and
<Qj+1 — qj,nHj> < 0 together with qj+1 — qj € NT(pj)
implies
pje{p' € dT : {n,np,) <0Vne Np(p')} =: 0Ty-. (15)
J

If u; <0, ie., pj — pj—1 is a positive multiple of ny,, then it follows from the
strict convexity of T' (cf. Figure |4) that

p; € 8THJ+ and Pj—1 € 8TH;,

a contradiction to and . Therefore it follows u; > 0.

Fig. 5 We have g; — gj—1 € Nr(pj-1), ¢j+1 — ¢; € Nr(p;) and pj — pj—1 = —pnm;,
i = 0.

If we define
nk(q;) :=nug, Vje{l,..,m},

then the pair (g, p) fulfills by referring to and .

The following rather obvious proposition is needed for the proof of Theorem
[3] and [I4] It follows immediately from within the proof of Theorem [TI] when
T is additionally required to be smooth.

Proposition 33 Let K,T < R" be convex bodies, where T is additionally
assumed to be strictly convexr and smooth. Let ¢ = (qi,...,qm) be a closed
(K, T)-Minkowski billiard trajectory. Then, for every j € {1,...,m}, there is
only one K-supporting hyperplane through q; for which the weak Minkowsk:
billiard reflection rule in q; is satisfied.
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Before we prove this proposition, it is important to note that the com-
bination of Proposition [32] and Theorem [I1] does not imply this statement.
That is because the vertices of the closed dual billiard trajectory can coincide,
and as consequence, condition may not determine a unique hyperplane
(cf. Example C in Section @ We will see that the smoothness of T guarantees
that the closed dual billiard trajectory is a closed polygonal curve (cf. Footnote

).

Proof (Proof of Proposition Since ¢ is a closed (K,T)-Minkowski billiard
trajectory, due to the proof of Theorem [T1] there is a hyperplane H; through
¢; and an outer unit vector ny, normal to H; such that

Vo X507y =g, = Pi1 = Pj = pyn;, (16)
where p1; > 0 and p;_; and p; are uniquely determined by

¢j+1 — ¢; € Nr(p;) and ¢ —qj—1 € Nr(pj—1).

We aim to show that Hj, respectively ny;, is uniquely determined. Against
the background of , it would be enough to show that p; > 0.

If u; = 0, then p;_; = p;. But this implies that ¢;11 — ¢; and ¢; — gj—1
are in the same normal cone, while they are not parallel (since g; is not on the
line connecting g;_; and g;1). Therefore, there are two linearly independent
nonzero vectors in Np(p;) = Nr(p;j—1), a contradiction to the smoothness of
T.

Consequently, it follows p; > 0 and therefore the uniquess of ny; and Hj.

The statement of Proposition [33]is not true without requiring 7" to be both
strictly convex and smooth. For the necessity of the strict convexity, we refer
to Example B, for the necessity of the smoothness, we refer to Example C
(cf. Section [6).

Its notion suggests that dual billiard trajectories are in fact billiard tra-
jectories. Indeed, the following Propositions [34] and [35] show that for strictly
convex and smooth body 7' < R™ the closed dual billiard trajectory of a closed
(K, T)-Minkowski billiard trajectory ¢ is a closed (T, — K)-Minkowski billiard
trajectory p with

t_k(p) = tr(q).

For the case T is a strictly convex body in R™, this also implies that the ¢-
length of ¢p-minimizing closed (K, T)-Minkowski billiard trajectories equals
the ¢_g-length of ¢_ g-minimizing closed (7, —K)-Minkowski billiard trajec-
torieﬁ Later, we will use this fact for the proof of Theorem

Proposition 34 Let K,T < R"™ be convex bodies. Let ¢ = (q1,...,qm) be a
closed (K, T)-Minkowski billiard trajectory with closed dual billiard trajectory
p=(p1,...,pm) in T. Then, we have

lr(q) =Lk (p).

4 The existence of these minimums will be proved in Theorem under the condition of
strict convexity of T and in |23, Theorem 2.2] for the general case.
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Proof By definition of the Minkowski billiard reflection rule, we have

¢j+1 — q; € Nr(p;) and pjr1 —pj € —Ng(gjs1)-

for all j € {1,...,m}. By recalling Proposition this implies

pre(gj+1 — q5) = hr(gi+1 — 4;) = <qj+1 — 45, p5)

and
pre(pj — pjv1) = hx(pj — pjs1) = Pj — Pj+1,q+1)

for all j € {1,...,m}. Then, we compute

m m
Z pre(gj+1 — ;) = Z<Qj+1 — 4, Dj)
=1

=(g2,p1) — {q1,p1)) + ({g3,p2) — {q2,p2)) +
+ ({@ms Pm—1) = {&m—1,Pm—1)) + (@m+1,Pm) — {qm>Pm))
=—{q1,p1) + ({g2,p1) — {q2, p2)) + ({g3,p2) — {q3,P3)) +
+ ({@m—1,Pm—2) = {Gm—-1,Pm—1)) + &> Pm—1) = {qm> Pm)) + {Gm+1,Pm)

m
= Djt1,dj+1) = Z pce(p; = Piv1) = D, ko (pj1 — D))
j=1 j=1

Z H(—K)e (Pj+1 — pj)
i=1
=l-x(p),
where we used ¢m+1 = q1, Pm+1 = p1 and the property
s (=) = pgee ()
of the Minkowski functional utilizing Proposition [23(iii) and
(—K)* = —K*
(cf. Proposition 21)).

Proposition 35 Let K,T < R™ be convex bodies and T is additionally as-
sumed to be strictly convex and smooth. Let ¢ = (q1, ..., qm) be a closed (K, T)-
Minkowski billiard trajectory with its closed dual billiard trajectoryp = (p1, ..., Dm)
in T. Then, p is a closed (T, —K)-Minkowski billiard trajectory with

—q" = (=q2y s —m, —q1)

as closed dual billiard trajectory on —K.
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Proof Since the pair (g, p) fulfills (2), p1, ..., pm are uniquely determined (cf. Lemma
by the condition

qj+1 — qj € NT(pj) VJ € {1, ,m} (17)

Since q1, ..., ¢, satisty g; # ¢;41 for all j € {1,...,m} and ¢; is not contained in
the line segment connecting ¢;_1 and g;4+1 for all j € {1,...,m} (cf. Footnote
1),

42 = Q1 Gm — Gm—1,41 — Gm (18)
are nonzero and satisfy

45 —qj—1 H’ qj+1 — g; Vje {1, ,m}

Then, together with the strict convexity and smoothness of 7" implies that
D1, ...y Dm satisfy p; # pjyq for all j e {1,...,m} and p; is not contained in the
line segment connecting p;_; and p;; for all j € {1,...,m}.

This implies

Pi+1 —Dj = —j+11nk(¢j+1) € —Nr(¢j4+1) = N-x(—qj+1) = N—K(—q;-rl)
(—¢h) = (=q") = (=gj+2) = (=¢j+1) € =Nz (pj11)
(19)
for all j € {1,...,m}, where we used

N_g(—=¢j+1) = =Ni(gj+1) Vje{l,..,m}.

From (19), we conclude that the pair (p, —g*!) fulfills (2) for the configuration
(T, —K). Therefore, p is a closed (T, —K)-Minkowski billiard trajectory with
—q*! as its closed dual billiard trajectory on —K.

In order to show the necessity of the smoothness of 7" in Proposition [35] we
refer to Example C (cf. Section @)fthere, one can construct a closed polygonal
curve p, but which does not satisfy p; # p;41 for all j.

We have the following proposition as generalization of [I7, Proposition 2.3|
to the Minkowski/Finsler setting:

Proposition 36 Let K, T < R"™ be convex bodies. Let ¢ = (q1,...,qm) be a
closed weak (K,T)-Minkowski billiard trajectory and V < R™ an affine sub-
space such that K n'V is an affine section of K containing q. Then, q is a
closed weak (K 'V, T)-Minkowski billiard tmjectoryﬂ

Proof Since q is a closed weak (K, T)-Minkowski billiard trajectory, there are
K-supporting hyperplanes Hy, ..., Hy, through g1, ..., g, such that ¢; minimizes

pire (35 — qj—1) + pre(gj+1 — G5) (20)
over all g; € H; for all j € {1,...,m}. Since K NV contains ¢ it follows that ¢,
minimizes over all g; € H; n'V for all j € {1,...,m}. This implies that ¢
is a closed weak (K n V,T)-Minkowski billiard trajectory.

5 We notice that the dimension of K NV is possibly smaller than the dimension of T'. For
these cases, we consider that Definiton can be easily extended to covex bodies T" which
are allowed to have dimension greater n.
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Clearly, in general, the converse is not true: We can imagine an affine
section K n'V of K that can be translated into K. Then, every closed weak
(K n V,T)-Minkowski billiard trajectory ¢ can be translated into K. But in
Proposition we will prove that g € F(K), a contradiction.

In [17, Examples A, B, C, and D], we have seen (for T' equals the Eu-
clidean unit ball) that in general the length minimality of a closed weak
(K, T)-Minkowski billiard trajectory is not invariant under going to (inclusion
minimal) affine sections of K containing the billiard trajectory. This billiard
trajectory may not even locally minimize the length of closed polygonal curves
in F(K nV). We note that these examples can be easily generalized to settings
when the weak Minkowski billiard reflection rule is not necessarily governed
by the Euclidean unit ball.

The next two propositions make a statement concerning the positional
relationship of the hyperplanes which determine the weak Minkowski billiard
reflection rule.

Proposition 37 Let K,T < R"™ be convex bodies. Let ¢ = (q1,...,qm) be a
closed (K, T)-Minkowski billiard trajectory with respect to Hy, ..., Hy,. Then,
we have

0 € conv{ng(q1),...,nkx(qm)},

where ni(q1), ...,nx (qm) are the outer unit vectors normal to Hy, ..., H,,.
If T is assumed to be smooth and if we denote by U the convex cone spanned
by
nK((h)a ) nK(qm)>

then U is a linear subspace of R™ with dimension less or equal than m — 1.

Proof Let p = (p1,...,pm) be a closed dual billiard trajectory of ¢. Then, there
are fi1, ..., b = 0 with

Pj+1 —Dj = —pj+1nk(gi+1) Vie{l,...,m}. (21)

We first consider the case when p; > 0 for all j € {1,...,m}. Then, we define

Hi+1 .
§;i=——————— VYje{l,...m
T T et Y { )
and conclude
m m
Z Sy _pj) p]+1 _p] =0 (22)
iz H1 + -t fm =1

while
m

Hji+1 .
Z Z e — it (23)
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This implies by the definition of the convex hull that

m~ 1 m~ N
OE{ZSJ _1(pj+1—pj)228j—1,sj>o}
j=1

j=1 :u’j+

1 1 1
=conv{ (pg—pl),...,(pm—pml),m(pl—]?m)} (24)

2 m

and therefore, together with ,

0 € conv{—nk(q1), ..., —nK(gm)}
and consequently
0 € convi{ng(q1),...;ni(gm)}- (25)
If 41; = 0 for some j € {1, ...,m} (for all is impossible), then, by (21)), also

pj —pj—1=0

for all these j. But then, the vector corresponding to p; — p;j—1 can be re-
moved from within the set of vectors building the convex hull in without
influencing and . Therefore, 0 is in the convex hull of the nonzero

1

Hj+1

(pj+1 —pj)7

what implies that 0 is in the convex hull of the associated unit normal vectors
nk(gj+1). But the latter convex hull is subset of

conv{ng (qi), .-,k (qm)}-

Therefore, we derive (25).
Let us assume T is smooth. Then, this implies

pj+1—p; #0 Vjie{l,...,m} (26)
(cf. Proposition [33). It is
(p2 —p1) + -+ (Pm — Pm—1) + (p1 —pm) = 0.

For )
8j = — Vie{l,..,m},

we also have
s1(p2 = p1) + - + Sm—1(Pm — Pm—1) + Sm(P1 — Pm) = 0.

Since

m
Z sj=1 and s; #0 Vje {l,..,m},
j=1
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it follows that O lies in the relative interior of

COHV{PQ —P1y--sPm — Pm—1,P1 7pm}

But this implies that the convex cone spanned by

P2 = D1y s P — Pm—1,P1 — Pm (27)

and therefore, by and , also U is a linear subspace of R™. Obviously,
then U is the inclusion minimal linear subspace containing the vectors
and consequently has dimension less or equal than m — 1.

The necessity of the smoothness of T for the second statement follows by re-
ferring to Example C. In this case, the convex cone spanned by nx (q1), ni (g2), nx(q3)
is not a linear subspace of R2. Furthermore, for the weaker situation of closed
weak (K, T)-Minkowski billiard trajectory, one can show-having in mind The-
orem [[I}-the necessity of the strict convexity of T' for the second statement
by referring to Example D—and also for the first statement by referring to
Example E (cf. Section [6] for the three examples).

Proposition 38 Let K,T < R" be convex bodies. Let ¢ = (q1,...,qm) be a
closed (K, T)-Minkowski billiard trajectory with respect to Hy, ..., Hpy, and let U
be the inclusion minimal linear subspace of R™ containing the outer unit vectors
ni(q), -, N (gm) which are normal to Hy, ..., H,,. We denote by H; , ..., H},
the closed half-spaces of R™ which are bounded by Hy, ..., H,, and contain K.
Further, let W be the orthogonal complement to U in R™. Then, we can write

for all j € {1,...,m} and have that

(HJ+ N U) is nearly bounded in U, ﬂ H;r is nearly bounded in R™.
1 j=1

s

J

If T is assumed to be smooth, then U coincides with the convex cone spanned
by ni(q1),...,nx(¢m) and we have that

m

ﬂ n U is bounded in U, ﬂ H+ is nearly bounded in R™.

j=1 j=1

Proof Since U is a linear subspace of R” containing ng(q1), ..., nx (¢m), we can
write
Hj=(HjnU)®W and Hf = (Hf nU)@W. (28)

Let U be the convex cone spanned by nk(q1), ...,k (¢m). By Proposition
we have that

0 € conv{ng(q1), ... ni(gm)}- (29)

Now, 0 either is an interior point or a boundary point (both with respect to
U) of the convex hull in (29).
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If 0 is a boundary point (with respect to U) of the convex hull in (29), then
U is subset of a U- supporting closed half-space Hy of U while

OHg n U
contains a selection of unit vectors
{ni(gi,), - nk(gi)} = {nk (@), - nk(gm)}, k<m,
with 0 in the relative interior of
conv{ng (g, ),...,nk(qi,)} S 0Hg N U.

We denote by H;,, ..., H;, the associated K-supporting hyperplanes through
iy s - @i, Which are normal to nk(g;,), ..., nx(gi, ). It follows that

k
(o) (30

intersected with the convex cone spanned by the vectors nk (¢, ), ..., nx (¢, )
is bounded in dHg. We denote this intersection by I. Then, we can write

k
ﬂ Hf nU)=I®I"v,

where by IV we denote the orthogonal complement in U to the inclusion min-
imal linear subspace of U containing I. Clearly, the boundedness of I in dH
implies the nearly boundedness of I ® I LU in U: Because of the boundedness
of I in dH, there are two parallel hyperplanes G and G +¢, c€ 0Hy, in 0H
such that I hes in-between. Then, I @ IV lies between the two hyperplanes

GOI' and (G+c¢)®I in U, (31)

i.e., it is nearly bounded in U. Then, using ,

k k
(i = ()t coyom) - (
=1 =1

lies between the two parallel hyperplanes

=

(H U)) oW

=1

(GoI')®W and ((G+c)®I)®W in R", (32)

i.e., it is nearly bounded in R™. This implies that

.DS
=

H;rmU)g (H;erU)

=1

<
Il
—
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lies between the two hyperplanes in and

éH; - () (5 ATy @W)

Il
~
DE
=
+
D)
S
~
®
=

between the two hyperplanes in , i.e., they are nearly bounded in U and
R™, respectively. _

If 0 is an interior point of the convex hull in , i.e., when U coincides
with U-and by Proposition [37] this is also the case when T is assumed to be
smooth—, then this directly implies that

ﬂ (Hf nU) (33)

is bounded in U. From this, we conclude that there are parallel hyperplanes H
and H +d, de U, in U such that lies in-between. With (28), this implies

that
() H; = ﬂ SAU)ew) (ﬂ )@W
j=1 =1

lies between the parallel hyperplanes
H®W and (H+d)®W in R”
and therefore is nearly bounded in R™.

Proposition 39 Let K,T — R" be convez bodies. Let ¢ = (¢q1,...,Gm) be a
closed (K, T)-Minkowski billiard trajectory with closed dual billiard trajectory
p = (p1,-.c,pm). Then, we have

ge F(K) and pe F(T).

Proof Let Hy, ..., Hy, be the K-supporting hyperplanes through ¢y, ..., ¢,, which
are associated to the Minkowski billiard reflection rule and let H;", ..., H,: the
closed half-spaces of R™ containing K and which are bounded by Hi, ..., H,.
By Proposition |38 we conclude that

+ +
H n..nH,
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is nearly bounded in R™. Then, from [I7, Lemma 2.1(ii)] it follows that

{q1, ..., qm} € F(K),

ie., g€ F(K).
By the definition of the Minkowski billiard reflection rule, there are factors
A1y ey A > 0 (which are > 0 due to Footnote [1) and unit vectors

nr(p1), -, nr(Pm) In Nr(p1), ..., Ne(pm)

such that
gj+1 —q; = )\jnT(pj) VJ € {1, ,m}

Since q is closed, we justify

0 € conv{ng(p1),....nr(Pm)} (34)

in a similar way to the proof of Proposition Let U’ be the inclusion minimal
linear subspace of R™ containing nr(p1), ..., nr(pm). Then, as in the proof of

Proposition implies that
H n...nHF (35)

is nearly bounded in R", where H;*, ..., H/f are the closed half-spaces of R"
containing 7" and which are bounded by Hj, ..., H] which are the T-supporting
hyperplanes of R™ through py, ..., p,, normal to nr(p1),...,nr(pm). By [I7
Lemma 2.1(ii)], it follows from the nearly boundedness of that

{p1,..,pm} € F(T),
ie., pe F(T).

The first statement of Proposition ie, ¢ € F(K), in general, is not
true when ¢ is just assumed to be a closed weak (K,T)-Minkowski billiard

trajectory and T is not required to be strictly convex. To see this, we consider
Example E (cf. Section [6)).

Proposition 310 Let K,T < R™ be convex bodies. Let ¢ = (q1,...,qm) be a
closed (K, T)-Minkowski billiard trajectory with respect to Hy, ..., Hy, and let
U be the inclusion minimal linear subspace of R™ containing the outer unit
vectors ni(q1), ...,nx (qm) which are normal to Hy, ..., H,,. Then, there is a
selection

{t1, . iaimu+1} € {1,...,m} (36)
such that
{Qiﬂ ""QidimUH} € F(K)
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Proof For m = dim U + 1, we can just apply Proposition [39| and nothing more
is to prove. f dim U = n,i.e., U = R", then the claim follows immediately from
Proposition [39|and [17, Lemma 2.1(i)| (cf. the equivalent expression below this
Lemma).
Let
dimU < min{n — 1,m — 2}.

Proposition [3§ implies, on the one hand, that we can write
Hj=(H; nU)®W and H} = (Hf nU)®W

for all j € {1,...,m}, where W is the orthogonal complement to U in R"
and H{,...,H are the closed half-spaces of R containing K and which are
bounded by Hi, ..., Hy,, and, on the other hand, that

é(HMU)

is nearly bounded in U. This implies by[I7, Lemma 2.1(ii)] that

rola) € F (ﬁ (HY o U)> ,
j=1

where we denote by 7y the orthogonal projection onto U. Then, by [I7, Lemma
2.1(i)], there is a selection

{i1, - idimu+1} < {1, ..., m}

such that

{ﬂ-U(qil)7"’77TU(qidin1U+1)} eF (ﬁ (H_]+ N U)) :
j=1

Referring again to [I7, Lemma 2.1(ii)], there are ﬂ;"’zl (H;r n U)-supporting
hyperplanesﬂ
Hy, ..., Hiim v 41
in U through
70 (i1 ) -+ TU (Gigiom v21)

such that
dim U+1

7+
A
j=1
is nearly bounded in U with

m dim U+1 _

(Hf nU) ﬂ Hf,
Jj=1 j=1
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HynU=H HynU
mu(q1 = qiy) /
HinU=H
7 (K) :
7y (qa
T (42 = Gin @

H3mU\

Fig. 6 Illustration of the selection of {7y (g, ) "v(giy), 7 (qi3)} out  of
{mv(q1), v (q2), v (g3), 7 (gqa)} and the choice of ﬂ;"zl (H;r N U)—supporting hy-
perplanes H1, H, Hs in U such that ﬂ?zl flf is nearly bounded in U.

where H j+ is the half-space bounded by E[j containing 7y (K) for all j €
{1,...,dimU + 1} (cf. Figure [6). Then, this implies that

dimU+1
(7 o)
j=1
is nearly bounded in R™ with

dim U+1

KgﬁHj*g ﬂ (f[}@W)
j=1 j=1

and N
¢, € H;®W Vje{l,..,dimU +1}.

By using [17, Lemma 2.1(ii)], this yields

{qh’ ""qidimUJrl} € F(K)

We remark that the statement of Proposition [310} in general, is not true
when requiring ¢ just to be a closed polygonal curve in F(K) (and not a closed
(K, T)-Minkowski billiard trajectory). In [I7], we gave a counterexample for
T equals the Euclidean unit ball in R”.

In order to state/prove the upcoming Theorem [312] we recall that for a
convex body K < R”, the set Fi;% | (K) is the set of all closed polygonal curves

q= (Q17"'7qm) € F(K)

6 Tt does not necessarily have to be ﬁj = H;; nU. Further, note that due to this special
situation it is not necessary to proceed to an even finer selection of {i1,...,iqim v+1} (and
even if that were necessary, it would not impede the following argument).
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with m <n + 1.

Let (M,d) be a metric space and P(M) the set of all nonempty compact
subsets of M. We recall that P(M) is a metric space together with the Haus-
dorff metric dg which for X, Y € P(M) is defined by

dp(X,Y) = max {sup inf d(z,y),sup inf d(z, y)} .
reX YEY yeY zeX

For the following Proposition we denote by C(R") the set of all convex
bodies and by ¢p(R™) the set of all closed polygonal curves in R™. For K €
C(R™), we will consider (F(K),dg) and (F,;%(K),dy) as well as (cp(R™), dp)
as metric subspaces of the complete metric space (P(R™), dg) which is induced
by the Euclidean space (R™,] - ]).

Proposition 311 (i) If K, L € C(R™) with K < L, then

F(L) € F(K) and F%,(L) € %, (K).
(i) If K € C(R™) and ¢ > 0, then
F(cK) = cF(K) and F.5,(cK) = cFE (K).
(iii) If S,T € C(R™) with S € T and q € cp(R™), then
t5(q) < to(q).
(iv) If T € C(R™), g€ ecp(R™) and ¢ > 0, then
tr(cq) = Ler(q) = clr(q).
(v) If T € C(R™), then
by : (Cp([Rn),dH) - ('RZO’ | : |)

18 continuous.
(vi) If q € cp(R™), then

Fq : (C(Rn)vdH) - (IR>07| ’ |)7 Fq(C) = gC(Q)ﬂ
18 continuous.

Proof (i) If F € F(L), then F' cannot be translated into L. With K € L, F
also cannot be translated into K. Therefore, F' € F(K). This means

F(L) € F(K).
Analogously, one argues

Fh (L) € FR L (K).
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(i)

(iii)

(iv)

(v)

If F € F(cK), then F cannot be translated into K. Scaling F" and K by
the factor %, we conclude that %F cannot be translated into K. Therefore,

1
“FeF(K),
C

and consequently F' € cF'(K). Analogously, we conclude that F' € ¢F(K)
implies F' € F(cK). This finally implies

F(cK) = cF(K).
Analogously one argues
F¥(cK) = cFE L (K).

With S € T, we have T° < S°. Using Propositon (ii), this implies

pso (z) < ppo(x) Vo e R™
This directly implies

ts(q) < Lr(q)-
From Proposition [23[iii), it follows
pre(cx) = perye (2) = cure(x) Vo e R™.

This directly implies

tr(cq) = Ler(q) = clr(q).
It is enough to prove that

pre s (R [ ]) = (Rzo,] - [)

is continuous. But this follows from Proposition R3{(iv).
Let (7})jen be a sequence in C(R™) dg-converging to T' € C(R™). This
means for all € > 0 that there is jo = jo(¢) € N with

1-e)T<cT,c(1+¢)T (37)

for all j = jo.
We consider the sequence

(I5(T5))jen = (br; () jen-
Because of and (iv)&(v), we have for ¢ > 0 and big enough j, € N
(L =e)lr(q) = La—or(q) < lr,(q) < Lateyr(e) = (1 +€)lr(q)
for all j = jo. For ¢ — 0, this implies that

(€1;(q))jen converges to I',(T) = Lr(q).

Therefore, I7, is continuous.
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For the next theorem, we denote by M, +1(K,T) the set of closed (K,T)-
Minkowski billiard trajectories with at most n + 1 bouncing points.

Theorem 312 Let K,T c R™ be convex bodies, where T is additionally as-
sumed to be strictly convex. Then, every br-minimizing closed (K, T)-Minkowski
billiard trajectory is an {p-minimizing element of Fi.h (K), and, conversely,
every {p-minimizing element of F,",(K) can be translated in order to be an
Cp-minimizing closed (K, T)-Minkowski billiard trajectory.

Especially, one has

min /¢ = min Y4 . 38
qEFﬁil(K) T(Q) qeEM,, 1 (K,T) T(Q) ( )

We remark that Theorem |312]is an existence result: In general, it guar-
antees the existence of {p-minimizing elements of F.* | (K), and furthermore,
under the condition of strict convexity of T, it guarantees the existence of
¢p-minimizing closed (K, T)-Minkowski billiard trajectories.

We note that in [23] Theorem 2.2], we actually prove that holds with-
out the condition of strict convexity of 7.

Proof (Proof of Theorem It is sufficient to prove the following two points:

(i) Every closed (K, T)-Minkowski billiard trajectory is either in F);%, (K) or

there is a strictly ¢p-shorter closed polygonal curve in F;" | (K).
(ii) Every ¢7-minimizing element of F;%  (K') can be translated in order to be
a closed (K, T)-Minkowski billiard tracjectory.

Ad (i): Let ¢ = (g1, .-, gm ) be a closed (K, T')-Minkowski billiard trajectory.
From Proposition we conclude g € F(K). For m < n + 1, we then have
qge F.X(K). If m > n+1, then, by [I7, Lemma 2.1(i)], there is a selection

{il, ...,’in+1} C {1, ,m} with ’il <. < ’in+1
such that the closed polygonal curve
(qiu ) qin+1)
is in F;%; (K). Because of Proposition [23(i), we have

eT((qi17...7qin+1>) < ET(Q)'

Ad (ii): By looking only at those members of F.|(K) that lie in an n-

dimensional ball B%(0) in R™ of sufficiently large radius R > 0 and which
contains K, we get via the dg-continuity of {7 (cf. Proposition [311fv)) and a
standard compactness argument, considering the identification between

(Fh1(K),dy) and ({Q e (RM)™! : Q cannot be translated into K} N ||2>
by identifying

(q1, s qm) € FE L (K) with (q1s .oy Gy s Gm) € (Rm)n+1
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and
(q17 --~,Qn+1) € (an)n+1 Wlth (q17 "'?qTH'l) € Fsil(K)

and the fact that
(Fp™(K) == {ae Fh,(K) : g < BE(0)},du)

therefore can be proven to be a compact metric subspace of the complete
metric space (P(R™),dy), that

F® ., (K)/{translations}
possesses at least one element of minimal /p-length, say Apin.

We show that there is a translate A! ; of Apmi, which is a closed (K, T)-
Minkowski billiard tracjecory.

Indeed, Ay as element of F)%; (K) cannot be translated into K. Thus,
with [I7, Lemma 2.1(ii)] and the p-minimality of A, there is a translate
Al of Apin given by vertices ¢f,...,q), € 0K, m < n + 1, and there are

K-supporting hyperplanes Hq, ..., H,, through ¢/, ..., ¢, such that
Hf n..nH}

is nearly bounded in R", where H{",..., H;. are the closed half-spaces of R"
containing K and which are bounded by Hj, ..., Hy,. Let (¢;_1,qj,¢j41) be an
arbitrary polygonal curve segment of A/ . . If this polygonal curve segment is
not fulfilling the weak Minkowski billiard reflection rule with respect to Hj,
meaning that ¢ is not minimizing

Zi(q5") = pre(qf" = q51) + pre(dfyn — ¢7°)

over all ¢/* € Hj, then we find a ¢; € Hj, ¢; # ¢j, such that the {7-length
of the polygonal curve segment (q;_;,¢j,q},) is less than the {r-length of
the polygonal curve segment (q;_, ¢}, q;, ). We replace the polygonal curve
segment (q;_q, ¢}, ¢;41) within AL 5 by (¢}, dj, ¢j41)- By [1T, Lemma 2.1(ii)],
the new closed polygonal curve

A;nin = (qllv ceey Q;—1»aj7 Q;+17 7q;n)

still cannot be translated into K , while

A7

gT(Amin) < gT( inin)'
But this is a contradiction to the ¢p-minimality of A/ . . Therefore, every
polygonal curve segment (q¢;_;,q}, qj1) of A, is fulfilling the weak Minkowski
billiard reflection rule. Consequently, referring to Theorem (T is strictly con-

vex), Al . is an ¢p-minimizing closed (K, T)-Minkowski billiard trajectory.
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4 Proof of Theorem [13|

For the proof of Theorem we need the following generalization of [17]
Lemma 3.2].

Lemma 41 Let K < R" be a convex body and {qi,...,qm} a set of boundary
points of K. Further, let U be the convex cone spanned by outer unit normal
vecors

ni(q1), sk (gm) i Ng(q1),.... Nk (gm).
Then, we have
Ni(g;5) 0 U = N (45) 0 NE 044, (45)5
for all j € {1,...,m}, where
NEnwan(@) ={n €U :{n,y —q;) <0 for ally e K n (U +g¢;)} .

Proof From
Ngnw+q) (@) €U

for all j € {1,...,m} follows
Ni(g;) nU 2 Nk(g;) n N%n(uﬂj)(%)

for all j € {1,...,m}.
Let j € {1,...,m} be arbitrarily chosen. Let n be a nonzero vector in

NK(qj) nU.

Then
n € Nk (gj), i.e., (n,x—q;) <0 VreK,

and n € U. Because of
Kn({U+gq)<CK,

this implies
{n,x—qjy <0 Ve e Kn (U+gqj), neU, ne Nk(gj).
From that, we conclude
ne N%n(U+qj)(‘1j) and n € Nk(g;),

and therefore
n € Ngn@+q;)(25) N Ni(g5)-

Consequently,
Nk(gj) nU < Nk(g5) n Nzgm(U+qj)(‘Ij)

for all j € {1,...,m}.

We come to the proof of Theorem
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Proof (Proof of Theorem By Proposition [37, U is a linear subspace of R™
with
dimU <m —1<n,

where the last inequality follows from Theorem [312] By Proposition 310} there
is a selection

{i1, - idimu+1} € {1, ..., m}
with
{qhv ) Qidimu+1} € F(K)

Without loss of generality, we can assume

11 < .. <idimU+1

and define the closed polygonal curve

E]v: (qiu "~7qidimU+1) .

For
dimU + 1 <m,

it follows by Proposition [23(i) (requires strict convexity of T') that

br(q) < lr(q).

But with Theorem [312] this is a contradiction to the {7-minimality of g. There-
fore, we conclude
dimU =m — 1.

Let us denote by H,', ..., H,} the closed half-spaces of R" containing K and
which are bounded by Hy, ..., H,,. By Proposition 38} we conclude that we can
write

H;=HjnU)®W and Hj*=(Hj+mU)(—BW (39)
for all j € {1,...,m}, where W is the orthogonal complement to U in R™, and

that

(H} A U) is bounded in U, (] H; is nearly bounded in R".

1 j=1

s

J

By the definition of U, we have
ni(gj) € Nx(q;) nU Vje{l,..,m}

and therefore
dim (Ng(g;) nU) =1 Vje{l,..,m}.

Let us assume there is an 7 € {1, ..., m} such that

dim (Ng(¢g;) nU) > 1.
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Then, using Lemma [47] i.e.,

NK(Q’L) NnU = NK((h) N N%G(U-&-qi)(qi)?
it follows

dim (NK(%) N N%n(Uwi)(Qi)) > 1,

and because of [17, Lemma 3.1] (for d = m —1 and k = m), we can find a unit
vector

n?"" € Ni(g;) 0 N%Q(Uﬂi)(qi) with n?"" # n; (40)
such that
m
HPS Y A ( N H U)) (41)
J=1,j#i

remains bounded in U, where we denote by H£ ‘;‘}“t’Jr the closed half-space of
U that contains 7y (K), where 7y is the orthogonal projection (projection
along W) onto U, and which is bounded by Hfjgrt which is the hyperplane in

U through 7y (g;) that is normal to n?“"*. Since by Proposition [33] the weak
Minkowski billiard reflection rule in ¢; (cf. Theorem is no longer satisfied
with respect to the perturbed hyperplane

Hpert - szrt (‘B W.
) : 2 )
the bouncing point g; can be moved along
HYG" + (g5 = mu(g0) < HI™,
say to ¢, in order to reduce the length of the polygonal curve segment

(%‘—1, qi, Qi+1)-

We define the closed polygonal curve

*

q = (Q17 e iy qz*a Qi+1y -y QWL)
and argue that ¢* € F(K): With the boundedness of in U, it follows with
HI™ = HIY " @ W (42)

and the nearly boundedness of

j=

Hzpert,-i- A <

ﬁ Hj.*) (43)

J#i

in R™.
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Indeed, when the intersection in is bounded in U, then there is a
hyperplane H in U such that the intersection lies between H and H + d for
an appropriate d € U. Then it follows with and that

HfETt’Jr A ( ﬁ H;.)

j=1,j#i

=(nggrt’+@w) A ( ﬁ ((HfﬂU)@W)>

=1,

:(Hﬁgt’+m< ﬁ (H].*mU)))@W

j=1,j#i
lies between the hyperplanes

H®W and (H+d) @W.

Since H*"" is a K-supporting hyperplane through ¢; (what follows from the
fact that by its outer unit normal vector n”“"* is an element of N (¢;)),

we conclude that K is a subset of the intersection in (43)). Then, it follows
from the nearly boundedness (in R™) of the intersection in together with
[17, Lemma 2.1(ii)] that

q* € F(K).

By referring to Theorem [312] from

tr(q*) < Lr(q),

we derive a contradiction to the ¢p-minimality of g.
Therefore:

dim (NK(QZ) M U) =1.
We remark that for the proof of Theorem the smoothness of 7" is a

necessary condition. It guarantees the application of Proposition and the
boundedness of

-

(H} A D). (44)
1

J

Without the smoothness of 7', from Proposition [38] we know of (#4)’s nearly
boundedness, but that is not enough in order to utilize Lemma [I7, Lemma
3.1).
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5 Proof of Theorem [14]

In the proof of Theorem [14] we will use the following proposition:

Proposition 51 Let K,T < R"™ be conver bodies. Let ¢ = (q1,...,qm) be a
closed weak (K,T)-Minkowski billiard trajectory. Then, —q is a closed weak
(=K, =T)-Minkowski billiard trajectory with

br(q) = L-7(—q).

Proof Since q is a closed weak (K, T)-Minkowski billiard trajectory, there are
K-supporting hyperplanes Hy, ..., Hy, through g1, ..., g, such that ¢; minimizes
Yj(g;) over all ¢f € Hj for all j € {1,...,m}. More precisely, we have the
following for every j € {1,...,m}: ¢; minimizes

2(qf) = pre(qf — qj—1) + pre (G541 — qF) = <& — ¢i—1,05-1) +{q541 — ¢, p})
over all ¢* € H;, where p* |, p* € 0T (possibly not uniquely determined) fulfill

*_

qf —qj—1 € Nr(pj_;) and gj41 — ¢ € Nr(p}).

Because of
G} —¢j-1,0]-1) ={~q — (=¢j-1), —Pj_1)
and
(Gj+1 = a5, p}) = {~qj+1 — (=4}), —p])
as well as

*_

4 — gj—1 € Nr(pj_1) & —q} — (=g¢j-1) € Nor(=pj_4)
and
¢j+1—q; € Nr(p}) & —qj+1 — (=q¢}) € Nor(—p]),
we conclude that —g; minimizes
(=45 = (=4j=1), =Pj-) + {51 = (=45), =p)
and therefore
Yi(=q}) = nrye (—a5 — (=g5-1)) + w1y (—gj+1 — (—=47))

over all —¢¥ € —H;. It follows that —q is a closed weak (—K, —T')-Minkowski
billiard trajectory.
We finally argue that

br(q) = Ll-7(—q):
We have

r(q) = > pre (g1 — @) = {Gj+1 — 6> Ps);
j=1
where p; € 0T (possibly not uniquely determined) fulfills

¢j+1 — 4 € Nr(pj).
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Using
¢j+1— qj € Nr(pj) & —qj+1 — (—=q;) € N1 (—pj),
we conclude

lr(q) = Y {gi41 — 45,00 = Y (—ai41 — (—a;), —p;)

j=1 =

<.
[

Il
NgE

t(-1ye (—qj+1 — (—4;))

1

—1(—q)-

Il
~ .

Proof (Proof of Theorem We have
dimV <m —1,

since in general m points can maximally span an (m—1)-dimensional cone/space.
Let us assume
dimV <m —1.

Since K n V is the inclusion minimal affine section of K containing ¢, we
conclude that the convex cone spanned by

42 —q1y--59m — dm—-1,91 — dm (45)

is Vp, where V; is the linear subspace of R™ underlying V' (dimVy < m — 1).

Indeed, we argue similarly to within the proof of Proposition we show
that the convex cone spanned by is in fact a linear subspace of R™. For
that, we notice that

(@2—q1) + o + (@m — Gm-1) + (@1 —qm) =0

and therefore that

51(612 - 91) + ...+ SnL—l(Q?n - q"L—l) + S’m(ql - QWL) = Oa

where we defined

1
§j = Vjie{l,..,m}.

Since

Z sj =1 and n; #0 Vje{l,..,m},
j=1

we have that 0 is within the relative interior of the convex cone spanned by
the vectors . Consequently, the convex cone in fact is the linear subspace
Vo of R™ which underlies V.

Let p = (p1,..-,pm) be the uniquely determined closed dual billiard tra-
jectory of ¢ in T (cf. Proposition [32). Then, because of Proposition [33] (and
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therefore, there is a p1; > 0 such that p; —p;_1 = —p;nk(qg;), where ng(g;) €
Nk(qj), for all j € {1,...,m}), the pair (g, p) fulfills

{qﬂl —qj = A\jnr(pj) € Nr(p;), Aj >0, (46)

Pj+1 = Pj = —Hj+1nk (1), i1 >0,
for all j € {1,...,m}. By Proposition p is a closed (T, —K)-Minkowski

billiard trajectory (which requires the strict convexity and smoothness of K).
By Proposition [34] we have

br(q) =Lk (p).

From , we conclude that the convex cone spanned by nr(p1), ..., n7(pm)
is Vy. Then, by Proposition [310} there is a selection

{il, ~~~aidimVO+1} C {1, ,m} with il <. < idingJrl
such that the closed polygonal curve
p = (pi, ""pidsmv0+1)
is in F(T). Because of the strict convexity of K and Proposition 23|i), we have

t-k(p) <Lk (p)

Applying Theorem [312] there has to be an ¢_ g-minimizing closed (T, —K)-
Minkowski billiard trajectory p* with

(_k(p*) < L_k (D).

Let ¢* be its dual billiard trajectory on —K which by Propositions [34] and
is a closed (—K, —T)-Minkowski billiard trajectory with

C_r(q*) = Lk (p*).

Then, it follows by Proposition that —¢* is a closed (K,T)-Minkowski
billiard trajectory with

br(=q*) = L_7(q*) = L_x(p*) < L_k(p) <l_k(p) = lr(q).

This is a contradiction to the ¢p-minimality of ¢.
Therefore,

dimV =m — 1.
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p1

p1
H2 H3

q3 g2 Do

q1

p2 P3

Fig. 7 Example A: ¢ = (q1,¢2,¢3) is a closed weak (K,T)-Minkowski billiard trajectory
which fulfills the weak Minkowski billiard reflection rule with respect to the K-supprting
hyperplanes H1, H2, H3, but it is not a strong one, i.e., there is no closed polygonal curve p
such that the pair (g,p) fulfills ().

6 Examples

Example A: We consider the following example: Let K — R? be the triangle
with vertices
(17 O)a (07 1)7 (_17 O)

and T < R? the square with vertices
(1,1),(-1,1),(-1,-1),(1,-1).

Let ¢ = (¢1,42,93) be a closed polygonal curve with

11 11
q1 = (an)a q2 = <272) y 43 = <2a2> .

We denote by H,, Hy, Hs the K-supporting hyperplanes through ¢1, ¢2, g3. We
claim that (q1,¢2,q3) is a closed weak (K,T)-Minkowski billiard trajectory
fulfilling the weak Minkowski billiard reflection rule with respect to the hy-
perplanes H;, Hy, H3. Exemplary, we show that the weak Minkowski billiard
reflection rule is satisfied for the polygonal curve segment from g; over gy to
q3. For that, we show that ¢ minimizes

2(¢3) = pro (a5 — 1) + pre(g3 — ¢5)
over all ¢g¥ € Hy: We have
Yo(q2) =<2 — q1,p1) +<q3 — q2,P2)

with p; = (1,1) and py = (=1, —1) (the idea behind this example is that T'
allows to choose p; and ps on 07 such that their connecting line is othogonal
to Hs). Since

(g2 — ¢5,p2 —p1) =0 for all g5 € Hy,
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we conclude for any ¢ € Hy

Xo(q2) ={q2 — q1,p1) + g3 — G2, p2) + {q2 — 45 ,p2 — P1)
={g5 — q1.p1) +{q3 — 43, p2)
={¢5 —qu,pY) +{a3 —q3,05) +{¢5 — q1,p1 — PT) + (a3 — 45, P2 — P3 ),

where p},p% € 9T are chosen to fulfill

q5 —q1 € Nr(pf) and g3 —¢5 € Nr(p3)

(by this condition possibly not uniquely determined). From the convexity of
T, it follows

(g5 —qi,p1 —pi) <0 and (g3 —¢q5,p2 —p5) <0

and therefore

Yolq2) < g5 —q1, 1) +{q3 — @5, p3) = pre (g5 —q1) + pro (g3 — ¢5) = Xa(q3 ),

where we used Proposition Consequently, g2 minimizes X5(¢%) over all
q; € HQ.

Similarly, one could prove that the polygonal curve segment from g» over
g3 to g1—by choosing py = (—1,1) and ps = (1,—1)—as well as the one from
gs over g1 to go—by choosing p3s = (1,—1) and p; = (1, 1)-fulfills the weak
Minkowski billiard reflection rule. This gives us the idea behind choosing this
example: For every polygonal curve segment of ¢ consisting of three consecutive
bouncing points, the weak Minkowski billiard reflection rule is satisfied, but
it is not possible to find pq, p2 and p3 uniformly in order to construct a dual
billiard trajectory.

In fact, we claim that there is no closed polygonal curve p = (p1,p2,D3)
with vertices on 0T such that the pair (g, p) fulfills (2). If this would be the
case, then there would be p1, D2, p3 € 0T with

(P2 —p1) + (P3 —p2) + (p1 —p3) =0 (47)

and, additionally, there would be outer unit vectors ng(q1), nx(g2), nk(g3) at
K normal to Hy, Hy, Hz such that

g2 —q1 € Nr(p1) D2 — D1 = —ponk(ge)
g3 — g2 € Nr(p2) D3 — P2 = —p3nk(qs) (48)
¢1 — g3 € Nr(ps3) p1—p3 = —pnk(q)

where p1, po, p3 = 0. From p1, p2, p3 € 0T together with and the second
column in (48), we then could conclude

ﬁl = (O’ 1); ﬁQ = (—1,0), 53 = (07_1)'

But this would imply that the conditions within the first column in cannot
be satisfied. Consequently, the pair (¢, p) does not fulfill (2).
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Summarized, this example shows that, without requiring 7' to be strictly
convex, it can happen that a closed weak (K, T)-Minkowski billiard trajectory
is not a closed strong (K, T)-Minkowski billiard trajectory. o

Example B: Let K < R? be the square given by the vertices

(1a 0)7 (07 1)7 (_17 O)a (07 _1)
and T < R? the union of the square given by the vertices

(1a 1)7 (*17 1); (717 71)a (17 *1)
and the two balls
B} +(1,0) and B} + (—1,0).

Then, T is smooth, but not strictly convex.

TLK‘(QZ) FIQ N \
nr(p2) nr(p2)

1 (q2)

q1

1 (q1)

nk(q1) \ nT(pl) ’

Fig. 8 Example B: The closed (K, T)-Minkowski billiard trajectory g has p = (p1,p2) as
well as p = (p1,Dp2) as closed dual billiard trajectory in T'. Furthermore, g2 minimizes
over all go € Ha as well as over all g2 € Ha.

Then, we can easily check that
q=(q1,q2) with ¢1 = (0,—1) and ¢» = (0,1)
is a closed (K,T)-Minkowski billiard trajectory: is satisfied for the pair
(¢, p) for
p=(p1,p2) with p1 =¢ and p» = ¢
with the corresponding outer unit normal vectors
ni(q1) = nr(p1) = (0,-1), nk(g2) = nr(p2) = (0,1).

Since every closed (strong) Minkowski billiard trajectory is also a weak one
(cf. Theorem , g2 minimizes

pre(q2 — q1) + pre (@1 — G2) (49)
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over all ¢ € Hy, where Hs is the K-supporting horizontal line through gs.
However, is also satisfied for the pair (g, p) for

P = (p1,p2) with p; = (1,-1) and p; = (—1,1)

with the corresponding outer unit normal vectors

- 1 1 " 1 1
wto) = (J5-) e = (7575
nr(p1) = nr(p1), nr(p2) = nr(p2).

Then, again referring to Theorem , @2 minimizes over all g5 € H. 2, where
H, is the K-supporting line through ¢» with slope 1.

Summarized, this example shows that, without requiring 7" to be strictly
convex, it can happen that the closed dual billiard trajectory of a closed
(K, T)-Minkowski billiard trajectory is not uniquely determined. Furthermore,
it shows that, without requiring T to be strictly convex, it can happen that
the K-supporting hyperplanes corresponding via the weak Minkowski billiard
reflection rule to a closed weak (K, T)-Minkowski billiard trajectory are not
uniquely determined. O

Example C: Let K < R? be the triangle given by the vertices

(170)7 (71’ 2)7 (*1’ 72)

and T the intersection of the two balls

1 1
B? + (2,0) and B} + (2,()).

Then, T is strictly convex, but not smooth.
Then, we can easily check that

q= ((I1aCI27CI3) with q = (_17_2)7 q2 = (_172) and q3 = (170)
is a closed (K,T)-Minkowski billiard trajectory: is satisfied for the pair
(¢, p) for
p = (p1,p2,p3) with py = (0,2) and py = ps = (0, —z)

with the corresponding outer unit normal vectors

nk(q) = (0,-1), nx(g2) = (0,1), nk(gs) = (1,0),

nr(p1) = (0,1), nr(p2) = (\2—\%) nr(ps) = (—\}5—\%)

However, we notice that (2)) is also satisfied when we replace nx (g3) = (1,0)
by any other outer unit normal vector within the normal cone Nk (g3).

Summarized, this example shows that, without requiring 7" to be smooth,
it can happen that the closed dual billiard trajectory corresponding to a closed
(K, T)-Minkowski billiard trajectory is not a polygonal curve in the sense of
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nx(g2)
q2 ¢ nr(p1)
p1
K
nr (q3) T
q3
Nk (g3)
D2 = p3
q1
nr(p3) nr(p2)
nr(q1)

Fig. 9 Example C: ¢ = (q1,92,¢3) is a closed (K,T)-Minkowski billiard trajectory, no
matter which outer normal unit vector in g3 is chosen in order to show that (g, p) fulfills .
The vertices p2, p3 of ¢’s closed dual billiard trajectory p coincide. The convex cone spanned
by nx(q1),nx(g2), nx (g3) does not span the whole R2.

Footnote[ll This implies that, without requiring 7" to be smooth, it can happen
that the K-supporting hyperplanes corresponding via the weak Minkowski
billiard reflection rule to a closed weak (K, T)-Minkowski billiard trajectory
are not uniquely determined. Furthermore, this example shows that, without
requiring 7" to be smooth, it can happen that the convex cone spanned by the
outer unit vectors normal to the hyperplanes which correspond via the weak
Minkowski billiard reflection rule to a closed weak (K, T)-Minkowski billiard
trajectory does not is the whole R™.
Example D: Let K < R? be the square given by the vertices

(1a 1)7 (_1a 1)) (_1a _1)7 (1’ _1)
and T < R? the triangle given by the vertices
(2,1),(-2,1),(0,-1).

By rounding off these vertices, T can be made smooth; after that we denote
it by T
Then, we can check that ¢ = (q1, g2, ¢q3) with

a1 =(0,-1), g2=(0,1), g3 = (170)

is a closed weak (K, T)-Minkowski billiard trajectory.
Indeed, let Hy, Ho, H3 be the uniquely determined K-supporting hyper-
planes through ¢, g2, g3. We show that g; minimizes

Yiay) = pre(qf — aj—1) + pre(gi+1 — ¢;)
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1 (q2)
q2 p1 P
K
nr(q3)
P3 P2
q3
T
q1
nk(q1)

Fig. 10 Example D: T < R? is smooth (the vertices are rounded off). ¢ is a
closed weak (K,T)-Minkowski billiard trajectory, but the convex cone spanned by
nx(q1),nK(q2), nK (g3) is not a linear subspace of R2.

over all ¢f € Hj for all j € {1,2,3}. We have

Yi(q) =<{a1 — q3,p3) +{q2 — q1, 1)

for
p1 =(—1,1) and ps = (—1,0).

Since
(@1 = ¢ ,p1 —p3) =0 for all ¢f € Hy,

we conclude for any ¢f € Hy

i(qr) ={a1 — q3,p3) + a2 — q1,p1) + {1 — ¢f . p1 — p3)
=g} — q3.p3) +{q2 — ¢, p1)
={qf — a3, 0%5) + (a2 — af , pT) + {af — a3, p3 — P5) + {q2 — ¢F s p1 — DY),

where p¥, p¥ € 0T (possibly not uniquely determined) fulfill
i —gs € Nr(p3) and g2 — qf € Nz (py).
From the convexity of T, it follows
(@i —as,p3 —p5) <0 and (g2 —¢q{,p1 —p}) <0
and therefore
2i(qn) <{af —as,05) + a2 — af' - p) = 21(a))-

Consequently, ¢; minimizes X (¢f) over all ¢f € H;. The same argumentation
yields
a(q2) = a2 — q1,Py) + a3 — @2, p2) < 22(43)
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for all ¢5 € Hy, where
py = (1,1) and ps = (1,0),
and also
Y3(q3) = (g3 — q2; p2) +{q1 — q3,p3) < Y3(q3)
for all ¢¥ € Hs.

We note that the convex cone spanned by the outer unit vectors

nK((h) = (0»_1)v nK(qQ) = (071)7 nK(‘]B) = (1’0)

which are normal to Hy, Ha, Hs is not a linear subspace of R2.

Summarized, this example shows that, without requiring 7" to be strictly
convex, it can happen that the convex cone of the outer unit vectors normal
to the K-supporting hyperplanes which correspond via the weak Minkowski
billiard reflection rule to a closed weak (K, T)-Minkowski billiard trajectory
does not is the whole R™. ]

Example E: Let K < R? be the trapezoid given by the vertices

(1,-1),(4,2),(—4,2),(-1,-1)

and T c R? the triangle given by the vertices

(32)-(39)--2)

P2
’ nr(p2)
K
a2 q3
nk(g2) nx(g3)
an . nr(p5)
nk(q1) nr(pa) \[p

Fig. 11 Example E: T is not strictly convex. ¢ = (¢1,q2,¢3) is a closed (K, T)-Minkowski
billiard trajectory which can be translated into the interior of K. Accordingly, the convex
hull of nx (1), nr(q2), nK (¢3) does not include the origin.

Then, ¢ = (q1,q2,93) with
q1 = (0771)7 q2 = (7230)7 q3 = (270)

is a closed weak (K, T)-Minkowski billiard trajectory.
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Indeed, we denote the uniquely determined K-supporting hyperplanes through
q1,q2,q3 by Hi, Hy, H3 and show that ¢; minimizes
Yiay) = pre(q; — aj—1) + pre(gi+1 — ¢;)

over all ¢f € Hj for all j € {1,2,3}. We have

Yo(q2) =<q2 — q1,p1) + a3 — q2,D2)

13
p1 = (0,1) and py = <2,2>.

for

Since
(g2 — q5,p2 —p1) = 0 for all ¢5 € Ho,

we conclude for any ¢i € Hy that

Yo(q2) = g2 — q1,p1) + (a3 — q2,p2) + {q2 — G5 , P2 — P1)
={gF —qu,p) + g3 — ¢&,p2)
=5 —q1,p1) + a3 — ¢5.05) + {5 — q1,p1 — pT) +{q3 — G5, p2 — D5 ),

where p¥, p% € 0T (possibly not uniquely determined) fulfill

¢ —q1 € Np(p}) and g3 — g5 € Np(p3).

From the convexity of T, it follows

(@5 —qi,p1 —pi) <0 and (g3 —q5,p2 —p5) <0

and therefore

Yolq2) < g5 — qu,pT) +4{q3 — ¢5,05) = Z2(q5).

Consequently, go minimizes X5(¢¥) over all ¢ € Hy. The same argumentation
yields
Y3(g3) = (g3 — g2, P5) +{q1 — g3, p3) < 3(q3)

for all ¢¥ € Hs, where

1 3
= (21_2> and p3 = (07_1)7

and also
Zilqr) ={q1 — g3,p3) +{q2 — q1,p1) < 21 (q7)

for all ¢f € H;.

Finally, firstly, we note that 0 is not within the convex hull of the unit
normal vectors ng (¢1), nx (g2), nk (g3), and, secondly, that ¢ can be translated
into the interior of K; for example

1 .
0, - K.
q+<,2)e
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Summarized, this example shows that, without requiring 7' to be strictly
convex and smooth, it can happen that the convex hull of the outer unit
vectors normal to the K-supporting hyperplanes which correspond via the
weak Minkowski billiard reflection rule to a closed weak (K,T)-Minkowski
billiard trajectory does not include the origin. Furthermore, it shows that in
the situation of non-strictly convex T, it can happen that closed weak (K, T)-
Minkowski billiard trajectories can be translated into the interior of K. ]

Example F: Let K < R? be the convex polytope given by the vertices

(;,0) ,(0,1),(-2,1),(—2,-1),(0,-1)

and T < R? the rhombus given by the vertices
(1,0),(0,1),(-1,0),(0,-1).
Then, we can find a strictly convex body T < R? satisfying
T<T and (1,0),(0,1),(—1,0),(0,—1) € T

such that N7((0,1)) equals the convex cone spanned by the vectors (1,2) and
(—1,2) and
Np((0,=1)) = =Nz ((0,1)).

Then, T is strictly convex, but not smooth.

nK(‘]Z),k,,  Nk(e)

| Ni(a)

Nr(p2) = N7(p3)

Fig. 12 Example F: In the figure, the dashed lines belong to K and i respectively.
q = (q1,92,¢3) is an £p-minimizing closed (K,T)-Minkowski billiard trajectory, where
p = (p1,p2,p3) is its dual billiard trajectory in T. We neither have that U (the convex
cone spanned by ng(q1),nk (q2),nK (g3)) is a linear subspace of R? with dimU = 2, nor
that dim (Ng(g;) nU) = 1 for all j € {1,2,3}.
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We claim that g = (q1, g2, g3) with

1
q1 = (07_1)3 g2 = (071)7 q3 = (270)

is an p-minimizing closed (K, T)-Minkowski billiard trajectory. Then, if we
denote by U the convex cone spanned by the outer unit vectors

nx(q1),nr(q2), nx(g3)
which are normal to Hy, Hy, H3, then
U = [RZO x R

and
dim (Ng(g;) nU) >1 Vje{l,2,3}.

So, let us prove that ¢ is an ¢7-minimizing closed (K, T')-Minkowski billiard
trajectory. First, ¢ is a closed (K, T')-Minkowski billiard trajectory by checking
that p = (p1,p2, p3) with

p1=(0,1), po =p3 = (0,—1)
is its dual billiard trajectory in 7. One has
br(q) =<2 — q1,p1) +<{q3 — q2,p2) +{q1 — g3, p3) =2+ 1+ 1 =14
Now, let K be the convex polytope defined by the vertices
(0,-1),(0,1),(=2,1), (-2, -1).

We have N B
KcK and T<T.

Therefore, we conclude that the {z-length of the {z-minimizing closed (I? , f)—
Minkowski billiard trajectories is less or equal than the ¢p-length of the ¢p-
minimizing closed (K,T)-Minkowski billiard trajectories. One easily checks
that the former is 4. This implies that the latter cannot be less than 4. Since
the ¢p-length of ¢ is 4, this implies that ¢, in fact, is an ¢p-minimizing closed
(K, T)-Minkowski billiard trajectory.

Summarized, this example shows that, without requiring 7" to be smooth,
it can happen that there is an ¢p-minimizing closed (K, T')-Minkowski billiard
trajectory which violates all the statements made in Theorem [I3] )

Example G: Let K — R? be the triangle given by the vertices

(17 ]-)7 (_17 1)7 (Oa _1)
and T < R? the rectangle given by the vertices

(1a _2)7 (1a 2)7 (_1a 2)7 (_1a _2)'
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Fig. 13 Example G: For a — 1 the closed weak (K,T)-Minkowski billiard trajectory ¢* =
(4%, 49%) dp-converges to the point (0, —1).

Then, we claim that for a € [0,1), ¢* = (¢, ¢5) with
qf =(-1+a,1—2a) and ¢§ = (1 —a,1— 2a)

is a closed weak (K,T)-Minkowski billiard trajectory which fulfills the weak
Minkowski billiard reflection rule with respect to the uniquely determined K-
supporting hyperplanes H;, Ho through ¢f, ¢5.
Indeed, for a € [0,1) we show that ¢f minimizes
Yi(q) = pre(qf — q§-1) + pre(gfs1 — 4f)
(note: ¢, = ¢§_) over all ¢i € H; for j € {1,2}. The following holds for all
€ [0,1): We have

S5(g3) = <g5 — ai 1) +{af — 45,p2)

for
p1=(1,—-1) and py = (-1,0).

Since

(@3 — ¢5,p2 — p1) = 0 for all ¢ € Ha,

we conclude for any ¢i € Hy that

Ya(qy) = <ag5 — a1, p1) + a7 — ¢5,p2) +{¢5 — 45, p2 — p1)
={¢5 —qf,p1) +{df — 45, p2)
={g5 —q1,p1) +{ai — &5, p5) +{a5 —qf,pr — PT) +{d} — &5, p2 — p3),
where p¥,p4 € 0T (possibly not uniquely determined) fulfill
¢ —qi € Nr(pf) and ¢f — ¢ € Nz (p3).

From the convexity of T, it follows

(g5 —qi,p1 —p) <0 and {q¢f —q5,p2 —p5) <0
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and therefore

Ya(qy) < g5 —qf,pT) + a1 — a5,p5) = X2(q3).

Consequently, ¢§ minimizes Xo(q¥) over all g5 € Ho. The same argumentation
yields
Zi(qf) =gt — 45, p2) + g5 — qf, ) < Z1(qf)
for all ¢f € Hy, where p} = (1,1).
We have

lr(q”) ={q5 —qf,p1) +{qf —q3,p2) =2—2a+2—-2a=4—4a

which for @ — 1 goes to 0. Therefore, there is no {p-minimizing closed (K, T)-
Minkowski billiard trajectory (cf. Footnote [1)).

We note that T' can be made smooth without loosing the above mentioned
properties.

Summarized, this example shows that there are configurations (K, T for
which T is not strictly convex and there is no /p-minimizing closed weak
(K, T)-Minkowski billiard trajectory.

7 Constructing shortest Minkowski billiard trajectories on convex
polytopes

7.1 General construction in two dimensions

In this first subsection, we describe the general construction of ¢p-minimizing
closed (K, T)-Minkowski billiard trajectories for the case of a convex polytope
K c R? and a strictly convex and smooth body T < R2. For determining the
{p-minimizing closed (K, T)-Minkowski billiard trajectories, we use Corollary
i.e., the ¢r-minimizing closed (K, T)-Minkowski billiard trajectories have
two or three bouncing points, where in the latter case the billiard trajectories
are regular.

In [6], the algorithm for finding closed (K, T)-Minkowski billiard trajecto-
ries with two bouncing points has already been described. For details concern-
ing the implementation, we refer to Section In [6], it was stated as open
problem to find an algorithm for determining closed regular (K, T')-Minkowski
billiard trajectories with three bouncing points. While there, for T' equals the
Euclidean unit ball in R?, they could use the uniqueness of Fagnano triangles
in acute triangles in order to find the closed regular Euclidean billiard tra-
jectories on K, in the Minkowski/Finsler setting one has to find a different
approach, since there are no obvious analogues of the Fagnano triangles at
first. Now, this will be the task of the remainder of this subsection.

We do the following (cf. Figure [14):

(a) Choose 3 facets Fy, Fs, F3 of K (considering their order) such that the con-
vex cone spanned by the associated outer normal unit vectors ng,, nr,, nr,
is R2.
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(b)

()

(8)

Construct the uniquely determined (up to scaling and translation) closed
polygonal curve (y1,7v2,73) with ;41 —7; given by a negative multiple of
ng, for all i € {1,2,3}.

Find the uniquely determined A > 0 and c € R” such that

MY1,72, 73} + ¢ < OT.

Let n; be the outer normal unit vector ar 07 in the point
Ay + ¢

for all i € {1,2,3}. If the convex cone spanned by ny,ns,n3 is R?, then
construct the uniquely determined (up to scaling and translation) closed
polygonal curve (£1,&s,&3) with &1 — & given by a positive multiple of
ni+1 for all 4 € {1,2,3}. Otherwise: If possible: Go back to (a) and start
with a choice not yet made. Otherwise: End.
If possible: Find > 0 and e € R™ such that

péi +eeFy Vie{1,2,3}.

Otherwise: If possible: Go back to (a) and start with a choice not yet made.
Otherwise: End.
Define a closed polygonal curve

q="(q1,92,93)

by
q; = p& +e Vie{l,2,3}.
By construction: ¢ is a maximally spanning, closed, regular (K, T')-Minkowski

billiard trajectory with three bouncing points and with closed dual billiard
trajectory

p = (p1,p2,p3)
given by
D= AYyir1 +¢ Vie {1,2,3}.
Add q to B5(K,T).
If possible: Go back to (a) and start with a choice not yet made. Otherwise:
End.

Finally, the set Bs(K,T) contains all closed regular (K, T')-Minkowski bil-

liard trajectories with three bouncing points whose ¢p-length can be easily
calculated:

3 3
br(q) = . pre(gin — @5) = D .{Gj+1 — G Dj)-
j=1 j=1

Let us now turn to the explanation of the individuel steps, while for the

detailed justification, we refer to Section
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(b) Q

Fig. 14 Illustration of the construction of closed regular (K, T)-Minkowski billiard trajec-
tories with three bouncing points.

Ad (a): If there is a closed regular (K, T')-Minkowski billiard trajectory with
three bouncing points, then we know from Proposition [37| that the bouncing
points lie in the interiors of three different facets of K whose associated outer
normal unit vectors span R2.

Ad (b): Since the convex cone spanned by ng,,ng,,ng, is R?, solving a
system of linear equations yields a uniquely determined (up to scaling and
translation) 3-tuple

(717 72773) € (IRQ)S
and a uniquely determined (up to scaling-depending on the factor by which
(71,72,73) will be scaled) 3-tuple
(a1, az,03) € (Reg)?
fulfilling
Viv1 — Vi = aynp, i€ {1,2,3}.
We understand the 3-tuple (y1,72,73) as a closed polygonal curve.
Ad (c): Because of the strict convexity of T, there is a unique combination
()\,C) € [R>() X [R2
such that
M71,72,73) + ¢ < T

Ad (d): If the convex cone spanned by the unit vectors nj,ns,ns is R?,
then, as in step (b), solving a system of linear equations yields a uniquely
determined (up to scaling und translation) 3-tuple

(&1,&,8) € (R?)?
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and a uniquely determined (up to scaling—depending on the factor by which
(&1, &9, €3) will be scaled) 3-tuple

(/Bla 527 B?)) € (UQ>0)3

fulfilling
&iv1— & = Bipinig Vie {1,2,3}

We understand the 3-tuple (£1,&2,&3) as a closed polygonal curve.
Ad (e) & (f): There is at most one combination

(p,€) € Rog x R?

such that
/’(‘{51752753} +ecC oK.

By checking whether
pé +ecFy Vie{l,2,3},
we make sure that the closed polygonal curve

q=(q1,92,q3)

defined by
g = pé& +e Vie{l, 2,3}

has its vertices in the interiors of the facets Fy, Fy, F3. q is a closed (K,T)-
Minkowski billiard trajectory, where

p = (p1,p2,P3)
with
pi = )\’yiJrl +c Vie {1,2,3}
is its closed dual billiard trajectory on 7. Indeed, we define

Ai = pb; >0 and p; = —Aa; >0

and notice that the pair (g, p) fulfills :

Giv1 — ¢ = (p&iv1 +e) — (u& +e) = p(&iv1 — &) = pBiv1nir1 = Nix1nis1 € No(py),
Piy1 — i = (Mig2 +¢) — (Myig1 +¢) = MViv2 = Yit1) = —Hiv1nF,, € —Ni(giy1)-
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7.2 A note concerning the general construction for higher dimensions

Let K < R™ be a convex polytope and T" = R™ a strictly convex and smooth
body. We know from Theorems[I3]and[14]that there is always an ¢p-minimizing
closed (K, T)-Minkowski billiard trajectory which is maximally spanning, has
at most n + 1 bouncing points and whose corresponding outer unit normal
vectors span a cone which has the same dimension as the inclusion minimal
section containing this trajectory.

Instead of that the Euclidean unit ball is replaced by T and one has to take
into account that the linear subspaces underlying the inclusion minimal affine
sections containing relevant Minkowski billiard trajectories can differ from the
convex cone spanned by the corresponding outer unit normal vectors, these
are the same preconditions as within the algorithms for the Euclidean setting.
The necessary aspects which one has to consider for the adjustment to the
Minkowski setting are indicated in Section [7.1] for two dimensions.

We leave the detailed execution of these adjustments to further research.

7.3 Efficiency and used methods within the implementation

We now turn our attention to the implementation of the algorithm for two
dimensions which is described in Section [Z.11

Even though we focus on the case n = 2, we state some of the results in
this subsection for arbitrary n if they hold in any dimension. In Section [7.1]
we applied Corollary and therefore required T to be strictly convex and
smooth. Implementing such a set can be a difficult problem because we can
only make finitely many inputs. Therefore, we assume that both K and T
are convex polytopes (in particular neither strictly convex nor smooth) in this
subsection. In the following this has to be justified.

We proved in Theorem [13| for the case when T is assumed to be strictly
convex and smooth and when considering the closed (K, T')-Minkowski billiard
trajectories with n + 1 bouncing points, that, when searching for length min-
imizers, it is enough to just concentrate on the ¢p-minimizing closed (K, T)-
Minkowski billiard trajectories with n 4+ 1 bouncing points which are regular,
i.e., whose normal cones in the bouncing points are one-dimensional. How-
ever, in [I8] Section 4.3.2], it is shown that in the case when T is assumed to
be a convex polytope, then, the bouncing points of an ¢p-minimizing closed
(K, T)-Minkowski billiard trajectory may be in nonsmooth boundary points
of K, but one can assume that the normal cones appearing in the system
can be replaced by the rays which are the one-dimensional normal cones of the
neighbouring facetsE] Therefore, when we look for a boundary point in some
facet of K, we allow it to lie in the boundary of this facet, but we only consider
the normal cone for some point in the relative interior of this facet.

7 This can be proved by approximating the convex polytope T by a sequence of strictly
convex and smooth bodies, using a line of argumentation which is similar to the one ap-
pearing in the proof of [23, Theorem 2.1].
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Before we analyze the algorithm in greater detail, we argue that it is suffi-
cient to compute finitely many pairs (g, p) of closed polygonal curves fulfilling
to find one, where ¢ is /7-minimizing. More precisely, we show that if (g, p)
and (¢, p’) are pairs fulfilling and if their vertices lie on the same faces of
K (resp. T), then ¢ and ¢’ have the same ¢7-length.

Proposition 71 (Theorem 4.3.6 in [18]) Let K,T < R™ be convez poly-
topes, where Fy, ..., F,, and Gy, ...,G,, are the faces of K and T, respectively.
Further, let

q= (qla 7Qm) and ql = (q/p,(J;n)

be closed polygonal curves with vertices on 0K . Assume, there are closed polyg-
onal curves

p= (ph 7pm) and p/ = (pllv 7p;n)
with vertices on 0T such that (q,p) and (¢',p") fulfill . Further, assume for
each j € {1,...,m} that
qj,q; € relint(Fy) and pj,p; € relint(G;)
(unless F; is a vertex, in which case we assume ¢;, q;- € F; instead. The same
applies for G;). Then
tr(q) = tr(d).

Proof We start the proof by stating a simple fact. If F' is a face of a convex
polytope P with dim(F') > 1 and y1,ys € F, then

{y1 — y2,v) =0, Vv e Np(2) (50)

holds for any z € relint(F). To see this, consider the affine hull of F' and shift
it, such that it becomes a linear space. Then the vector y; — y- is an element
of this space and Np(z) with z € relint(F') is contained in the corresponding
orthogonal space. Note that also holds if F' is a vertex in which case we
have relint(F) = F. Then y;,ys € F implies y; = yo and the statement follows
immediately. Now recall :

¢j+1 — q5 € Nr(p)) , Qi1 — 5 € No(pf)
Pi+1 —Pj € =Nk (gj+1), Pjy1 — Py € =Nk (qj1)-

The following calculation completes the proof:
lr(q) = Y Adjyr — 4P

j=1

m m m
= Y aj1 — @5 P+ Dt — 4 vy — Do gian — @i D))
i=1 i=1 i=1
m
= Z<
j=1

1 m m
G — @G D)y + 2.0 — 5Py — D Ka — 4P
j=1 j=1
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a5 = 45 P51 = Py = 0 ={qj+1 — 45,15 — Pj)-

For the remainder of this section, we fix n = 2. We proceed with the case
m = 2. In other words, for each choice of faces F, F> of K and for each choice
of faces Gy, Gy of T', we compute closed polygonal curves

q=(q1,q1) and p = (p1,p2)

fulfilling such that ¢; € F; and p; € G; for j € {1, 2}. Note that Proposition
[71] suggests that we ask for

g; € relint(F;) and p; € relint(G;).

Instead, for the sake of simplicity, we allow g; € 0F}; and replace N (g;) with
Ng () for some z € relint(F};) (this applies analogously to p; € G;). The proof
of Proposition [71] extends directly to this case.

After considering all choice of FY, Fy, Gy, Gs, we compare the {7-length of
all found closed polygonal curves. Before starting the calculation, it is benefi-
cial to check whether

Ni(q1) n =Nk (gz2) and Nr(p1) n —Nr(p2)

are nonempty. The reason for this is, that the existence of a pair (g, p) of closed
polygonal curves satisfying implies:

—Nk(g2) 3p2 —p1 = —(p1 — p2) € Nx(q1),
Nr(p1) 292 — 1 = —(q1 — @2) € —N7(p2).

Note that the normal cones Nk (q;), Nr(p;) only depend on the faces F;, G,.
So, in the following, we can assume that these intersections are indeed nonempty.
The goal is now to calculate a pair of suitable polygonal curves (g, p) if pos-
sible. For this, it is helpful to distinguish whether the faces F}, G; are facets
(i.e., edges) or vertices. We consider the following cases:

1) Fi, Fy, Gy, G4 are vertices.
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2) Fy, Fy are vertices and among G4, G there is at least one facet.
3) Among F, F» as well as among G1, G, there is at least one facet.

All remaining cases can be covered by switching the roles of K and T

The first case is easy. If all chosen faces are vertices, the resulting closed
polygonal curves are unique and can be checked directly.

We start the second case by assuming that both G; and G, are facets.
Therefore, Nr(p1) and Np(ps) are one-dimensional cones. Let

w; € Nr(p;)\{0} for j e {1,2}.
We can ensure that
g2 —q1 € Nr(p1)

holds by checking whether w; is a positive multiple of go — ¢;. If this is the
case,
q1 — q2 € Nr(p2)

follows directly since we assume that

Nz (p1) n =Nz (p2)

is nonempty. Alternatively, we can check whether wy is a positive multiple of
q1 — g2 and get
g2 — q1 € Nr(p1)

for free. It remains to solve the following problem:

Find pq, p2 such that:
p1 € G1, p2 € G,
p2 —p1 € —Nk(g2),
p1—p2 € —Nk(q1).

The constraints can be expressed with linear equations and inequalities. For
this, recall the definition of the outer normal cone of a convex set C at z € 0C"

Ne(z) = {v: {v,y —2) <0, VyeC}
If C is a convex polytope, it is sufficient to demand
oy —2) <0

for every vertex y of C. Therefore, membership of N¢(z) can be modeled by
finitely many linear inequalities. Altogether, finding suitable points p1, ps, can
be realized by using linear programming techniques. The same approach can
be used if either Gy or G5 is a vertex. In this case, the linear program remains
unchanged except for the fact that one of the two variable vectors is replaced
by a constant vector.

In the third case, we start with the assumption that I, Fy, G1,Go are
facets. Then, all relevant normal cones are one-dimensional and we let

uj € Nk(g;)\{0} and w; € Np(p;)\{0} for je {1,2}.
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Now, we solve the following problem:

Find q1, g2, p1,p2, a1, a2 such that:
G EF, e Fy, pr € Gy, pr € Go,
ay,az = 0,
q2 — q1 = aqwy,
P2 — P1 = —QaU2.

Similar to the previous case, this problem is a linear program. Note that the
last two constraints suffice to imply since

Nr(p1) 0 —=Nr(p2) and Nk(g1) N —Nk(q2)

are nonempty. If not all chosen faces are facets, for instance if G; is a vertex, the
linear program has to be changed in two ways. First, much like in the second
case, the corresponding variable vector, here p;, is replaced by a constant
vector. Second, if G is a vertex, then the normal cone N (p1) is no longer one-
dimensional and the definition of w; does not make sense any more. However,
in this case, G is a facet and we replace the constraint

g2 —q1 = cqwy with g1 — g2 = awe.

We apply this reasoning also when F} or Fj is not a facet.

There may be multiple ways to choose (p, ¢) for given faces Fy, F», G, Gs.
If this is the case, our algorithm chooses (if possible) p such that Ng (g;) is one-
dimensional for j € {1,2} (or equivalently such that ¢;, ¢ are not vertices of
K). This is achieved in the following way. If F; or F is a vertex, the resulting
closed polygonal curve ¢ always contains a vertex of K. So, we assume both
Fy and F5 are facets. If ¢; and ¢y are smooth points (i.e., lie in the interior of
Fy and Fy), then there is nothing to do. Otherwise, we denote

Nk(q1) = Ryu and Ng(g2) = Ry(—u)

for some vector u € R Let v # 0 be a vector orthogonal to u. Moving ¢;
along the facet F}; can only be done in at most two directions: v or —v. If we
can move both ¢; and ¢ in the same direction, we simply translate the closed
polygonal curve q. If ¢; and g5 can only be moved in opposite directions, it is
necessary to check whether the normal cones Np(p1) and Np(p2) allow such
movement. If not, it is not possible to find suitable points

q1 € relint(Fy) and g € relint(F5).

This concludes the algorithm for the case m = 2. Next, we will discuss
the algorithm for m = 3. We start as described in the previous subsection
and choose facets Fi, Fy, F5 of K. For each j € {1,2,3}, we let nx ; be the
outer unit normal vector of K at some point in the relative interior of Fj. If
possible, we construct a triangle A by only using negative multiples of these
three vectors. Here a triangle is the convex hull of three affinely independent
points. This can easily be done by solving a system of linear equations. The
task is now to find all (A, T)-inbodies which we define by:
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v

q2
—v

q2 q1
q1

Fig. 15 Two closed polygonal curves such that g1, g2 are vertices of K. On the left, we can
translate ¢1, g2 upwards (in direction v). On the right, we need to move g1 upwards and g2
downwards. Whether this is possible depends on Np(p1) and Nr(p2).

Definition 71 ((A,T)-inbody) Let A < R? be a triangle and T < R? be a
nonempty convex set. A (A, T)-inbody is a set S < R? which fulfills:

(i)
S=M+u

for some A > 0 and u € R2.
(i) All three vertices of S are contained in OT.
(iii) If
{Ula'UQa Ug} = V(S)7
then there is no hyperplane H through the origin, such that

NT(Ul) |\ NT(’UQ) v NT(vg)
is contained in one of the two closed halfspaces defined by H.

Here, V(S) denotes the set of vertices of S. The idea behind such a (A, T)-
inbody is to find the closed polygonal curve p. More precisely, we will choose p
as the closed polygonal curve having v1, v, v3 as vertices. (i) ensures that the
pair (p, ¢) fulfills the second line of . Later on, in this algorithm, we need to
construct another triangle from outer normal vectors at the points vy, vo, v3.
Property (iii) ensures that this is possible. Finding all (A, T)-inbodies is simple
due to the following proposition.

Proposition 72 (Lemma 4.3.8 in [18]) Let T < R? be a convez polytope
and A = R? be a triangle. If there is a (A, T)-inbody, then

S* = N*A +u*
is the only (A, T)-inbody, where \*,u* is a solution of

max A
such that A >0, ue R? (51)
M+ucT.
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Proof Let
S = conv{vy, vy, v3}
S* = conv{w, ws, w3}
as in the claim. Here, we choose the names for the vertices such that there are
>0 and z € R? with
w; = Uv; +
for j € {1, 2, 3}. Note that such a naming is possible since S is a scaled translate
of §*. We start by letting Hy, Ho, H3 be three lines defined by

wa, W3 € Hl, w1, wWs € H2 and w1, Wy € Hg.

Each of these lines is the affine hull of a facet of S*. Furthermore, each line H;
devides the plane R? in two halfspaces. We denote the halfspace which contains
S* by H;”. If S = S* there is nothing to show. So, we assume S # S*. Because
S is a smaller (or equal size) version of S*, it is contained in H ]* for some
j € {1,2,3}. Without loss of generality we assume S — H;", as the other cases
can be treated similarly. This situation is depicted in Figure [16]

H;

w3

Fig. 16 Depiction of the (A, T)-inbody S with vertices vi,v2,vs and the triangle S* with
vertices w1, w2, w3. The dashed arrows indicate the location of the line segment [v1, v2] after
shifting it by wa — va.

Consider the triangle with vertices vy, ws,ws. Neither vy nor vz can be
contained in the interior of this triangle. The reason for this is that by property
(ii) of Definition [71| vy and v3 are boundary points of T but

conv{vy, wy, w3} < T.

We will now show that property (iii) is violated for S. This contradiction
implies S = S* and finishes the proof. More precisely, we claim that Np(v;)
is contained in the halfspace

= {z € R?: {wy — vy, ) < 0}.
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for every j € {1,2,3}. By definition of the outer normal cone it follows imme-
diately that Np(ve) < I. Because S is a smaller (or equal size) version of S*
we have wy — w3 = a(ve —v3) for some « > 1. For any « € N (vs) this implies:
{wg — vo,x) = {wg — V2 + W3 — W3 + V3 — U3, )

= ((we —w3) — (vo —v3),z) + {ws — v3,T)

< {wg — w3, ) — (vg — v3,2)

= (o — 1) vg — v3, )

<0.
Thus,

Nrp (1)5) c I
Next, we observe that if we shift S by ws — vg, then the face [vq,vs] of S is
contained in [wy, ws] (see Figure [16). So,
U1 + (w2 — ’U2>

is contained in S* < T. Now, for any y € Nr(v1) we get:

0= (v + (wp —v2) —v1,y) = (wa — Va2, )
As desired this yields
Np (’Ul) c I.

We point out that there is not always a (A, T)-inbody. For example, if
has multiple optimal solutions, the proof shows that there is no (A, T)-inbody.
An example for this situation is depicted in Figure

H

Fig. 17 A situation, where there is no (A, T)-inbody. The gray area is a scaled translate
of A. Also shown is a hyperplane H through the origin O.

As we can see, there are multiple optimal solutions for , since we can
shift the gray area to the left and right. The only way to have all vertices of
this area on 07 is to shift it to the left. Then all the corresponding normal
vectors are contained in the halfspace on the left of H.

With Proposition we can reduce the search of (A,T)-inbodies to a
simple maximization problem which we can formulate as a linear problem
(LP). Tt is clear that this problem has an optimal solution as long as T is
compact. After we found a solution \*, u*, we check whether

S* = N A+t
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fulfills properties (i)-(iii) in Definition As pointed out before, it suffices to
consider any optimal solution. If S* does not meet properties (i)-(iii), then
there is no (A, T)-inbody and we proceed with the next choice of F, Fy, Fj.
Otherwise, we take a unit normal vector from Np(v) for each vertex v of S.
We construct another triangle as before, using only positive multiples of these
normal vectors. It is notable, that v may be a vertex of T'. In this case, N (v)
is not one-dimensional and the choice of the corresponding normal vector is
not unique. As mentioned earlier, one way of handling this case is to slightly
perturb the vertices of T. As follows from Proposition [71] it is sufficient to
find one vector in Nr(v) such that the remaining steps of the algorithm are
carried out successfully. So, another way is to sample Nz (v), i.e., only consider
finitely many unit normal vectors. The remainder of the algorithm is straight
forward and only uses strategies which have been discussed before.

Regarding efficiency, we point out that the algorithm for finding closed
polygonal curves with 2 vertices takes

O([V(E)P - [V(T)*)

iterations before it terminates. This is clear since the number of facets of a two
dimensional convex polytope equals the number of its vertices. For each of the
two convex polytopes K and T, the algorithm considers at most one choice
for Fi, F5,G1,Go per iteration. In each iteration, we search for the points
41,92, P1, p2. In the worst case (i.e., if Fy, F5, G, Go are facets), we solve an
LP with 10 variables and

2(V(K)| + V(T +3)

constraints. In order to solve LPs, we use the conelp solver of CVXOPT.
This solver relies on a primal-dual path-following method. It is well known
that linear problems can be solved in polynomial time (cf. [24]).

For finding closed polygonal curves with 3 vertices, the algorithm takes

O(IV(K)?)

iterations to consider every choice of faces Fi, Iy, F3. In each iteration, we
solve the maximization problem stated in Proposition [72] This is an LP with
3 variables and

3IV(T)|+ 1

constraints. The remainder of the loop for Fi, F5, F3 can be realized with
running time O(1). Finally, we note that the calculations for each choice of
faces are independent of each other. Therefore, we use parallel computing to
speed up the calculations.

In the following Table[I] we examine the running time of the algorithm out-
lined in the Sections and To do so, we let K and T be two-dimensional
convex polytopes and consider three different cases. First, we regard the case
where both K and T have the same number of vertices. In the second case,
K will have a small number of vertices and, in the third case, we chose T to
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have few vertices. Each time, the convex polytopes K and T have been cho-
sen randomly in the following way. We take a number of normally distributed
points and compute their convex hull. Since many of these points will be close
to the origin and are unnecessary, we scale each of these normally distributed
points to have a random length in [1, 3] before we calculate the convex hull.
As the number of points grows, the convex hull resembles a ball of radius 3
due to the normal distribution. So, to accelerate this process, we reduced the
interval [1, 3] for convex polytopes with many vertices (= 30).

We compare the running time for finding an ¢p-minimizing closed polyg-
onal curve with 2 vertices to the running time for finding an f¢p-minimizing
closed polygonal curve with 3 vertices. As we can see the running time for 2
vertices is approximately symmetric in |V (K)| and |V(T')|. In contrast to this,
the running time for 3 vertices mainly depends on |V (K)].

All calculations have been done on a Dell Latitude E6530 laptop with Intel
Core 17-3520M processor, 2.9 GHz (capable of running four threads). The
algorithm and a detailed description on how to choose the input is available
on the website [www.github.com /S-Krupp /EHZ-capacity-of-polytopes

8 A note on Minkowski billiard trajectories on obtuse triangles

It is an open problem for already a long time whether obtuse triangles A-z <
R? possess closed regular (A z, BY)-Minkowski billiard trajectories (cf. [14]),
i.e., closed classical Euclidean billiard trajectories. The strongest result so far
is the existence of a closed classical Euclidean billiard trajectory on triangles
with angles not greater than 100° (cf. [25]).

Obviously, there cannot exist closed regular (A =, B?)-Minkowski billiard
trajectories with two bouncing points (cf. [I7, Proposition 2.6]). Using our
algorithm described in Section [7] we can reason that there cannot be closed
regular (A>%,Bf)—Minkowski billiard trajectories with three bouncing points
neither: searching for closed regular (A =, B?)-Minkowski billiard trajectories
with three bouncing points means, among other aspects, searching for closed
polygonal curves (one for every choice of order of the edges of A>g) with
three vertices consisting of line segments given by negative multiples of the
outer unit normal vectors at the edges of Az that have all three vertices
on the sphere S*. But since A~ = is obtuse, for geometrical reasons neither of
these two closed polygonal curves with vertices (which are meant to be the
closed dual billiard trajectories on B?) on S! are in F(B?). With Proposition
this implies that there is no closed regular (A =, Bf)-Minkowski billiard
trajectory.

However, instead of solving the original problem, we can use our algorithm
from Section [7] in order to determine the family 7 of all convex bodies T <
R* admitting the existence of a closed regular (A z,T)-Minkowski billiard
trajectory with three bouncing points: Let D(a) be the rotation matrix in R?
rotating counter clockwise by angle . Then, 7 is the set of all convex bodies
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[V(K)| | |V(T)| | time for 2 vert. in s. | time for 3 vert. in s.
5 5 1.28237 0.22158
10 10 7.85068 2.54632
15 15 27.39097 11.71706
20 20 54.75007 25.03621
25 25 82.30637 60.11260
30 30 125.05111 110.61238
35 35 170.22497 181.65273
40 40 259.88731 302.30844
45 45 266.73415 385.03827
50 50 361.56254 609.04153
55 55 451.56054 786.54793
5 10 3.02675 0.22164
5 15 5.57299 0.22637
5 20 11.40925 0.22114
5 25 16.91015 0.23931
5 30 19.89903 0.21554
5 35 23.96365 0.39383
5 40 29.05107 0.21106
5 45 32.18348 0.54072
5 50 36.41029 0.38885
5 55 49.02657 0.57020
5 65 59.80655 0.79811
5 75 67.33951 0.72834
10 5 3.39280 1.19793
15 5 5.74532 4.32675
20 5 10.50168 11.31948
25 5 14.59203 24.99738
30 5 17.76183 45.60183
35 5 20.62535 90.62127
40 5 23.89690 137.52914
45 5 25.73543 170.43779
50 5 30.23246 266.66650
55 5 33.68478 345.84228
65 5 41.49229 558.22820
75 5 51.92742 937.36931

Table 1 Running times for the calculations of an ¢p-minimizing closed (K, T)-Minkowski
billiard trajectory with 2 (resp. 3) vertices as described in Section All numbers are given
in seconds.

T < R? for which there are either At > 0 and £ € R? with
(A\TD(n/2)As 5 + &%) N 0T = {p1,p2,p3} € F(T)

and maximally spanning unit normal vectors nr(p1),nr(p2),nr(ps) in the
outer normal cones at pi,ps,p3, or there are A~ > 0 and ¢~ € R? such that
the same holds for

A D(=m/2)Asx + €.
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