3.1 Homogeneous transformation
In the process of kinematics modeling, a four-dimensional homogeneous matrix is often used to represent the coordinate transformation between two adjacent coordinate systems in a three-dimensional space.
As shown in Fig. 1, θ is the rotation angle around the Z-axis, d is the distance between two adjacent common perpendiculars in the Z-axis direction, a is the length of each male perpendicular (in most cases, it is the length of the connecting rod), and α is the angle between the adjacent Z-axis (usually 0 or 90°). Next, the change relationship from joint n + 1 to adjacent joint n + 2 is calculated, and the solution is divided into four steps.
(1) Rotate θn + 1 around the Zn axis to make Xn and Xn + 1 parallel, and the transformation matrix is Rot (Z, θn + 1);
(2) Translate dn + 1 along the Zn axis so that Xn and Xn + 1 are collinear, and the transformation matrix is Trans (0,0, dn + 1);
(3) Translate an + 1 along the Xn axis, so that the origins of Xn and Xn + 1 coincide, and the transformation matrix is Trans (0,0, dn + 1);
(4) Rotate αn + 1 around the Xn + 1 axis so that the Zn and Zn + 1 axis are collinear, and the transformation matrix is Rot(X, αn + 1).
Herein, the coordinate system n and n + 1 coincide, and the four transformation matrices are multiplied on the right to get the total transformation matrix T (Sθ = sinθ, Cθ = cosθ).
$$=\left[\begin{array}{cc}\begin{array}{cc}C{\theta }_{n+1}& -S{\theta }_{n+1}C{\alpha }_{n+1}\\ S{\theta }_{n+1}& C{\theta }_{n+1}C{\alpha }_{n+1}\end{array}& \begin{array}{cc}S{\theta }_{n+1}S{\alpha }_{n+1}& {a}_{n+1}C{\theta }_{n+1}\\ -C{\theta }_{n+1}S{\alpha }_{n+1}& {a}_{n+1}S{\theta }_{n+1}\end{array}\\ \begin{array}{cc}0& S{\alpha }_{n+1}\\ 0& 0\end{array}& \begin{array}{cc}C{\alpha }_{n+1}& {d}_{n+1}\\ 0& 1\end{array}\end{array}\right]$$
$$=\left[\begin{array}{cc}\begin{array}{cc}C{\theta }_{n+1}& -S{\theta }_{n+1}\\ S{\theta }_{n+1}& C{\theta }_{n+1}\end{array}& \begin{array}{cc}0& 0\\ 0& 0\end{array}\\ \begin{array}{cc}0& 0\\ 0& 0\end{array}& \begin{array}{cc}1& 0\\ 0& 1\end{array}\end{array}\right]\times \left[\begin{array}{cc}\begin{array}{cc}1& 0\\ 0& 1\end{array}& \begin{array}{cc}0& 0\\ 0& 0\end{array}\\ \begin{array}{cc}0& 0\\ 0& 0\end{array}& \begin{array}{cc}1& {d}_{n+1}\\ 0& 1\end{array}\end{array}\right]\times \left[\begin{array}{cc}\begin{array}{cc}1& 0\\ 0& 1\end{array}& \begin{array}{cc}0& {a}_{n+1}\\ 0& 0\end{array}\\ \begin{array}{cc}0& 0\\ 0& 0\end{array}& \begin{array}{cc}1& 0\\ 0& 1\end{array}\end{array}\right]\times \left[\begin{array}{cc}\begin{array}{cc}1& 0\\ 0& C{\alpha }_{n+1}\end{array}& \begin{array}{cc}0& 0\\ -S{\alpha }_{n+1}& 0\end{array}\\ \begin{array}{cc}0& S{\alpha }_{n+1}\\ 0& 0\end{array}& \begin{array}{cc}C{\alpha }_{n+1}& 0\\ 0& 1\end{array}\end{array}\right]$$
Through homogeneous transformation, the coordinate system of all related nodes is expressed through the initial coordinates so that the coordinates of all points are unified into one coordinate system. Thus, the posture change of each point is transformed into a pure angle change, which is a solvable motion equation.
3.3 Modeling of upper limb kinematics
First, the number of joint points in the model is determined. According to the human body structure, there are six connecting rods with constant length in the upper limb part, including one upper arm, one forearm, one palm, and three fingers. There are also six joints, including one shoulder joint, and one elbow joint, one wrist joint, and three finger joints (two thumb joints), of which the shoulder and wrist joints can move in two directions. Hence, two coordinate transformation matrices are required; that is, the number of joint points is two. With the first coordinate system as the initial coordinate system, the complete single-sided upper limb kinematics model includes eight joint points. From the first point to the last joint point, a total of seven coordinate transformations and seven conversion matrices are required.
The coordinate system with the direction of the shoulder joint perpendicular to the front of the body as the z-axis is the initial coordinate system. The translation distance of the second coordinate system relative to the initial coordinate system was 0 in the x and z directions, and it rotated 90° around the x-axis, i.e., α1 = 90°. Relative to the second coordinate system, the third coordinate system moved the upper arm length d3 along the x-axis direction, and other changes were all 0. Relative to the third coordinate system, the fourth coordinate system rotated 90° around the z-axis; that is, θ = θ4 + 90°, and moved the arm length d4 along the x-axis, and other changes were 0. Relative to the fourth coordinate system, the fifth coordinate system rotated 90°around the z-axis and x-axis, that is, θ = θ5 + 90°, α5 = 90°, and other changes were all 0. Relative to the fifth coordinate system, the length of each finger movement in the sixth coordinate system was different. Each finger moved in the x-axis and z-axis directions with the movement length of d6 and a6; the sixth coordinate system rotated 90° around the x-axis and z-axis; that is, θ = θ6 + 90°, α6 = 90°. The seventh coordinate system moved d7 along the x-axis direction relative to the sixth coordinate system, and other changes were all 0. The eight-coordinate system moved d8 along the x-axis direction relative to the seventh coordinate system, while other changes were 0.
According to the above analysis, the parameters of the transformation matrix among various coordinate systems are shown in Table 1.
Table 1
Parameters of transformation matrix.
Serial number
|
Transformation relationship
|
θ
|
d
|
a
|
α
|
1
|
1–2
|
θ2
|
0
|
0
|
90°
|
2
|
2–3
|
θ3
|
d3
|
0
|
0
|
3
|
3–4
|
θ4 + 90°
|
d4
|
0
|
0
|
4
|
4–5
|
θ5 + 90°
|
0
|
0
|
90°
|
5
|
5–6
|
θ6 + 90°
|
d6
|
a6
|
90°
|
6
|
6–7
|
θ7
|
d7
|
0
|
0
|
7
|
7–8
|
θ8
|
d8
|
0
|
0
|
The number in the transformation relationship refers to the serial number of the joint point, and in order to keep the initial sign language model state in the L-shaped state in Fig. 3, additional values are set in some of the solution parameters so that the maximum and minimum values of each parameter are the same, at − 180° and 180°, and there will be no situation of − 270°~90°. In the process of data acquisition and the application of the model and actual sensor, this range of parameters can be used to monitor whether the sensor is working properly and reduce the content involved in the judgment step. Obviously, the actual action cannot reach such a large range, and as a result, the actual parameter range needs to be determined according to the specific sign language gesture.
According to Table 1, each transformation matrix can be obtained as:
$${}_{2}{}^{1}T=\left[\begin{array}{cc}\begin{array}{cc}C{\theta }_{2}& 0\\ S{\theta }_{2}& 0\end{array}& \begin{array}{cc}S{\theta }_{2}& 0\\ -C{\theta }_{2}& 0\end{array}\\ \begin{array}{cc}0& 1\\ 0& 0\end{array}& \begin{array}{cc}0& 0\\ 0& 1\end{array}\end{array}\right]$$
$${}_{3}{}^{2}T=\left[\begin{array}{cc}\begin{array}{cc}C{\theta }_{3}& -S{\theta }_{3}\\ S{\theta }_{3}& C{\theta }_{3}\end{array}& \begin{array}{cc}0& 0\\ 0& 0\end{array}\\ \begin{array}{cc}0& 0\\ 0& 0\end{array}& \begin{array}{cc}1& {d}_{3}\\ 0& 1\end{array}\end{array}\right]$$
$${}_{4}{}^{3}T=\left[\begin{array}{cc}\begin{array}{cc}C{\theta }_{4}& -S{\theta }_{4}\\ S{\theta }_{4}& C{\theta }_{4}\end{array}& \begin{array}{cc}0& 0\\ 0& 0\end{array}\\ \begin{array}{cc}0& 0\\ 0& 0\end{array}& \begin{array}{cc}1& {d}_{4}\\ 0& 1\end{array}\end{array}\right]$$
$${}_{5}{}^{4}T=\left[\begin{array}{cc}\begin{array}{cc}C{\theta }_{5}& 0\\ S{\theta }_{5}& 0\end{array}& \begin{array}{cc}S{\theta }_{5}& 0\\ -C{\theta }_{5}& 0\end{array}\\ \begin{array}{cc}0& 1\\ 0& 0\end{array}& \begin{array}{cc}0& 0\\ 0& 1\end{array}\end{array}\right]$$
$${}_{6}{}^{5}T=\left[\begin{array}{cc}\begin{array}{cc}C{\theta }_{6}& 0\\ S{\theta }_{6}& 0\end{array}& \begin{array}{cc}S{\theta }_{6}& {a}_{6}C{\theta }_{6}\\ -C{\theta }_{6}& {a}_{6}S{\theta }_{6}\end{array}\\ \begin{array}{cc}0& 1\\ 0& 0\end{array}& \begin{array}{cc}0& {d}_{6}\\ 0& 1\end{array}\end{array}\right]$$
$${}_{7}{}^{6}T=\left[\begin{array}{cc}\begin{array}{cc}C{\theta }_{7}& -S{\theta }_{7}\\ S{\theta }_{7}& C{\theta }_{7}\end{array}& \begin{array}{cc}0& 0\\ 0& 0\end{array}\\ \begin{array}{cc}0& 0\\ 0& 0\end{array}& \begin{array}{cc}1& {d}_{7}\\ 0& 1\end{array}\end{array}\right]$$
$${}_{8}{}^{7}T=\left[\begin{array}{cc}\begin{array}{cc}C{\theta }_{8}& -S{\theta }_{8}\\ S{\theta }_{8}& C{\theta }_{8}\end{array}& \begin{array}{cc}0& 0\\ 0& 0\end{array}\\ \begin{array}{cc}0& 0\\ 0& 0\end{array}& \begin{array}{cc}1& {d}_{8}\\ 0& 1\end{array}\end{array}\right]$$
The final transformation matrix is:
$${}_{8}{}^{1}T={}_{2}{}^{1}T{}_{3}{}^{2}T{}_{4}{}^{3}T{}_{5}{}^{4}T{}_{6}{}^{5}T{}_{7}{}^{6}T{}_{8}{}^{7}T$$
According to the definition of the posture matrix, compared to the initial matrix, the transformation matrix of the end fingertip is:
$$pose R=\left[\begin{array}{ccc}{n}_{x}& {o}_{x}& {a}_{x}\\ {n}_{y}& {o}_{y}& {a}_{y}\\ {n}_{z}& {o}_{z}& {a}_{z}\end{array}\right]$$
$$coordinate P=\left[\begin{array}{c}{p}_{x}\\ {p}_{y}\\ {p}_{z}\end{array}\right]$$
where
$${n}_{x}=\text{C}\left({\theta }8\right)\text{*}\left(\text{C}\left({\theta }7\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)- \text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)+ \text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)\right)\right)- \text{S}\left({\theta }8\right)\text{*}\left(\text{S}\left({\theta }7\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)- \text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)- \text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)\right)\right)$$
$${n}_{y}=\text{S}\left({\theta }8\right)\text{*}\left(\text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)+ \text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)+ \text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)\right)\right)- \text{C}\left({\theta }8\right)\text{*}\left(\text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)+ \text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)- \text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)\right)\right)$$
$${n}_{z}=- \text{C}\left({\theta }8\right)\text{*}\left(\text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)- \text{C}\left({\theta }6\right)\text{*}\text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)\right)\right)- \text{S}\left({\theta }8\right)\text{*}\left(\text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)+ \text{C}\left({\theta }6\right)\text{*}\text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)\right)\right)$$
$${o}_{x}=- \text{C}\left({\theta }8\right)\text{*}\left(\text{S}\left({\theta }7\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)- \text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)- \text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)\right)\right)- \text{S}\left({\theta }8\right)\text{*}\left(\text{C}\left({\theta }7\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)- \text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)+ \text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)\right)\right)$$
$${o}_{y}=\text{C}\left({\theta }8\right)\text{*}\left(\text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)+ \text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)+ \text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)\right)\right)+ \text{S}\left({\theta }8\right)\text{*}\left(\text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)+ \text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)- \text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)\right)\right)$$
$${o}_{z}=\text{S}\left({\theta }8\right)\text{*}\left(\text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)- \text{C}\left({\theta }6\right)\text{*}\text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)\right)\right)- \text{C}\left({\theta }8\right)\text{*}\left(\text{C}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)+ \text{C}\left({\theta }6\right)\text{*}\text{S}\left({\theta }7\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)\right)\right)$$
$${a}_{x}=- \text{C}\left({\theta }6\right)\text{*}\text{S}\left({\theta }2\right)- \text{S}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)$$
$${a}_{y}=\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }6\right)- \text{S}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)$$
$${a}_{z}=\text{S}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)\right)$$
$${p}_{x}=\text{d}6\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)\right)- \text{d}8\text{*}\left(\text{C}\left({\theta }6\right)\text{*}\text{S}\left({\theta }2\right)+ \text{S}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)- \text{d}7\text{*}\left(\text{C}\left({\theta }6\right)\text{*}\text{S}\left({\theta }2\right)+ \text{S}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)+ \text{d}3\text{*}\text{S}\left({\theta }2\right)+ \text{d}4\text{*}\text{S}\left({\theta }2\right)- \text{a}6\text{*}\text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)+ \text{a}6\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)$$
$${p}_{y}=\text{d}7\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }6\right)- \text{S}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)+ \text{d}8\text{*}\left(\text{C}\left({\theta }2\right)\text{*}\text{C}\left({\theta }6\right)- \text{S}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)\right)+ \text{d}6\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)\right)- \text{d}3\text{*}\text{C}\left({\theta }2\right)- \text{d}4\text{*}\text{C}\left({\theta }2\right)- \text{a}6\text{*}\text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)- \text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }2\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)- \text{a}6\text{*}\text{C}\left({\theta }2\right)\text{*}\text{S}\left({\theta }6\right)$$
$${p}_{z}=\text{a}6\text{*}\text{C}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)\right)- \text{d}6\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)- \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)\right)+ \text{d}7\text{*}\text{S}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)\right)+ \text{d}8\text{*}\text{S}\left({\theta }6\right)\text{*}\left(\text{C}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)+ \text{C}\left({\theta }4\right)\text{*}\text{S}\left({\theta }3\right)\right)+ \text{S}\left({\theta }5\right)\text{*}\left(\text{C}\left({\theta }3\right)\text{*}\text{C}\left({\theta }4\right)- \text{S}\left({\theta }3\right)\text{*}\text{S}\left({\theta }4\right)\right)\right)$$
According to Table 1, only the z-axis rotation angle θ in the kinematics model is an unknown parameter, which is called the joint angle. The arm length represented by d and the finger length represented by a, are known parameters.