1. Reed, G.W., J.E. Rossi, and C.P. Cannon, Acute myocardial infarction. Lancet, 2017. 389(10065): p. 197-210.
2. Anderson, J.L. and D.A. Morrow, Acute Myocardial Infarction. N Engl J Med, 2017. 376(21): p. 2053-2064.
3. Roger, V.L., Epidemiology of heart failure. Circ Res, 2013. 113(6): p. 646-59.
4. Dhruva, S.S., et al., Association of Use of an Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump With In-Hospital Mortality and Major Bleeding Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock. Jama, 2020. 323(8): p. 734-745.
5. Halade, G.V. and D.H. Lee, Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine, 2022. 79: p. 103992.
6. Jenča, D., et al., Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail, 2021. 8(1): p. 222-237.
7. Mouton, A.J., O.J. Rivera, and M.L. Lindsey, Myocardial infarction remodeling that progresses to heart failure: a signaling misunderstanding. Am J Physiol Heart Circ Physiol, 2018. 315(1): p. H71-h79.
8. Wu, H.B., et al., Research progress of CA125 and BDNF in serum of patients with acute myocardial infarction for predicting acute heart failure. Clin Hemorheol Microcirc, 2020. 75(1): p. 99-106.
9. Filipe, M.D., et al., Galectin-3 and heart failure: prognosis, prediction & clinical utility. Clin Chim Acta, 2015. 443: p. 48-56.
10. Ataklte, F. and R.S. Vasan, Heart failure risk estimation based on novel biomarkers. Expert Rev Mol Diagn, 2021. 21(7): p. 655-672.
11. Zhang, Y., J. Bauersachs, and H.F. Langer, Immune mechanisms in heart failure. Eur J Heart Fail, 2017. 19(11): p. 1379-1389.
12. Park, H.J., et al., Assessment and diagnostic relevance of novel serum biomarkers for early decision of ST-elevation myocardial infarction. Oncotarget, 2015. 6(15): p. 12970-83.
13. Tobin, S.W., et al., Considering Cause and Effect of Immune Cell Aging on Cardiac Repair after Myocardial Infarction. Cells, 2020. 9(8).
14. Schloss, M.J., et al., 2-Arachidonoylglycerol mobilizes myeloid cells and worsens heart function after acute myocardial infarction. Cardiovasc Res, 2019. 115(3): p. 602-613.
15. Qian, J., et al., Single-Cell RNA Sequencing of Peripheral Blood Mononuclear Cells From Acute Myocardial Infarction. Front Immunol, 2022. 13: p. 908815.
16. Maciejak, A., et al., Gene expression profiling reveals potential prognostic biomarkers associated with the progression of heart failure. Genome Med, 2015. 7(1): p. 26.
17. Rao, M., et al., Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res Cardiol, 2021. 116(1): p. 55.
18. Koenig, A.L., et al., Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat Cardiovasc Res, 2022. 1(3): p. 263-280.
19. Díez-López, C., et al., Blood Differential Gene Expression in Patients with Chronic Heart Failure and Systemic Iron Deficiency: Pathways Involved in Pathophysiology and Impact on Clinical Outcomes. J Clin Med, 2021. 10(21).
20. Wang, T., J. Tian, and Y. Jin, VCAM1 expression in the myocardium is associated with the risk of heart failure and immune cell infiltration in myocardium. Sci Rep, 2021. 11(1): p. 19488.
21. Tang, S., Y. Liu, and B. Liu, Integrated bioinformatics analysis reveals marker genes and immune infiltration for pulmonary arterial hypertension. Sci Rep, 2022. 12(1): p. 10154.
22. Zou, J., et al., scCODE: an R package for data-specific differentially expressed gene detection on single-cell RNA-sequencing data. Brief Bioinform, 2022. 23(5).
23. Kim, H. and H. Park, Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 2007. 23(12): p. 1495-502.
24. Hao, Y., et al., Integrated analysis of multimodal single-cell data. Cell, 2021. 184(13): p. 3573-3587.e29.
25. Haghverdi, L., et al., Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol, 2018. 36(5): p. 421-427.
26. Hänzelmann, S., R. Castelo, and J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 2013. 14: p. 7.
27. Jan, B., et al., cancerclass: An R Package for Development and Validation of Diagnostic Tests from High-Dimensional Molecular Data. Journal of Statistical Software, 2014. 59(1): p. 1 - 19.
28. Ritchie, M.E., et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015. 43(7): p. e47.
29. Swirski, F.K. and M. Nahrendorf, Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol, 2018. 18(12): p. 733-744.
30. Yan, X., et al., Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol, 2013. 62: p. 24-35.
31. Zouggari, Y., et al., B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med, 2013. 19(10): p. 1273-80.
32. Keppner, L., et al., Antibodies aggravate the development of ischemic heart failure. Am J Physiol Heart Circ Physiol, 2018. 315(5): p. H1358-h1367.
33. Macosko, E.Z., et al., Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 2015. 161(5): p. 1202-1214.
34. Gui, X., et al., Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature, 2019. 567(7747): p. 262-266.
35. Rech, L., et al., Small molecule STING inhibition improves myocardial infarction remodeling. Life Sci, 2022. 291: p. 120263.
36. Wang, Y., et al., Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction. Cardiovasc Res, 2019. 115(1): p. 154-167.
37. Traxler, D., et al., The inflammatory markers sST2, HSP27 and hsCRP as a prognostic biomarker panel in chronic heart failure patients. Clin Chim Acta, 2020. 510: p. 507-514.
38. Montecucco, F., et al., CC chemokine CCL5 plays a central role impacting infarct size and post-infarction heart failure in mice. Eur Heart J, 2012. 33(15): p. 1964-74.
39. Fagerholm, S.C., et al., Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front Immunol, 2019. 10: p. 254.
40. Banik, S.K., et al., Network analysis of atherosclerotic genes elucidates druggable targets. BMC Med Genomics, 2022. 15(1): p. 42.
41. Liu, L., et al., Myocardin-related transcription factor A regulates integrin beta 2 transcription to promote macrophage infiltration and cardiac hypertrophy in mice. Cardiovasc Res, 2022. 118(3): p. 844-858.
42. Adamo, L., et al., Reappraising the role of inflammation in heart failure. Nat Rev Cardiol, 2020. 17(5): p. 269-285.
43. Jia, Y., et al., Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice. PLoS One, 2016. 11(8): p. e0160755.
44. Castells-Sala, C., et al., Three-Dimensional Cultures of Human Subcutaneous Adipose Tissue-Derived Progenitor Cells Based on RAD16-I Self-Assembling Peptide. Tissue Eng Part C Methods, 2016. 22(2): p. 113-124.
45. Kubin, T., et al., The MEK/ERK Module Is Reprogrammed in Remodeling Adult Cardiomyocytes. Int J Mol Sci, 2020. 21(17).