1. Zhang, Y. Z., Shi, M. & Holmes, E. C. Using Metagenomics to Characterize an Expanding Virosphere. Cell 172, 1168–1172 (2018).
2. Aevarsson, A. et al. Going to extremes - a metagenomic journey into the dark matter of life. FEMS Microbiol. Lett. 368, (2021).
3. "Metagenomic Analysis of Marigold: Mixed Infection... - Google Scholar. Available at: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%22Metagenomic+Analysis+of+Marigold%3A+Mixed+Infection+Including+Two+New+Viruses%22&btnG=. (Accessed: 15th January 2023)
4. Lappe, R. R. et al. Metagenomic identification of novel viruses of maize and teosinte in North America. BMC Genomics 23, (2022).
5. Damian, D., Berg, M., Johansson Wensman, J., Maghembe, R. & Damas, M. Application of viral metagenomics for study of emerging and reemerging tick-borne viruses. liebertpub.com 20, 557–565 (2020).
6. Souza, J. V. C. et al. Viral Metagenomics for the Identification of Emerging Infections in Clinical Samples with Inconclusive Dengue, Zika, and Chikungunya Viral Amplification. Viruses 14, (2022).
7. Mohsin, H., Asif, A., Fatima, M. & Rehman, Y. Potential role of viral metagenomics as a surveillance tool for the early detection of emerging novel pathogens. Arch. Microbiol. 203, 865–872 (2021).
8. Slavov, S. N. Viral Metagenomics for Identification of Emerging Viruses in Transfusion Medicine. Viruses 2022, Vol. 14, Page 2448 14, 2448 (2022).
9. Erratum: Correction to ‘The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update’ (Nucleic acids research (2022)). Nucleic Acids Res. 50, 8999 (2022).
10. Antipov, D., Korobeynikov, A., McLean, J. S. & Pevzner, P. A. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32, 1009–1015 (2016).
11. Prjibelski, A. D. et al. ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics 30, i293–i301 (2014).
12. Vasilinetc, I., Prjibelski, A. D., Gurevich, A., Korobeynikov, A. & Pevzner, P. A. Assembling short reads from jumping libraries with large insert sizes. Bioinformatics 31, 3262–3268 (2015).
13. Sukhorukov, G. et al. VirHunter: A Deep Learning-Based Method for Detection of Novel RNA Viruses in Plant Sequencing Data. Front. Bioinforma. 2, 38 (2022).
14. Wood, D. E. & Salzberg, S. L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, (2014).
15. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
16. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012 94 9, 357–359 (2012).
17. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, 1–10 (2009).
18. Meleshko, D., Hajirasouliha, I. & Korobeynikov, A. coronaSPAdes: from biosynthetic gene clusters to RNA viral assemblies. Bioinformatics 38, 1–8 (2021).
19. Alonge, M. et al. RaGOO: Fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20, 1–17 (2019).
20. Maan, H. et al. Genotyping SARS-CoV-2 through an interactive web application. Lancet Digit. Heal. 2, e340–e341 (2020).
21. O’Toole, Á. et al. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Wellcome Open Res. 6, (2021).
22. O’Toole, Á. et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol. 7, (2021).
23. Rambaut, A., Holmes, E., O’Toole, Á., … V. H.-N. & 2020, undefined. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. nature.com
24. Aksamentov, I., Roemer, C., Hodcroft, E. B. & Neher, R. A. Nextclade: clade assignment, mutation calling and quality control for viral genomes. J. Open Source Softw. 6, 3773 (2021).
25. Yan, F. et al. Characterization of Two Heterogeneous Lethal Mouse-Adapted SARS-CoV-2 Variants Recapitulating Representative Aspects of Human COVID-19. Front. Immunol. 13, 207 (2022).
26. Molecular recognition of SARS-CoV-2 spikeglycoprotein:... - Google Scholar. Available at: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Molecular+recognition+of+SARS-CoV-2+spikeglycoprotein%3A+quantum+chemical+hot+spot+andepitope+analyses&btnG=. (Accessed: 14th January 2023)
27. Yan, F. & Gao, F. RBD-ACE2 binding properties in five SARS-CoV-2 variants of concern with new perspectives in the design of pan-coronavirus peptide inhibitors. J. Infect. (2022). doi:10.1016/J.JINF.2022.09.011
28. Mou, K. et al. Emerging mutations in envelope protein of SARS-CoV-2 and their effect on thermodynamic properties. Informatics Med. Unlocked 25, 100675 (2021).
29. Bamford, C. G. G. et al. Comparison of SARS-CoV-2 Evolution in Paediatric Primary Airway Epithelial Cell Cultures Compared with Vero-Derived Cell Lines. Viruses 14, 325 (2022).
30. Dieterle, M. E. et al. A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host Microbe 28, 486-496.e6 (2020).
31. Carrazco-Montalvo, A. & Herrera-Yela, A. Omicron sublineages current status in Ecuador. (2022).