(1) Wang L, Song L, He X, Teng F, Hu M, Tao Y (2019) Production of isofloridoside from galactose and glycerol using α-galactosidase from Alicyclobacillus hesperidum. Enzyme Microb. Technol. 134:109480. https://doi.org/10.1016/j.enzmictec.2019.109480
(2) Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG (2018) Toward automated enzymatic synthesis of oligosaccharides. Chem. Rev. 118:8151-8187. https://doi.org/10.1021/acs.chemrev.8b00066
(3) Driguez PA, Potier P, Trouilleux P (2014) Synthetic oligosaccharides as active pharmaceutical ingredients: lessons learned from the full synthesis of one heparin derivative on a large scale. Nat. Prod. Rep. 31:980-989. https://doi.org/10.1039/C4NP00012A
(4) Lu L, Liu Q, Jin L, Yin Z, Xu L, Xiao M (2015) Enzymatic synthesis of rhamnose containing chemicals by reverse hydrolysis. PloS One 10:e0140531. https://doi.org/10.1371/journal.pone.0140531
(5) McCranie EK, Bachmann BO (2014) Bioactive oligosaccharide natural products. Nat. Prod. Rep. 31:1026-1042. https://doi.org/10.1039/C3NP70128J
(6) Schmaltz RM, Hanson SR, Wong CH (2011) Enzymes in the synthesis of glycoconjugates. Chem. Rev. 111:4259-4307. https://doi.org/10.1021/cr200113w
(7) Perugino G, Trincone A, Rossi M, Moracci M (2004) Oligosaccharide synthesis by glycosynthases. Trends Biotechnol. 22:31-37. https://doi.org/10.1016/j.tibtech.2003.10.008
(8) Cheng CW, Wu CY, Hsu WL, Wong CH (2019) Programmable one-pot synthesis of oligosaccharides. Biochemistry. https://doi.org/10.1021/acs.biochem.9b00613
(9) Moracci M, Trincone A, Rossi M (2001) Glycosynthases: new enzymes for oligosaccharide synthesis. J. Mol. Catal. B-Enzym. 11:155-163. https://doi.org/10.1016/S1381-1177(00)00084-9
(10) Cobucci‐Ponzano B, Strazzulli A, Rossi M, Moracci M (2011) Glycosynthases in biocatalysis. Adv. Synth. Catal. 353:2284-2300. https://doi.org/10.1002/adsc.201100461
(11) Salgado JCS, Meleiro LP, Carli S, Ward RJ (2018) Glucose tolerant and glucose stimulated β-glucosidases-a review. Bioresour. Technol. 267:704-713. https://doi.org/10.1016/j.biortech.2018.07.137
(12) Moremen KW, Haltiwanger RS (2019) Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat. Chem. 15:853-864. https://doi.org/10.1038/s41589-019-0350-2
(13) García C, Hoyos P, Hernáiz MJ (2018) Enzymatic synthesis of carbohydrates and glycoconjugates using lipases and glycosidases in green solvents. Biocatal. Biotransform. 36:131-140. https://doi.org/10.1080/10242422.2017.1349760
(14) da Silva AS A, Molina JF, Teixeira RSS, Gelves LGV, Bon EP, Ferreira-Leitão VS (2017) Synthesis of disaccharides using β-glucosidases from Aspergillus niger, A. awamori and Prunus dulcis. Biotechnol. Lett. 39:1717-1723. https://doi.org/10.1007/s10529-017-2409-z
(15) Semenova MV, Okunev ON, Gusakov AV, Sinitsyn AP (2015) Disaccharide synthesis by enzymatic condensation of glucose: glycoside linkage patterns for different fungal species. Open Glycosci. 2:20-24. https://doi.org/10.2174/1875398100902010020
(16) Sanz ML, Gibson GR, Rastall RA (2005) Influence of disaccharide structure on prebiotic selectivity in vitro. J. Agric. Food Chem. 53:5192-5199. https://doi.org/10.1021/jf050276w
(17) Xia Y, Yang L, Xia L (2018) Preparation of a novel soluble inducer by cellobiase-release microcapsules and its application in cellulase production. J. Biotechnol. 279:22-26. https://doi.org/10.1016/j.jbiotec.2018.05.002
(18) Rosengren A, Butler SJ, Arcos-Hernandez M, Bergquist KE, Jannasch P, Stålbrand H (2019) Enzymatic synthesis and polymerisation of β-mannosyl acrylates produced from renewable hemicellulosic glycans. Green Chem. 21:2104-2118. https://doi.org/10.1039/C8GC03947J
(19) Xu L, Liu X, Yin Z, Liu Q, Lu L, Xiao M (2016) Site-directed mutagenesis of α-l-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design. Appl. Microbiol. Biotechnol. 100:10385-10394. https://doi.org/10.1007/s00253-016-7676-4
(20) Arthornthurasuk S, Jenkhetkan W, Suwan E, Chokchaichamnankit D, Srisomsap C, Wattana-Amorn P, Svasti JT, Kongsaeree P (2018) Molecular characterization and potential synthetic applications of GH1 β-Glucosidase from higher termite Microcerotermes annandalei. Appl. Biochem. Biotechnol. 186:877-894. https://doi.org/10.1007/s12010-018-2781-8
(21) Chen H, Yang S, Xu A, Jiang R, Tang Z, Wu J, Zhu L, Liu S, Chen X, Lu Y (2019) Insight into the glycosylation and hydrolysis kinetics of alpha-glucosidase in the synthesis of glycosides. Appl. Microbiol. Biotechnol. 103:9423-9432. https://doi.org/10.1007/s00253-019-10205-6
(22) Ajisaka K, Yagura M, Miyazaki T (2012) A novel two-step synthesis of α-linked mannobioses based on an acid-assisted reverse hydrolysis reaction. Carbohydr. Res. 347:147-150. https://doi.org/10.1016/j.carres.2011.10.037
(23) Tan RS, Hinou H, Nishimura SI (2016) Novel β-galactosynthase-β-mannosynthase dual activity of β-galactosidase from Aspergillus oryzae uncovered using monomer sugar substrates. RSC Adv. 6:50833-50836. https://doi.org/10.1039/C6RA08060J
(24) Wang F, Wu J, Chen S (2018) Preparation of gentiooligosaccharides using Trichoderma viride β-glucosidase. Food Chem. 248:340-345. https://doi.org/10.1016/j.foodchem.2017.12.044
(25) Ravet C, Thomas D, Legoy MD (1993) Gluco-oligosaccharide synthesis by free and immobilized β-glucosidase. Biotechnol. Bioeng. 42:303-308. https://doi.org/10.1002/bit.260420306
(26) Honda Y, Fushinobu S, Hidaka M, Wakagi T, Shoun H, Taniguchi H, Kitaoka M (2008) Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase. Glycobiology 18:325-330. https://doi.org/10.1093/glycob/cwn011
(27) Qin Z, Li S, Huang X, Kong W, Yang X, Zhang S, Cao L, Liu Y (2019) Improving galactooligosaccharide gynthesis efficiency of β-Galactosidase Bgal1-3 by reshaping the active site with an intelligent hydrophobic amino acid scanning. J. Agric. Food Chem. 67:11158-11166. https://doi.org/10.1021/acs.jafc.9b04774
(28) Frutuoso MA, Marana SR (2013) A single amino acid residue determines the ratio of hydrolysis to transglycosylation catalyzed by β-glucosidases. Protein Pept. Lett. 20:102-106. https://doi.org/10.2174/092986613804096757
(29) Lundemo P, Adlercreutz P, Karlsson EN (2013) Improved transferase/hydrolase ratio through rational design of a family 1 β-glucosidase from Thermotoga neapolitana. Appl. Environ. Microbiol. 79:3400-3405. https://doi.org/ 10.1128/AEM.00359-13
(30) Xin Y, Liu H, Cui F, Liu H, Xun L (2016) Recombinant Escherichia coli with sulfide: quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite and thiosulfate via a new pathway. Environ. Microbiol. 18:5123-5136. https://doi.org/10.1111/1462-2920.13511
(31) Hou N, Yan Z, Fan K, Li H, Zhao R, Xia Y, Xun L, Liu H (2019) OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli. Redox Biol. 26:101293. https://doi.org/10.1016/j.redox.2019.101293
(32) Schägger H (2006) Tricine-SDS-PAGE. Nat. Protoc. 1:16. https://doi.org/10.1038/nprot.2006.4
(33) Liu K, Dong Y, Wang F, Jiang B, Wang M, Fang X (2016) Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei. Appl. Microbiol. Biotechnol. 100:769-779. https://doi.org/10.1007/s00253-015-7059-2
(34) Guo W, Huang Q, Liu H, Hou S, Niu S, Jiang Y, Bao X, Shen Y, Fang X (2019) Rational engineering of chorismate-related pathways in Saccharomyces cerevisiae for improving tyrosol production. Bioeng. Biotech. 7:152. https://doi.org/10.3389/fbioe.2019.00152
(35) Noor E, Haraldsdóttir HS, Milo R, Fleming RMT (2013) Consistent estimation of Gibbs energy using component contributions. PLoS Comput. Biol. 9:e1003098. https://doi.org/10.1371/journal.pcbi.1003098
(36) Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46:W296-W303. https://doi.org/10.1093/nar/gky427
(37) Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12:7-8. https://doi.org/10.1038/nmeth.3213
(38) Florindo RN, Souza VP, Mutti HS, Camilo C, Manzine LR, Marana SR, Polikarpov I, Nascimento AS (2018) Structural insights into β-glucosidase transglycosylation based on biochemical, structural and computational analysis of two GH1 enzymes from Trichoderma harzianum. New Biotechnol. 40:218-227. https://doi.org/10.1016/j.nbt.2017.08.012
(39) Lundemo P, Karlsson EN, Adlercreutz P (2017) Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase. Appl. Microbiol. Biotechnol. 101:1121-1131. https://doi.org/10.1007/s00253-016-7
(40) Seidle HF, Huber RE (2005) Transglucosidic reactions of the Aspergillus niger family 3 β-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Arch. Biochem. Biophys. 436:254-264. https://doi.org/10.1016/j.abb.2005.02.017
(41) Rosengren A, Reddy SK, Sjöberg JS, Aurelius O, Logan DT, Kolenová K, Henrik Stålbrand H (2014) An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5. Appl. Microbiol. Biotechnol. 98:10091-10104. https://doi.org/10.1007/s00253-014-5871-8