1. Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 14:516–547. doi: 10.1039/c3gc41492b
2. Wenxiu Cao, Wenhao Luo, Hongguang Ge, Yang Su, Aiqin Wang and TZ (2017) UiO-66 derived Ru/[email protected] as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone. Green Chem 19:2201–2211. doi: 10.1039/C7GC00512A
3. Yang Y, Sun C, Brown DE, Zhang L, Yang F (2016) A smart strategy to fabricate Ru nanoparticle inserted porous carbon nano fi bers as highly e ffi cient levulinic acid hydrogenation catalysts †. Green Chem 18:3558–3566. doi: 10.1039/c5gc02802g
4. Touchy AS, Hakim Siddiki SMA, Kon K, Shimizu KI (2014) Heterogeneous Pt catalysts for reductive amination of levulinic acid to pyrrolidones. ACS Catal 4:3045–3050. doi: 10.1021/cs500757k
5. Yan K, Jarvis C, Gu J, Yan Y (2015) Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renew Sustain Energy Rev 51:986–997. doi: 10.1016/j.rser.2015.07.021
6. Yan K, Yang Y, Chai J, Lu Y (2015) Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Appl Catal B Environ 179:292–304. doi: 10.1016/j.apcatb.2015.04.030
7. Dhanalaxmi K, Singuru R, Mondal S, Bai L, Reddy BM, Bhaumik A, Mondal J (2017) Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation. ACS Sustain Chem Eng 5:1033–1045. doi: 10.1021/acssuschemeng.6b02338
8. Gu XM, Zhang B, Liang HJ, Ge H Bin, Yang HM, Qin Y (2017) Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid. Ranliao Huaxue Xuebao/Journal Fuel Chem Technol 45:714–722. doi: 10.1016/s1872-5813(17)30035-x
9. Mustafin K, Cárdenas-Lizana F, Keane MA (2017) Continuous gas phase catalytic transformation of levulinic acid to γ-valerolactone over supported Au catalysts. J Chem Technol Biotechnol 92:2221–2228. doi: 10.1002/jctb.5258
10. Piskun AS, De Haan JE, Wilbers E, Van De Bovenkamp HH, Tang Z, Heeres HJ (2016) Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Millimeter Sized Supported Ru Catalysts in a Packed Bed Reactor. ACS Sustain Chem Eng 4:2939–2950. doi: 10.1021/acssuschemeng.5b00774
11. Yan K, Lafleur T, Jarvis C, Wu G (2014) Clean and selective production of γ-valerolactone from biomass-derived levulinic acid catalyzed by recyclable Pd nanoparticle catalyst. J Clean Prod 72:230–232. doi: 10.1016/j.jclepro.2014.02.056
12. Song S, Yao S, Cao J, Di L, Wu G, Guan N, Li L (2017) Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Appl Catal B Environ 217:115–124. doi: 10.1016/j.apcatb.2017.05.073
13. Sun P, Gao G, Zhao Z, Xia C, Li F (2014) Stabilization of cobalt catalysts by embedment for efficient production of valeric biofuel. ACS Catal 4:4136–4142. doi: 10.1021/cs501409s
14. Yuan J, Li SS, Yu L, Liu YM, Cao Y, He HY, Fan KN (2013) Copper-based catalysts for the efficient conversion of carbohydrate biomass into γ-valerolactone in the absence of externally added hydrogen. Energy Environ Sci 6:3308–3313. doi: 10.1039/c3ee40857d
15. Wettstein SG, Bond JQ, Alonso DM, Pham HN, Datye AK, Dumesic JA (2012) RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone. Appl Catal B Environ 117–118:321–329. doi: 10.1016/j.apcatb.2012.01.033
16. Yan K, Chen A (2014) Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu-Fe catalyst. Fuel 115:101–108. doi: 10.1016/j.fuel.2013.06.042
17. Yang Y, Gao G, Zhang X, Li F (2014) Facile fabrication of composition-tuned Ru-Ni bimetallics in ordered mesoporous carbon for levulinic acid hydrogenation. ACS Catal 4:1419–1425. doi: 10.1021/cs401030u
18. Zhang R, Ma Y, You F, Peng T, He Z, Li K (2017) Exploring to direct the reaction pathway for hydrogenation of levulinic acid into Γ-valerolactone for future Clean-Energy Vehicles over a magnetic Cu-Ni catalyst. Int J Hydrogen Energy 42:25185–25194. doi: 10.1016/j.ijhydene.2017.08.121
19. Upare PP, Lee JM, Hwang YK, Hwang DW, Lee JH, Halligudi SB, Hwang JS, Chang JS (2011) Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem 4:1749–1752. doi: 10.1002/cssc.201100380
20. Lomate S, Sultana A, Fujitani T (2017) Effect of SiO2 support properties on the performance of Cu-SiO2 catalysts for the hydrogenation of levulinic acid to gamma valerolactone using formic acid as a hydrogen source. Catal Sci Technol 7:3073–3083. doi: 10.1039/c7cy00902j
21. Yoshida R, Sun D, Yamada Y, Sato S, Hutchings GJ (2017) Vapor-phase hydrogenation of levulinic acid to Γ-valerolactone over Cu-Ni bimetallic catalysts. Catal Commun 97:79–82. doi: 10.1016/j.catcom.2017.04.018
22. Sun D, Ohkubo A, Asami K, Katori T, Yamada Y, Sato S (2017) Vapor-phase hydrogenation of levulinic acid and methyl levulinate to Γ-valerolactone over non-noble metal-based catalysts. Mol Catal 437:105–113. doi: 10.1016/j.mcat.2017.05.009
23. Balla P, Perupogu V, Vanama PK, Komandur VRC (2016) Hydrogenation of biomass-derived levulinic acid to γ-valerolactone over copper catalysts supported on ZrO2. J Chem Technol Biotechnol 91:769–776. doi: 10.1002/jctb.4643
24. Putrakumar B, Nagaraju N, Kumar VP, Chary KVR (2015) Hydrogenation of levulinic acid to γ-valerolactone over copper catalysts supported on γ-Al2O3. Catal Today 250:209–217. doi: 10.1016/j.cattod.2014.07.014
25. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chemie - Int Ed 45:3216–3251. doi: 10.1002/anie.200503075
26. Patel A, Shukla P, Rufford T, Wang S, Chen J, Rudolph V, Zhu Z (2011) Catalytic reduction of NO by CO over copper-oxide supported mesoporous silica. Appl Catal A Gen 409–410:55–65. doi: 10.1016/j.apcata.2011.09.024
27. Fulvio PF, Pikus S, Jaroniec M (2010) SBA-15-supported mixed-metal oxides: Partial hydrolytic sol-gel synthesis, adsorption, and structural properties. ACS Appl Mater Interfaces 2:134–142. doi: 10.1021/am900625c
28. Abrokwah RY, Deshmane VG, Kuila D (2016) Comparative performance of M-MCM-41 (M: Cu, Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. J Mol Catal A Chem 425:10–20. doi: 10.1016/j.molcata.2016.09.019
29. Zhao Q, Shen Y, Wang Q, Tian J, Zhou X, Jiang T (2013) A comparative investigation on the catalytic activity of H-Al-MCM-48 and H-Zr-MCM-48 mesoporous molecular sieve on alkylation of phenol with tert-butyl alcohol. Chem Eng J 230:124–132. doi: 10.1016/j.cej.2013.06.057
30. Prabhu A, Kumaresan L, Palanichamy M, Murugesan V (2009) Synthesis and characterization of aluminium incorporated mesoporous KIT-6: Efficient catalyst for acylation of phenol. Appl Catal A Gen 360:59–65. doi: 10.1016/j.apcata.2009.03.004
31. Frey AS, Hinrichsen O (2012) Comparison of differently synthesized Ni(Al)MCM-48 catalysts in the ethene to propene reaction. Microporous Mesoporous Mater 164:164–171. doi: 10.1016/j.micromeso.2012.07.015
32. Tüysüz H, Lehmann CW, Bongard H, Tesche B, Schmidt R, Schüth F (2008) Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. J Am Chem Soc 130:11510–11517. doi: 10.1021/ja803362s
33. Derrien G, Charnay C, Zajac J, Jones DJ, Rozière J (2008) Copper-containing monodisperse mesoporous silica nanospheres by a smart one-step approach. Chem Commun 3118–3120. doi: 10.1039/b804593c
34. Chmielarz L, Kuśtrowski P, Dziembaj R, Cool P, Vansant EF (2006) Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia. Appl Catal B Environ 62:369–380. doi: 10.1016/j.apcatb.2005.09.004
35. Chary KVR, Sagar GV, Naresh D, Seela KK, Sridhar B (2005) Characterization and reactivity of copper oxide catalysts supported on TiO2-ZrO2. J Phys Chem B 109:9437–9444. doi: 10.1021/jp0500135
36. Sagar GV, Rao PVR, Srikanth CS, Chary KVR (2006) Dispersion and reactivity of copper catalysts supported on Al 2O3-ZrO2. J Phys Chem B 110:13881–13888. doi: 10.1021/jp0575153
37. Subbaramaiah V, Srivastava VC, Mall ID (2013) Optimization of reaction parameters and kinetic modeling of catalytic wet peroxidation of picoline by Cu/SBA-15. Ind Eng Chem Res 52:9021–9029. doi: 10.1021/ie400124d
38. Li JF, Zhao L, Li J, Li M, Liu CL, Yang RZ, Dong WS (2019) Highly selective synthesis of γ-valerolactone from levulinic acid at mild conditions catalyzed by boron oxide doped Cu/ZrO2 catalysts. Appl Catal A Gen 587:117244. doi: 10.1016/j.apcata.2019.117244
39. Yanase D, Yoshida R, Kanazawa S, Yamada Y, Sato S (2020) Efficient formation of γ-valerolactone in the vapor-phase hydrogenation of levulinic acid over Cu-Co/alumina catalyst. Catal Commun 139:105967. doi: 10.1016/j.catcom.2020.105967
40. Orlowski I, Douthwaite M, Iqbal S, Hayward JS, Davies TE, Bartley JK, Miedziak PJ, Hirayama J, Morgan DJ, Willock DJ, Hutchings GJ (2019) The hydrogenation of levulinic acid to Γ-valerolactone over Cu–ZrO2 catalysts prepared by a pH-gradient methodology. J Energy Chem 36:15–24. doi: 10.1016/j.jechem.2019.01.015
41. Mitta H, Perupogu V, Boddula R, Ginjupalli SR, Inamuddin, Asiri AM (2020) Enhanced production of γ-valerolactone from levulinic acid hydrogenation-cyclization over ZrxCe1-xO2 based Cu catalysts. Int J Hydrogen Energy 45:26445–26457. doi: 10.1016/j.ijhydene.2019.11.149
42. Mitta H, Seelam PK, Chary KVR, Mutyala S, Boddula R, Inamuddin, Asiri AM (2018) Efficient Vapor-Phase Selective Hydrogenolysis of Bio-Levulinic Acid to γ-Valerolactone Using Cu Supported on Hydrotalcite Catalysts. Glob Challenges 2:1800028. doi: 10.1002/gch2.201800028
43. Li J, Li M, Zhang C, Liu CL, Yang RZ, Dong WS (2020) Construction of mesoporous Cu/ZrO2-Al2O3 as a ternary catalyst for efficient synthesis of γ-valerolactone from levulinic acid at low temperature. J Catal 381:163–174. doi: 10.1016/j.jcat.2019.10.031
44. He D, He Q, Jiang P, Zhou G, Hu R, Fu W (2019) Novel Cu/Al2O3-ZrO2 composite for selective hydrogenation of levulinic acid to Γ-valerolactone. Catal Commun 125:82–86. doi: 10.1016/j.catcom.2019.03.029