1. WHO/NMH/NHD. Cibles mondiales de nutrition 2025: Note d’orientation sur l’anémie. 2012;8.
2. Development Initiatives. Global Nutrition Report 2017: Nourishing the SDGs. Bristol, UK Dev Initiat [Internet]. 2017;115. Available from: https://globalnutritionreport.org/reports/2017-global-nutrition-report/
3. WHO. Global anaemia reproductive age: among women of reduction efforts of targets and the impact, achievement way forward for optimizing efforts. 2020. 79 p.
4. WHO. Anaemia Policy Brief. 2012;(6):1–7. Available from: http://www.who.int//iris/bitstream/10665/148556/1/WHO_NMH_NHD_14.4_eng.pdf
5. Owais A, Merritt C, Lee C, Bhutta ZA. Anemia among Women of Reproductive Age : An Overview of in Low- and Middle-Income Countries. Nutrients. 2021;13(8):2745.
6. Teshale AB, Tesema GA, Worku MG, Yeshaw Y, Tessema ZT. Anemia and its associated factors among women of reproductive age in eastern Africa: A multilevel mixed-effects generalized linear model. PLoS One [Internet]. 2020;15(9 September):1–16. Available from: http://dx.doi.org/10.1371/journal.pone.0238957
7. Correa-Agudelo E, Kim HY, Musuka GN, Mukandavire Z, Miller FDW, Tanser F, et al. The epidemiological landscape of anemia in women of reproductive age in sub-Saharan Africa. Sci Rep [Internet]. 2021;11(1):1–11. Available from: https://doi.org/10.1038/s41598-021-91198-z
8. Kumari S, Garg N, Kumar A, Guru PKI, Ansari S, Anwar S, et al. Maternal and severe anaemia in delivering women is associated with risk of preterm and low birth weight: A cross sectional study from Jharkhand, India. One Heal [Internet]. 2019;8:10. Available from: https://doi.org/10.1016/j.onehlt.2019.100098
9. Rahman MA, Rahman MS, Aziz Rahman M, Szymlek-Gay EA, Uddin R, Islam SMS. Prevalence of and factors associated with anaemia in women of reproductive age in Bangladesh, Maldives and Nepal: Evidence from nationally-representative survey data. PLoS One [Internet]. 2021;16(1):e0245335. Available from: http://dx.doi.org/10.1371/journal.pone.0245335
10. Gautam S, Min H, Kim H, Jeong HS. Determining factors for the prevalence of anemia in women of reproductive age in Nepal: Evidence from recent national survey data. PLoS One. 2019;14(6):1–17.
11. Ma Q, Zhang S, Liu J, Wang Q, Shen H, Zhang Y, et al. Study on the prevalence of severe anemia among non-pregnant women of reproductive age in rural China: A large population-based cross-sectional study. Nutrients. 2017;9(12).
12. Rahmati S, Delpishe A, Azami M, Ahmadi MRH, Sayehmiri K. Maternal anemia during pregnancy and infant low birth weight: A systematic review and meta-analysis. Int J Reprod Biomed. 2017;15(3):125–34.
13. Abu-Ouf NM, Jan MM. The impact of maternal iron deficiency and iron deficiency anemia on child’s health. Saudi Med J. 2015;36(2):146–9.
14. Kinyoki D, Osgood-Zimmerman AE, Bhattacharjee N V., Schaeffer LE, Lazzar-Atwood A, Lu D, et al. Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018. Nat Med. 2021;27(10):1761–82.
15. Gençay Can A, Can SS, Atagun Mİ, Akçaer ET. Is Iron Deficiency Anemia Associated with Cognitive Functions in Reproductive-Age Women? Ankara Med J. 2018;18(4).
16. Qin T, Yan M, Fu Z, Song Y, Lu W, Fu A, et al. Association between anemia and cognitive decline among Chinese middle-aged and elderly: evidence from the China health and retirement longitudinal study. BMC Geriatr. 2019;19(1):1–13.
17. Mohebi S, Parham M, Sharifirad G, Gharlipour Z. Social Support and Self ‑ Care Behavior Study. 2018;(January):1–6.
18. Plan/RDC. DEUXIÈME ENQUÊTE DÉMOGRAPHIQUE ET DE SANTÉ (EDS-RDC II 2013-2014). 2014;652.
19. Anonym. Plan National de Développement Sanitaire recadré pour la période 2019-2022, PNDS RDC : Vers la couverture sanitaire universelle. 2022;1–86.
20. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva, Switz World Heal Organ [Internet]. 2011;1–6. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Haemoglobin+concentrations+for+the+diagnosis+of+anaemia+and+assessment+of+severity#1
21. Garcia-casal MN, Pasricha S, Sharma AJ, Unit PG, Activity P, Service USPH, et al. Use and interpretation of hemoglobin concentrations for assessing anemia status in individuals and populations: results from a WHO technical meeting. 2020;1450(1):5–14.
22. Arfan M, Sherwani RAK. Ordinal logit and multilevel ordinal logit models: An application on wealth index MICS-survey data. Pakistan J Stat Oper Res. 2017;13(1):211–26.
23. Hasinur Rahaman Khan M, Shaw JEH. Multilevel Logistic Regression Analysis Applied to Binary Contraceptive Prevalence Data. J Data Sci. 2021;09(January):93–110.
24. Assefa E. Multilevel analysis of anemia levels among reproductive age groups of women in Ethiopia. SAGE Open Med. 2021;9:205031212098737.
25. Basics of Bayesian Statistics. 2021;521–43.
26. Schmid L. Bayesian Approaches to Investigate the Occurrence of an Indirect Task Advantage. Bachelor thesis. 2021;50.
27. Depaoli S, King R, Kramer B. Bayesian statistics and modelling. Nat Rev Methods Prim. 2021;1(1).
28. Liu H, Wasserman L. chapter 12 : Bayesian Inference. In: Statistical Machine Learning. 2014. p. 299–351.
29. Christensen R. Statistical Inference A Work in Progress [Internet]. 2019. 207 p. Available from: https://www.loc.gov/resource/dcmsiabooks.
30. O’Hagan A. Bayesian statistics: principles and benefits. 2004;31–45.
31. van de Schoot R, Depaoli S, King R, Kramer B, Märtens K, Tadesse MG, et al. Bayesian statistics and modelling. Nat Rev Methods Prim. 2021;1(1):26.
32. Kruschke JK, Liddell TM. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull Rev. 2018;25(1):178–206.
33. Amaral EFL, Willyard KAC. Introduction to Bayesian models with Stata. 2018;115. Available from: www.ernestoamaral.com/stata2018b.html%0Ahttp://www.ncbi.nlm.nih.gov/pubmed/21116976
34. Marchenko Y. New Bayesian features: Predictions, multiple chains, and more 2020 London Stata Conference. 2020;
35. Ivanova N, Gugleva V, Dobreva M, Pehlivanov I, Stefanov S, Andonova V. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech. 2016;i(tourism):13.
36. Adeyemi RA, Zewotir T, Ramroop S. Joint spatial mapping of childhood anemia and malnutrition in sub-Saharan Africa: A cross-sectional study of small-scale geographical disparities. Afr Health Sci. 2019;19(3):2692–712.
37. Gething PW, Burgert-Brucker CR. The DHS Program modeled map surfaces: understanding the utility of Spatial Interpolation for generating indicators at subnational administrative levels . DHS Spat Anal Reports No 15 [Internet]. 2017;(August). Available from: http://dhsprogram.com/pubs/pdf/SAR15/SAR15.pdf
38. Ngwira A, Kazembe LN. Bayesian random effects modelling with application to childhood anaemia in Malawi. BMC Public Health. 2015;15(1):1–11.
39. Abadi F, Botha A, Altwegg R. Revisiting the Effect of Capture Heterogeneity on Survival Estimates in Capture-Mark-Recapture Studies: Does It Matter? PLoS One. 2013;8(4):20–2.
40. Cross, Sarah J. Linker, Kay E. Leslie FM. 乳鼠心肌提取 HHS Public Access. Physiol Behav. 2016;176(1):100–106.
41. Chaix B, Merlo J, Chauvin P. Comparison of a spatial approach with the multilevel approach for investigating place effects on health: The example of healthcare utilisation in France. J Epidemiol Community Health. 2005;59(6):517–26.
42. Jeklin A. 済無No Title No Title No Title. 2016;(July):1–23.
43. Popkowski Leszczyc PTL, Bass FM. Determining the effects of observed and unobserved heterogeneity on consumer brand choice. Appl Stoch Model Data Anal. 1998;14(2–3):95–115.
44. Hamel S, Yoccoz NG, Gaillard JM. Statistical evaluation of parameters estimating autocorrelation and individual heterogeneity in longitudinal studies. Methods Ecol Evol. 2012;3(4):731–42.
45. Ansari A, Jedidi K, Dube L. Heterogeneous factor analysis models: A Bayesian approach. Psychometrika. 2002;67(1):49–77.
46. OMS. Haemoglobin_Fr. 2011;1–6.
47. Gelman A. Struggles with survey weighting and regression modeling. Stat Sci. 2007;22(2):153–64.
48. Uenal H, Mayer B. Quantitative Methods Inquires CHOOSING APPROPRIATE METHODS FOR MISSING DATA IN MEDICAL RESEARCH : A DECISION. (Md):10–22.
49. Asparouhov T, Muthen B. Multilevel Modeling of Complex Survey Data. 2006;1–9. Available from: http://www.statmodel.com/download/SurveyJSM1.pdf%5Cnpapers2://publication/uuid/93B07F67-89B3-4770-9EE6-54A0B1AFC327
50. Draper D. Bayesian multilevel analysis and MCMC. Handb Multilevel Anal. 2008;77–139.
51. Hespanhol L, Vallio CS, Costa LM, Saragiotto BT. Understanding and interpreting confidence and credible intervals around effect estimates. Brazilian J Phys Ther [Internet]. 2019;23(4):290–301. Available from: https://doi.org/10.1016/j.bjpt.2018.12.006
52. To ANI. CATEGORICAL.
53. Yoo C, Yoo Y, Um HY, Yoo JK. On hierarchical clustering in sufficient dimension reduction. Commun Stat Appl Methods. 2020;27(4):431–43.
54. Kibret KT, Chojenta C, D’Arcy E, Loxton D. Spatial distribution and determinant factors of anaemia among women of reproductive age in Ethiopia: A multilevel and spatial analysis. BMJ Open. 2019;9(4):1–14.
55. UNICEF & WHO. Progress on household drinking water, sanitation and hygiene, 2000-2017. 2019;140. Available from: https://washdata.org/sites/default/files/documents/reports/2019-07/jmp-2019-wash-households.pdf
56. Snijders, Tom A B, Bosker R. Multilevel Analysis: An Introduction to Basic and Applied Multilevel Analysis. Dep Stat Univ Oxford. 2012;
57. Getis A, Ord JK. Subcription. Polit Anal. 2010;18(4):NP-NP.
58. Jackson MC, Huang L, Xie Q, Tiwari RC. A modified version of Moran ’ I for spatial autocorrelation. Int J Health Geogr. 2010;9(33):1–10.
59. Sunuwar DR, Singh DR, Adhikari B, Shrestha S, Pradhan PMS. Factors affecting anaemia among women of reproductive age in Nepal: A multilevel and spatial analysis. BMJ Open. 2021;11(3).
60. Sohn. 肌肉作为内分泌和旁分泌器官 HHS Public Access. Physiol Behav. 2016;176(1):139–48.
61. Wouters HJCM, van der Klauw MM, de Witte T, Stauder R, Swinkels DW, Wolffenbuttel BHR, et al. Association of anemia with health-related quality of life and survival: A large population-based cohort study. Haematologica. 2019;104(3):468–76.
62. Sanford AM, Morley JE. Anemia of Old Age. J Nutr Heal Aging. 2019;23(7):602–5.
63. Steinmeyer Z, Delpierre C, Soriano G, Steinmeyer A, Ysebaert L, Balardy L, et al. Hemoglobin concentration; A pathway to frailty. BMC Geriatr. 2020;20(1):1–10.
64. Sosa-Moreno A, Reinoso-Gonzalez S, Mendez MA. Anemia in women of reproductive age in Ecuador: Data from a national survey. PLoS One. 2020;15(9 September 2020):1–15.
65. Tekgül N, Yamazhan M. The Effects of Maternal Anemia in Pregnant Women with Respect to the Newborn Weight and the Placental Weight in the Delivery Room. J Pediatr Res. 2019;6(4):342–6.
66. Klemm RD, Sommerfelt AE, Boyo A, Barba C, Kotecha P, Mona S, et al. Cross-country Comparison of Anemia Prevalence, Reach, and Use of Antenatal Care and Anemia Reduction Interventions. Usaid. 2011;(July):1–88.
67. O. K, O. A. Anaemia in Developing Countries: Burden and Prospects of Prevention and Control. Anemia. 2012;(December).
68. Tirore LL, Mulugeta A, Belachew AB, Gebrehaweria M, Sahilemichael A, Erkalo D, et al. Factors associated with anaemia among women of reproductive age in Ethiopia: Multilevel ordinal logistic regression analysis. Matern Child Nutr. 2021;17(1):1–15.
69. Qin Y, Melse-Boonstra A, Pan X, Yuan B, Dai Y, Zhao J, et al. Anemia in relation to body mass index and waist circumference among chinese women. Nutr J [Internet]. 2013;12(1):1. Available from: Nutrition Journal
70. Aigner E, Feldman A, Datz C. Obesity as an emerging risk factor for iron deficiency. Nutrients. 2014;6(9):3587–600.
71. Kumar P, Chauhan S, Patel R, Srivastava S. Anaemia among mother-father-child pairs in India: examining co-existence of triple burden of anaemia in a family. BMC Public Health. 2021;21(1):4–11.
72. NATIONS UNIES. Le Développement Durable Commence par L’Éducation. 2014;
73. UNESCO. Sustainable Development Begins With Education: How education can contribute to the proposed post-2015 goals. Educ All - Glob Monit Rep [Internet]. 2014;1–14. Available from: http://unesdoc.unesco.org/images/0023/002305/230508e.pdf
74. Ali SA, Abbasi Z, Shahid B, Moin G, Hambidge KM, Krebs NF, et al. Prevalence and determinants of anemia among women of reproductive age in Thatta Pakistan: Findings from a cross-sectional study. PLoS One [Internet]. 2020;15(9 September):1–16. Available from: http://dx.doi.org/10.1371/journal.pone.0239320
75. Sunuwar DR, Singh DR, Chaudhary NK, Pradhan PMS, Rai P, Tiwari K. Prevalence and factors associated with anemia among women of reproductive age in seven South and Southeast Asian countries: Evidence from nationally representative surveys. PLoS One [Internet]. 2020;15(8 August):1–17. Available from: http://dx.doi.org/10.1371/journal.pone.0236449
76. Nankinga O, Aguta D. Determinants of Anemia among women in Uganda: Further analysis of the Uganda demographic and health surveys. BMC Public Health. 2019;19(1):1–9.
77. Habyarimana F, Zewotir T, Ramroop S. Prevalence and risk factors associated with anemia among women of childbearing age in Rwanda. Afr J Reprod Health. 2020;24(2):141–51.
78. Allen LH. Multiple micronutrients in pregnancy and lactation: An overview. Am J Clin Nutr. 2005;81(5):1206–12.
79. Quigley MA, Carson C, Sacker A, Kelly Y. Exclusive breastfeeding duration and infant infection. Eur J Clin Nutr. 2016;70(12):1420–7.
80. Kaliwile C, Michelo C, Titcomb TJ, Moursi M, Angel MD, Reinberg C, et al. Dietary intake patterns among lactating and non-lactating women of reproductive age in rural Zambia. Nutrients. 2019;11(2).
81. Gebremedhin S, Asefa A. Association between type of contraceptive use and haemoglobin status among women of reproductive age in 24 sub-Saharan Africa countries. BMJ Sex Reprod Heal. 2019;45(1):54–60.
82. Hakizimana D, Nisingizwe MP, Logan J, Wong R. Identifying risk factors of anemia among women of reproductive age in Rwanda - A cross-sectional study using secondary data from the Rwanda demographic and health survey 2014/2015. BMC Public Health. 2019;19(1):1–11.
83. Asumah M, Akugri F, Akanlu P, Taapena A, Boateng F. Utilization of insecticides treated mosquito bed nets among pregnant women in Kassena-Nankana East municipality in the upper east region of Ghana. Public Heal Toxicol. 2021;1(2):1–11.
84. World Health Organization. Technical Expert Group meeting on intermittent preventive treatment in pregnancy (IPTp). World Health [Internet]. 2007;(July):11–3. Available from: https://apps.who.int/iris/handle/10665/43892
85. Gamble C, Ekwaru PJ, Garner P, Ter Kuil FO. Insecticide-treated nets for the prevention of malaria in pregnancy: A systematic review of randomised controlled trials. PLoS Med. 2007;4(3):506–15.
86. Esienumoh E, Mboho M, Ndiok A. Use of insecticide-treated nets by pregnant and childbearing-age women: Action research in Southern Nigeria. Afr J Midwifery Womens Health. 2016;10(1):1–13.
87. Manu G, Boamah-Kaali EA, Febir LG, Ayipah E, Owusu-Agyei S, Asante KP. Low utilization of insecticide-treated bed net among pregnant women in the middle belt of Ghana. Malar Res Treat. 2017;2017.
88. Inungu JN, Ankiba N, Minelli M, Mumford V, Bolekela D, Mukoso B, et al. Use of insecticide-treated mosquito net among pregnant women and guardians of children under five in the democratic republic of the Congo. Malar Res Treat. 2017;2017.
89. Duflo E, Greenstone M, Hanna R. Indoor air pollution, health and economic well-being. Sapiens. 2008;1(1):7–16.
90. UNICEF. Children, food and nutrition : growing well in a changing world. [Internet]. 2019. 1–256 p. Available from: https://www.unicef.org/media/60806/file/SOWC-2019.pdf
91. Production F, Cervantes-Godoy D, Dewbre J, PIN, Amegnaglo CJ, Soglo YY, et al. The future of food and agriculture: trends and challenges [Internet]. Vol. 4, The future of food and agriculture: trends and challenges. 2014. 1951–1960 p. Available from: www.fao.org/publications%0Ahttp://www.fao.org/3/a-i6583e.pdf%0Ahttp://siteresources.worldbank.org/INTARD/825826-1111044795683/20424536/Ag_ed_Africa.pdf%0Awww.fao.org/cfs%0Ahttp://www.jstor.org/stable/4356839%0Ahttps://ediss.uni-goettingen.de/bitstream/han
92. Kothari MT, Coile A, Huestis A, Pullum T, Garrett D, Engmann C. Exploring associations between water, sanitation, and anemia through 47 nationally representative demographic and health surveys. Ann N Y Acad Sci. 2019;1450(1):249–67.
93. UNICEF. Strategy for Water, Sanitation and Hygiene 2016-2030. UNICEF Website [Internet]. 2016;1–60. Available from: https://www.unicef.org/wash/files/UNICEF_Strategy_for_WASH_2016_2030.PDF
94. UN. Implementing Water, Sanitation and Hygiene (WASH). Inf Br. 2015;1–8.