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Abstract
The Intergovernmental Panel on Climate Change (IPCC) suggests limiting global warming to 1.5°C
compared to 2°C would avoid dangerous impacts of anthropogenic climate change and ensure a more
sustainable society. As the vulnerability to global warming is regionally dependent, this study assesses
the effects of 0.5°C less global warming on climate extremes in the United States. Eight climate extreme
indices are calculated based on Coupled Model Intercomparison Project - phase 5 (CMIP5), and North
American - Coordinated Regional Climate Downscaling Experiments (NA-CORDEX) with and without bias
correction. We evaluate the projected changes in temperature and precipitation extremes, and examine
their differences between the 1.5°C and 2°C warming targets. Under a warming climate, both CMIP5 and
NA-CORDEX show intensi�ed heat extremes and reduced cold extremes across the country, intensi�ed
and more heavy precipitation in large areas of the North, prolonged dry spells in some regions of the
West, South, and Midwest, and more frequent drought events in the West. Results suggest that the 0.5 °C
less global warming would avoid the intensi�cation of climate extremes by 32~46% (35~42%) for heat
extremes intensity (frequency) across the country and, by 23~41% for heavy precipitation intensity in the
North, South, and Southeast. The changes in annual heavy precipitation intensity are mainly contributed
by winter and spring. However, impacts of the limited warming on the frequency of heavy precipitation,
dry spell, and drought frequency are only evident in a few regions. Although uncertainties are found
among the climate models and emission scenarios, our results highlight the bene�ts of limiting warming
at 1.5°C in order to reduce the risks of climate extremes associated with global warming.

1. Introduction
Extreme climate events and their changes have drawn increasing attention under the background of
global climate change due to their potentially severe impacts on human societies and ecosystems
(Fischer and Knutti 2015). Observations and climate models suggest an intensi�cation of temperature
and precipitation extremes in a warming climate (Allan and Soden 2008; Alexander et al. 2006; Sillmann
et al. 2013). According to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment
Report, global temperature will continue to increase if greenhouse gas emissions continue unabated
(Collins et al. 2013). Under different Representative Concentration Pathways (RCP) scenarios, the global
surface temperature change by the end of the 21st century is likely to exceed 1.5°C above pre-industrial
levels for RCP4.5, RCP6.0, and RCP8.5, and the warming is likely to exceed 2°C for RCP6.0 and RCP8.5
(IPCC 2014). With increasing radiative forcing, more frequent high-temperature extremes and heavy
precipitation events are expected to occur in the future (Sillmann et al. 2013; Fischer and Knutti 2015).
Over the United States, signi�cant changes have been found in hot and cold temperature extremes, heavy
precipitation, and droughts based on the Coupled Model Intercomparison Project 5 (CMIP5) future
climate projections (Wuebbles et al. 2014). These changes are also documented in high-resolution
downscaled climate projections, especially for the increases in frequency and intensity of heat waves
(Zobel et al. 2017) and heavy precipitation (Prein et al. 2016).
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To avoid more severe impacts from climate change, the Paris Agreement aims to strengthen the global
response to the threat of climate change by keeping a global temperature increase well below 2°C relative
to pre-industrial levels, and also to make further efforts to limit the temperature increase to 1.5°C. An IPCC
special report, Global Warming of 1.5°C, has discussed the impacts of global warming of 1.5°C above
pre-industrial levels (IPCC 2018). Compared to 2°C warming, limiting global warming to 1.5°C would lead
to global differences in temperature extremes with high con�dence, and limit risks of increased heavy
precipitation events on a global scale and in some regions with medium con�dence (Hoegh-Guldberg et
al. 2018). Although the report has thoroughly investigated the changes in climate extremes over different
regions of the world, there are several limitations that hinder a comprehensive assessment of climate
change impacts on the national scale, such as the contiguous United States.

First, although much has been learned from the climate projections from global climate models (GCMs)
in CMIP5 (Karmalkar and Bradley 2017; Hoegh-Guldberg et al. 2018), few studies have considered using
regional climate models (RCMs) to understand the consequences of the 0.5°C less warming on regional
extreme events. The RCMs are expected to improve the quality of the climate information at regional
scales, because they can represent the local forcings (e.g. complex topography and land-surface
characteristics, Giorgi and Gutowski 2015), and better capture climate processes at �ne scales, especially
for precipitation extremes (Frei et al. 2006). For instance, Gibson et al. (2019) found that RCMs show a
better performance for certain precipitation indices (such as, simple daily precipitation intensity index)
than GCMs, which generate too frequent low-intensity precipitation, also known as the “drizzle” issue.
Therefore, it is worthwhile to also investigate the climate extremes using downscaled climate simulations
from the RCMs. Second, uncertainties in the climate models (either GCMs or RCMs) introduce biases in
subsequent impact simulations. Bias correction of climate model output is necessary to provide reliable
and robust future projections of the means of climate variables for use in impact assessment (Navarro-
Racines et al. 2020). However, current impact assessments of 0.5°C less warming have not included the
bias-corrected climate projections. Lastly, the impacts of climate change are regionally dependent
(Sillmann et al. 2013; Peng et al. 2019). For instance, the projected change in precipitation extremes
varies in different regions of the contiguous US (Singh et al. 2013). Therefore, it is necessary to conduct
the impact assessment at sub-national scales.

To overcome the limitations discussed above, this study aims to provide a comprehensive assessment of
the effects of 0.5°C less global warming on climate extremes over the contiguous US using three sets of
climate simulations, including raw GCM output, raw RCM output, and bias-corrected RCM output. The
primary question is how 0.5°C less global warming in�uences climate extremes in the US. We will
examine the robustness of climate change impacts among the three datasets, and analyze the changes
in climate extremes in different regions of the US. Results are presented in Sect. 3. Discussions and
conclusions are given in Sect. 4.

2. Data And Methodology
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In this study, we analyze eight climate extreme indices derived from three climate data sets to understand
the changes in temperature and precipitation extremes if reducing future globally averaged warming from
2.0°C to 1.5°C. Although the bias-corrected RCMs presumably would provide a better representation of
regional/local climate phenomena and their variability through downscaling and bias correction, analysis
using the three climate datasets would allow us to evaluate the possible in�uence of downscaling (from
GCM to RCM) and bias correction (from raw RCM to bias-corrected RCM) on identi�ed changes in climate
extremes. Previous assessment on the impacts of 0.5°C less warming relies on GCMs without
considering bias correction (e.g., Karmalkar and Bradley 2017). In this study, through the comparison
among the three datasets (CMIP5, raw NA-CORDEX, and bias-corrected NA-CORDEX), we will be able to
identify the consistency of the datasets or added information of downscaling or bias correction.

2.1 CMIP5 data
Figure 1 shows the information about 19 CMIP5 models, which provide monthly mean air temperature,
daily maximum and minimum temperature, and daily precipitation from the historical and future
simulations under the RCP 8.5 pathway. The 19 models are used because they are available with daily
precipitation and temperature output. Only the �rst ensemble run (e.g., r1i1p1) is used for each model.
Although some models have more than one realization available, we only use the �rst ensemble member
to keep all GCMs being equally weighted in multimodel analysis. Previous studies also use the �rst
ensemble member in climate extreme assessment (e.g., Sillmann et al. 2013; Ting et al. 2015; Peng et al.
2019). Meanwhile, only one ensemble member of GCMs participating in the CMIP5 are used as boundary
conditions of the regional models in NA-CORDEX. The historical simulations are forced by observed
atmospheric composition changes re�ecting both anthropogenic and natural sources. The RCP 8.5
scenario assumes high population growth and high energy demands without climate change policies. It
corresponds to the pathway with the highest greenhouse gas emissions, brought about by a radiative
forcing of 8.5 W/m2 in 2100 (Riahi et al. 2011). For the multimodel ensemble analysis, all the CMIP5
output are regridded to a common latitude-longitude grid (1°× 1°) using the bilinear interpolation method.

2.2 NA-CORDEX
The North American - Coordinated Regional Climate Downscaling Experiments (NA-CORDEX) provide a
set of regional climate simulations from multiple GCM-RCM combinations, which use different RCMs to
downscale the GCM simulations from the CMIP5 archive over a domain covering most of North America.
Details of the NA-CORDEX dataset can be found at Mearns et al. (2017). Table 1 shows the details of the
available 13 GCM-RCM combinations used in this study. There are six GCMs (CanESM2, EC-EARTH,
GFDL-ESM2M, HadGEM2-ES, MPI-ESM-LR, and MPI-ESM-MR) providing lateral boundary conditions for
six RCMs (CanRCM4, CRCM5-UQAM, RCA4, HIRHAM5, RCA4, and RegCM4). Previous studies show that
NA-CORDEX models generally capture the observed large-scale orographic precipitation enhancement
features across the western US (Mahoney et al. 2021) and large-scale weather types across the US (Prein
et al. 2019). Daily maximum and minimum temperature and daily precipitation are obtained from the 13
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GCM-RCM downscaled simulations for the historical period (1950–2005) and the RCP 8.5 future period
(2006–2100).

Table 1
List of 13 NA-CORDEX GCM-RCM combinations used in this study.

Model combination RCM GCM Available resolutions

1 CanRCM4 CanESM2 50 km, 25 km

2 CRCM5-UQAM CanESM2 50 km, 25 km

3 CRCM5-UQAM MPI-ESM-LR 50 km

4 CRCM5-UQAM MPI-ESM-MR 50 km, 25 km

5 HIRHAM5 EC-EARTH 50 km

6 RCA4 CanESM2 50 km

7 RCA4 EC-EARTH 50 km

8 RegCM4 GFDL-ESM2M 50 km, 25 km

9 RegCM4 HadGEM2-ES 50 km, 25 km

10 RegCM4 MPI-ESM-LR 50 km, 25 km

11 WRF GFDL-ESM2M 50 km, 25 km

12 WRF HadGEM2-ES 50 km, 25 km

13 WRF MPI-ESM-LR 50 km, 25 km

The NA-CORDEX also provides bias-corrected climate simulations for each GCM-RCM combination, which
are adjusted using a multivariate quantile-mapping method against a gridded daily observational dataset
(Cannon 2017). In this study, we include the dataset that has been bias-corrected using METDATA, which
provides daily high-resolution (1/24th degree) surface meteorological data covering the contiguous US
(Abatzoglou 2013). Although the changes in quantiles of each variable are preserved in the quantile
mapping approach, the projected changes are still affected by the bias correction. Previous studies (Li et
al. 2010) also documented the in�uence of quantile mapping bias correction on temperature and
precipitation projections, especially their extremes. The bias correction of NA-CORDEX can reduce most of
the bias in mean temperature and extreme values, and provides effective correction of frequency,
intensity, and total amount of precipitation (McGinnis and Mearns 2016). Meanwhile, uncertainty remains
in the bias-correct outputs due to the choice of observational datasets for training (McGinnis et al. 2019).
All the model output (raw and bias-corrected) have been interpolated into a common latitude-longitude
grid (0.5°× 0.5°, which is approximately at a 50-km resolution). Additionally, to evaluate the added values
of higher spatial resolutions in simulated climate extremes, the CORDEX output at a 25-km resolution is
also included in our analysis.

2.3 Climate Indices
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We use eight climate indices to quantify the intensity and frequency of temperature and precipitation
extremes (Karl et al. 1999). The de�nitions of the indices are shown in Table 2. These indices are derived
from daily temperature and precipitation from the CMIP5 and NA-CORDEX archives. For TX90p and
TN10p (percentage of days when daily maximum temperature > 90th percentile, and percentage of days
when daily minimum temperature < 10th percentile), the 10th and 90th percentile references are
calculated based on the values for the base period 1971–2000.

Table 2
De�nition of eight climate indices used in this study. Details of the �rst seven indices can be found at

Climdex (https://www.climdex.org/learn/indices/).
Climate index De�nition Unit

TXx Annual maxima of daily maximum temperature K

TNn Annual minima of daily minimum temperature K

TX90p Percentage of days when daily maximum temperature > 90th percentile %

TN10p Percentage of days when daily minimum temperature < 10th percentile %

Rx5day Annual/seasonal maximum consecutive 5-day precipitation mm

R10mm Annual/seasonal count of days when daily precipitation ≥ 10mm days

CDD Annual maximum number of consecutive days with daily precipitation < 
1mm

days

drought
frequency

Percentage of months when standardized precipitation index < -0.8 %

Additionally, to better quantify the changes in drought events, a 24-month standardized precipitation
index (SPI) is calculated based on monthly precipitation using gamma distribution �tting (Guttman
1999). The 24 months of SPI are the current month and preceding 23 months. The 24-month time scale is
chosen because it re�ects long-term precipitation patterns. The drought frequency is de�ned as the
percentage of months with SPI below − 0.8 each year. The SPI below − 0.8 indicates moderate or more
severe drought according to US Drought Monitor classi�cation. We noted that the detected changes in
drought frequency exhibit a very consistent spatial pattern but with different magnitude (not shown) if
using different SPI (e.g., 6 months versus 24 months) or different drought thresholds. Therefore, the
choice of these values does not affect the identi�ed impacts of 0.5°C less warming.

Because some indices are de�ned based on certain thresholds, such as R10mm is the annual count of
days when daily precipitation is more than 10 mm, we have tested the sensitivity of results to the
threshold used in the index. Results are consistent among the choices of different thresholds (not
shown).

2.4 Detection of 1.5°C and 2°C global warming



Page 7/32

There are different ways for identifying the 1.5°C and 2°C global warming targets, such as sub-selecting
models based on global temperature response, and sampling at the time of global temperature
increments (James et al. 2017). Considering the advantages and data availability, we use the time
sampling approach to identify the time when 1.5°C and 2°C global warmings are reached and examine
regional climate changes which occur at that date (James et al. 2017). To identify the timing of 1.5°C and
2°C warming relative to pre-industrial levels, a 21-year window is applied to the time series of average
annual global temperatures in each GCM. This approach can eliminate uncertainties associated with
climate sensitivities from the different models and reduce uncertainties related to internal variability, and
has been used in many studies (Schleussner et al. 2016; James et al. 2017; Peng et al. 2019; Tamoffo et
al. 2019). For each model, we calculate the difference in global temperature between the pre-industrial
period (1860–1880) from the historical simulation and a 21-year moving window from the RCP8.5
projection. Then we will be able to identify the two years when the warming reaches 1.5°C and 2°C,
respectively (shown in Fig. 1). The same window size (or even a smaller window size) is used in previous
studies to identify the timing when the global-mean temperature change exceeds a certain threshold
(Anderson 2012; Peng et al. 2019).

Changes in climate extremes under future warming are computed as the differences in climate indices
between the present reference period (1986–2005) and the identi�ed 1.5°C (or 2°C) warming periods; the
differences between the 2°C and 1.5°C warming periods, which are the 21-year windows surrounding the
identi�ed years shown in Fig. 1, are considered the effects of 0.5°C less global warming. Following the
methodology in Li et al. (2019) and Peng et al. (2019), the reduced intensi�cation of climate extremes will
be calculated as

where E1.5 and E2.0 are the changes in climate extremes under the 1.5°C and 2°C global warming targets,
respectively.

For each of the NA-CORDEX models, the timing of 1.5°C and 2°C global warming is assumed to be the
same as its forcing GCM. For instance, the GFDL-ESM2M-WRF climate projection will use the year 2035
as the timing of 1.5°C global warming and the year 2051 as the time of 2.0°C global warming (according
to Fig. 1).

We calculate the multimodel ensemble median of all available CMIP5 or NA-CORDEX models to quantify
the future change in climate extremes. To assess its signi�cance, the detected change is considered as
“robust” when at least 75% of the models agree on the sign of the change. Similar strategies have been
adopted in previous studies to assess the robustness of future climate change (Maloney et al. 2014; Peng
et al. 2019; Chen 2020). Additionally, the study area is divided into nine regions, according to the de�ned
climatically consistent regions of the contiguous US (Karl and Koss, 1984), for regional-scale analysis of
the projected climate extremes (Fig. 2).
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3. Results
3.1 Changes in temperature extremes

Figure 3 shows the projected changes in TXx, which depicts the intensity of hot extremes. Both CMIP5
and the raw NA-CORDEX suggest an overall increase in TXx throughout the country at the 1.5°C and 2.0°C
warming levels. The intensi�ed TXx is stronger in CMIP5 than that in the raw NA-CORDEX. Due to the
observed cooling in summer temperature over the Midwest (Mueller et al. 2015), observation-based bias
corrections lead to less warming in TXx in the bias-corrected NA-CORDEX compared to the raw NA-
CORDEX (Figure 3c,f), but the increase in TXx is even stronger in other regions. Effects of 0.5 °C less
global warming on TXx are shown in Figures 3g-i. Despite the discrepancies in the projected changes
(Figures 3a-f), all three datasets show signi�cant decreases in TXx with 0.5°C less global warming. The
averaged decrease in TXx across the country is -0.8°C, -0.8°C, -0.7°C based on the CMIP5, raw NA-
CORDEX, and bias-corrected NA-CORDEX, respectively. Therefore, the dynamic downscaling or bias
correction does not play a substantial role in the average changes in hot extreme intensity.

Figures 4a-c show the projected changes in TX90p, which describes the frequency of hot extremes. Under
the 2°C global warming, there is a signi�cant increase in TX90p, especially over the southern US.
However, the CMIP5 models suggest a stronger increase in the southeast, while the bias-corrected NA-
CORDEX suggests a stronger increase in the southwest. From the 2°C warming to 1.5°C warming, the hot
extremes become less frequent, especially over the southeastern US (Figures 4d-f). Despite the slight
regional difference, the three datasets show similar average changes in TX90p (about -3%), indicating
nearly eleven fewer days annually with daily maximum temperature above the 90th percentile if there is
0.5°C less warming. The reduced TXx and TX90p suggest that the intensity and frequency of hot
extremes would be reduced if the global mean temperature increase is limited 1.5°C. Consequently,
impacts from 0.5°C less warming include reduced extreme heat exposure and likely more overall positive
human health outcomes. This �nding is particularly important as exposure risk to extreme heat in the U.S.
is disproportionately high among groups with the most limited adaptive capacity (Guirguis et al. 2018;
Madrigano et al. 2018; Voelkel et al. 2018). Extreme heat is also a serious health risk for agricultural
workers in the U.S. (Culp and Tonelli, 2019), a group that often does not have access to proper healthcare
(Magaña and Hovey, 2003; Hoerster et al. 2011).

The changes in intensity and frequency of cold extremes (TNn and TN10p) are shown in Figure 5. Under
the 2°C global warming, TNn shows a much larger change than the change in TXx. The increase in the
minima of daily minimum temperature exceeds 3°C in most of the areas. The three datasets show a good
agreement, but NA-CORDEX presents more spatial details of the changes. Meanwhile, the frequency of
cold extremes decreases signi�cantly, with the greatest reduction over the western US. The magnitude of
the reduced frequency in cold extremes is relatively small compared with increased frequency in hot
extremes (Figures 4a-c). With 0.5°C less global warming, there are reduced changes in TNn and TN10p.
Over the contiguous US, the warming in TNn would decrease by 1.0°C in CMIP5 and 1.2°C in NA-CORDEX.
The average increase in TN10p is 1.2% based on the three datasets, indicating about four more days
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annually with daily minimum temperature below the 10th percentile if there is 0.5°C less warming. As
global warming will make cold extremes less intense and less frequent, the 0.5°C less warming will
increase the intensity and frequency of cold extreme events. Therefore, there can be increased risks of
cold-related mortality for human beings and frost damage for plants.

3.2 Changes in precipitation extremes

Figure 6 shows the projected changes in two indices of heavy precipitation (Rx5day and R10mm). The
former is the annual maximum 5-day rainfall, potentially related to extreme precipitation events in some
regions; the latter is the number of heavy precipitation days (Zhang et al. 2011). The index Rx5day
increases in most of the areas on the 2.0°C warming level, suggesting intensi�ed precipitation in a
warming climate, especially for the heavy precipitation events. The three datasets exhibit a good
agreement in increased Rx5day, but only bias-corrected NA-CORDEX shows an evident decrease in limited
areas in Texas and New Mexico. The two NA-CORDEX datasets show a greater increase in Rx5day over
the mountainous regions in the western US than CMIP5, which is also documented in previous
downscaling studies (e.g., Meyer and Jin 2017). The intensi�cation of precipitation events will generally
be reduced if there is 0.5°C less warming, with a stronger reduction over the central US. The average
Rx5day would decrease by 3% across the country. If examining the changes in actual precipitation
amount (in mm, shown in Figure S1), the heavy precipitation intensity can be reduced by up to 10 mm/5-
day, especially over the Midwest.

The projected changes in the frequency of heavy precipitation (R10mm) are shown in Figures 6g-l. Under
the 2.0°C global warming climate, both CMIP5 and NA-CORDEX present more frequent heavy precipitation
in the North but less frequent events in the South. However, NA-CORDEX shows decreased R10mm in
large areas of the southern US, and bias correction introduces a less increase (or even a decrease) in
R10mm over the northwestern US compared to the raw CORDEX. The 0.5°C less warming does not exert
consistent effects on R10mm in many regions of the country except for the Northwest and the northern
Plains, where there are 1~1.5 fewer days with heavy precipitation annually. The changes in Rx5day and
R10mm suggest that there is high con�dence that intensity and frequency of heavy precipitation will
increase under a warming climate, especially over the northern US. Heavy precipitation is linked to both
�ash and riverine �ooding, therefore reduction of heavy precipitation frequency from 0.5°C less warming,
given no change in development, �oodplain management, and policy, will decrease �ood risk. Reduction
of heavy precipitation, particularly in the Midwest and northern Plains regions, decreases top soil erosion
and nutrient runoff from agricultural �elds, thereby maintaining good soil health and surface water
quality (Morton et al. 2015).

Figure 7a-f shows the changes in dry spell. Under a warming climate, the dry spell will become
signi�cantly longer in the Northwest, along the southern border, and in the central US. The bias-corrected
NA-CORDEX projects signi�cantly extended dry spells over greater areas in the southern US compared to
the other two datasets. However, the response of dry spell length to 0.5°C less warming varies spatially,
and models show less agreement within and among the datasets in most of the regions (shown as not
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robust in Figures 7d-f). Only over the West, the dry spell is signi�cantly reduced, by approximately three
days, with 0.5°C less warming.

The projected changes in drought frequency are shown in Figures 7g-i, which exhibits similar spatial
patterns as the dry spell changes. Under the 2.0°C global warming, drought events become fewer in the
majority of the northern US due to the increased precipitation (Figure 6), and droughts become more
frequent over the West and Southwest. The three datasets agree on the general locations of the increased
drought events, but CMIP5 shows the smallest changes and the bias-corrected NA-CORDEX shows the
strongest increase. For instance, the bias-corrected NA-CORDEX indicates that drought frequency would
increase by over 20% in the Southwest, which accounts for more than two months with SPI below -0.8
every year, while the increased drought based on CMIP5 is just over one month. The difference between
CMIP5 and bias-corrected NA-CORDEX implies downscaling and bias correction can signi�cantly
in�uence the simulated precipitation variability over those regions (also shown in Figure 6), and its
mechanism needs to be further investigated in future studies. With 0.5°C less global warming, robust
reductions in drought frequency are only found in limited areas of the Southwest. The drying trend in the
western US under a warming climate is also found in previous studies (Zhao and Dai 2017; Naumann et
al. 2018). This can be associated with the wet-get-wetter and dry-get-drier pattern or the thermodynamic
contribution of global warming (Chou et al. 2013). The drying can also be associated with mean zonal
moisture advection due to seasonally dependent changes in land-sea moisture contrast over the west US
under warming (Dong et al. 2019). Therefore, less warming can potentially reduce the dry spells over
these regions. The changes in CDD and SPI suggest there are likely increased risks posed by
meteorological drought in the western and southwestern US under a warming climate, resulting in
substantial impacts on the ecosystems, agriculture, and energy infrastructure. Although the reduced
drought hazard by limiting global warming to 1.5°C is only found in very limited areas, considering the
elevated water demand induced by global temperature increases (Wang et al. 2016), the 0.5°C less
warming can still potentially reduce water stress of the natural and agricultural environment.

3.3 Regional Variability

Figure 8 summarizes the in�uence of 0.5°C less warming on all the temperature indices in the nine
climate regions. We use boxplots to demonstrate the robustness of their changes in individual regions.
The three datasets generally agree on the signi�cant changes in the four temperature indices over all the
regions, but there is an inter-model spread within each dataset. Regionally, there are greater changes in
TX90p in Ohio Valley, Southwest, South, and Southeast, and greater changes in TNn in the northern US
(including Northwest, Northern Rockies and Plains, Northeast, Upper Midwest, and Ohio Valley).

Compared to the temperature extremes, the changes in precipitation exhibit less robustness and greater
inter-model spread (Figure 9). This result is consistent with the IPCC report and other modeling studies
(Sillmann et al. 2013). Decreased Rx5day is found in Northwest, Northern Rockies and Plains, Upper
Midwest, and Ohio Valley. There is a robust decrease in Rx10mm in the Northwest, Northern Rockies, and
Plains, and a robust decline in CDD only in the West. Uncertainties in the estimated changes exist in other
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regions. For instance, CMIP5 and the raw NA-CORDEX agree on the reduced drought length in the Ohio
Valley with 0.5°C less warming, but more than half of bias-corrected NA-CORDEX models show an
opposite change. Furthermore, no robust changes are found in drought frequency over the nine regions.
As shown in Figures 7j-l, signi�cant in�uence of the 0.5°C less warming on drought frequency only
appears in some areas of California and Arizona, and does not remain in the regional averages.

To better illustrate how future intensi�cation of climate extremes can be avoided by 0.5°C less warming,
we use Equation 1 to quantify the avoided intensi�cation relative to changes under the 2.0°C global
warming (Table 3). The actual values in avoided change are shown in Table S1. If future warming is
limited from 2.0°C to 1.5°C, the projected intensi�cation in hot extremes will be reduced by 32~46% in
intensity and 35~42% in frequency across the country. The changes in the intensity of heavy precipitation
can also be signi�cantly limited by 23~41% in regions such as the North, South, and Southeast. However,
impacts on the frequency of heavy precipitation and drought duration are only evident in limited areas.
For instance, under the 2.0°C global warming, there is more frequent heavy precipitation in the Northwest
and prolonged dry spell in the West (Figure 7). The 0.5°C less warming would limit the intensi�cation of
these hazards by 28% and 35%, respectively.

3.4 Seasonal Variability

Additionally, considering the seasonality of trends in precipitation, we examine the changes in Rx5day in
different seasons (Figure 10). Under the 2.0°C warming, all the datasets suggest a robust increase in
Rx5day in most areas of the contiguous US during winter and spring except for some regions in the
Southwest and South. This is consistent with the annual changes in Rx5day (Figure 6 a-c). During
summer and fall, CMIP5 shows increased Rx5day in the eastern US and parts of the western US, and no
evident change is found in the central US. NA-CORDEX partially agrees with CMIP5. However, in biased-
corrected NA-CORDEX, there is a robust decrease in Rx5day in the South.

With the 0.5˚C less warming, all the datasets show that the increased Rx5day during winter and spring
can be greatly avoided in the northern and central US (Figure S2). This spatial pattern is consistent with
the changes at the annual scale (Figure 6d-f). This suggests the projected (or avoided) changes in annual
heavy precipitation intensity are more contributed by winter and spring. Similar seasonal contributions
are also found in R10mm (not shown). The greater increase in winter/spring extreme precipitation can be
explained by Clausius–Clapeyron relationship, in which changes in extreme precipitation are largely
determined by increases in temperature (Wehner 2013), or the thermodynamic contribution to winter
extratropical cyclones (Akinsanola et al. 2020; Yettella and Kay 2017). The seasonal contributions agree
with previous studies on seasonal changes in extreme precipitation events (Wehner 2013; Singh et al.
2013; Janssen et al. 2016; Ning et al. 2015; Akinsanola et al. 2020). As wet extremes in spring can harm
agricultural production through delayed and extended planting periods (Urban et al. 2015), the avoided
increase in wet extremes would exert positive impacts on agriculture in the northern and central US.
Concurrently, reductions in extreme precipitation has tangible effects on the frequency and intensity of
�ash �ooding and riverine �ooding in both urban and rural areas.
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4. Discussion And Conclusion
Based on three climate datasets (CMIP5, raw NA-CORDEX, and bias-corrected NA-CORDEX), this study
evaluates the changes in eight temperature and precipitation indices under a warming climate and the
potential in�uence of 0.5°C less warming in the contiguous US. Under warming of 2.0°C, heat extremes
will become more intense and more frequent across the country; heavy precipitation will be more intense
and more frequent in large areas of the northern US; and drought will get longer in some regions of the
southern US and the Midwest. With 0.5°C less warming, the risks of extreme events (such as heatwave,
�ood, and drought) can be limited in many regions of the country.

4.1 Reductions in Climate Change Impacts with Less Warming

For the changes in precipitation, it is hypothesized that precipitation intensities are expected to increase
at scaling rates about 7% per degree warming according to the Clausius-Clapeyron relationship (Trenberth
et al. 2003), and the rate of increase for heavy precipitation can even exceed 7% because the additional
latent heat released from the increased water vapor could invigorate the storms (Trenberth et al. 2003).
Meanwhile, in a warmer climate, it would take longer for evaporation to replenish atmospheric moisture,
leading to longer dry spells between storms (Shiu et al. 2012). More investigations are needed for the
mechanism of the projected regional wet and dry extremes in future work.

Consistent with previous assessment (Hoegh-Guldberg et al. 2018), our results also show that
constraining global warming to 1.5°C would reduce the risks of hot extremes, heavy precipitation, and
drought regionally. Because the extreme events would have profound impacts on human societies and
ecosystems, the avoided intensi�cation identi�ed in this study suggests the social and ecological
bene�ts of 0.5°C less warming. For instance, the Great Lakes would be one of the regions with the earliest
emergence of anthropogenically forced heat waves across the country (Lopez et al. 2018). The 0.5°C less
warming can signi�cantly reduce the intensity and frequency of heatwaves, and limit the risk they pose to
the aquatic ecosystem and urban populations (Wuebbles et al. 2010). Another important implication is
drought in the western US, where there are robust projections of increased drought frequency and severity.
The 0.5°C less warming would signi�cantly reduce dry spell and drought frequency, thus lowering the risk
of climate change to agriculture in this region. Considering the complexity of droughts, the changes in
other features of droughts (such as seasonality, duration, and severity) need further investigation in
future studies.

4.2 Comparison of GCMs and RCMs

Another aspect of this assessment is to examine the consistency of the detected changes between GCMs
(CMIP5) and RCMs (NA-CORDEX), and between the raw downscaling and bias-corrected downscaling.
The three datasets used in this study show a generally good agreement in the detected changes.
Compared to CMIP5, results from NA-CORDEX present more spatial variations due to the high spatial
resolution. The projected changes in NA-CORDEX are more intense, especially for precipitation indices in
some regions (Figures 6-7), implying possible added values of regional climate downscaling (Di Luca et
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al. 2012). Figure 11 presents an example of the avoided changes in heat extreme frequency and heavy
precipitation in a GCM (GFDL-ESM2M) and the corresponding RCM (WRF downscaling GFDL-ESM2M
with and without bias correction). Compared to the GCM that provides the lateral boundary conditions,
the spatial pattern of the detected changes remains in the RCM to some extent, but the magnitude of the
changes is ampli�ed.

We also noted considerable differences between the raw and bias-corrected RCM downscaling. The raw
projections show an evident increase in TXx in the Midwest, while the bias-corrected projections show a
slight cooling and lead to greater changes in TXx with the 0.5°C less global warming, implying the added
value of bias correction. This discrepancy can be attributed to the bias of climate models in representing
the observed cooling trend in the central US (Pan et al. 2013), which can be associated with North Atlantic
multidecadal oscillations (AMO) and local/regional land surface processes (Kumar et al. 2013; Pan et al.
2013). For the drought indices, bias corrections show greater changes in CDD and SPI-based frequency
over the western and southern US. Because the bias correction algorithm constrains future climate
projections using observations, it is necessary to consider bias corrections in the assessment of projected
climate changes (Peng et al. 2019).

We also examine the changes in temperature and precipitation extremes using the NA-CORDEX
simulations at the 25-km resolution (Figures S3-S4). Overall, the 25-km results show a very consistent
pattern and magnitude of the changes in temperature and precipitation indices compared to the NA-
CORDEX at the 50-km resolution (Figures 3-7). Meanwhile, we noted that the 25-km results show more
details of the changes in heavy precipitation frequency, such as an evident decrease in R10mm over the
mountainous regions of the western US, which does not appear in the 50-km results, implying that a
higher spatial resolution may offer new insights in simulated precipitation extremes. This resolution
effect is also con�rmed in other CORDEX studies (e.g., Mahoney et al. 2021), which suggest that model
resolution does not systematically impact the seasonal cycle of precipitation in the western US, but
greater intensity of precipitation extremes is found over complex and elevated terrain in the higher-
resolution simulation.

4.3 Limitations

Besides the disagreement between the CMIP5 and NA-CORDEX datasets, it should also be noted that
uncertainties exist among different models, downscaling methods (and their training datasets), and
within model runs (internal variability). Although all climate models project robust changes in
temperature extremes between the 1.5°C and 2°C global warming, there is low con�dence in the changes
in precipitation, and robust changes are only revealed in limited areas (such as, Northwest, Northern
Rockies, and Plains for heavy precipitation intensity and extremes in Figure 9). The inter-model spread
not only exists among the different GCMs, but also remains among the different RCMs even with the
same boundary conditions (not shown). This issue is also discussed in previous studies (Kharin et al.
2013; Hoegh-Guldberg et al. 2018), which have reported the large uncertainties in the precipitation
extremes due to natural variability and model de�ciencies in relevant physical processes (Fischer et al.
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2013; Pfahl et al. 2017). Moreover, the robustness of climate projections in this study is based on the
models’ agreement on the sign of changes. The same approach has been used in previous studies (such
as, Hoegh-Guldberg et al. 2018; Nikulin et al. 2018; Peng et al. 2019; Sillmann et al. 2017; Zhang et al.
2018). However, it should be noted that the agreement on the sign does not necessarily mean the
projected changes are statistically signi�cant in those models. This is especially true for precipitation
extremes. The changes in precipitation extremes (e.g., Rx5day and R10mm) are not statistically
signi�cant in several models, although over 75% of the models agree on the precipitation changes (not
shown). Therefore, precipitation projections need more process-based assessments in our future studies
(Thibeault and Seth 2015).

Another limitation of the study is the approach to identify the 1.5°C and 2°C global warming, which is
calculated by sampling at the time of global temperature increments. This approach assumes the
implications of global temperature increments will be the same regardless of the emission pathway
(James et al. 2017). However, using the same approach, previous studies found that the identi�ed 0.5°C
less warming in RCP8.5 and RCP4.5 may have different effects on regional climate extremes (Peng et al.
2019) and moisture �uxes (Tamoffo et al. 2019). Due to the limited number of the RCP4.5 projections in
NA-CORDEX (only �ve GCM-RCM combinations are available), it is di�cult to provide a fair comparison in
multimodel ensembles between the two emission scenarios. However, we note evident differences even
by comparing individual models. Figure S5 presents an example of the avoided changes in heavy
precipitation events between RCP4.5 and RCP8.5 in a GCM (CanESM2) and a corresponding RCM
(CanRCM4). The timing of the 1.5°C and 2°C global warming in RCP4.5 is 2017 and 2031, respectively,
while the years in RCP8.5 are 2016 and 2026. In this case, the avoided heavy precipitation is greater than
that in the RCP8.5 scenario. Assuming there is a similar “warming” background within the identi�ed time
window between RCP8.5 and RCP4.5, the different responses in climate extremes can also be a result of
other factors, such as aerosols and land use (Riahi et al. 2011; Thomson et al. 2011). Table S2 compares
the avoided changes based on the RCP4.5 and RCP8.5 projections in CMIP5, which show similar changes
in the temperature indices. The RCP8.5 has a slightly greater avoided change in Rx5day, and both
scenarios do not show robust changes in other precipitation extreme indices. Although this discrepancy
may provide further insight into climate change mitigation in terms of how climate extremes respond to
greenhouse gas reduction, more complete downscaling projections are needed for a robust assessment
of the regional difference between different emission scenarios in our future work.

4.4 Summary

This study investigates projected changes in temperature and precipitation extremes over the contiguous
US using both GCM and RCM projections. Future warming coincides with more frequent heat extremes
and increased intensity of hot days, more severe heavy precipitation, longer dry spells, and more frequent
drought events. Based on the difference between the 2.0°C and 1.5°C warming targets in three climate
datasets, we highlight the regions that can signi�cantly bene�t from the 0.5°C less global warming: 1)
reduced severity and frequency in heat extremes across the contiguous US; 2) reduced intensity of heavy
precipitation in the Northwest, Northern Rockies and Plains, Upper Midwest, and Ohio Valley; 3) reduced
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frequency of heavy precipitation in the Northwest, Northern Rockies and Plains; and 4) reduced dry spell
and drought frequency in some regions of the West. Although uncertainties still exist among climate
models and emission scenarios, our results suggest that a low warming target is necessary for reducing
the risk of certain extreme hazards across the country.
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Tables
Table 1. List of 13 NA-CORDEX GCM-RCM combinations used in this study.
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Model combination RCM GCM Available resolutions

1 CanRCM4 CanESM2 50 km, 25 km

2 CRCM5-UQAM CanESM2 50 km, 25 km

3 CRCM5-UQAM MPI-ESM-LR 50 km

4 CRCM5-UQAM MPI-ESM-MR 50 km, 25 km

5 HIRHAM5 EC-EARTH 50 km

6 RCA4 CanESM2 50 km

7 RCA4 EC-EARTH 50 km

8 RegCM4 GFDL-ESM2M 50 km, 25 km

9 RegCM4 HadGEM2-ES 50 km, 25 km

10 RegCM4 MPI-ESM-LR 50 km, 25 km

11 WRF GFDL-ESM2M 50 km, 25 km

12 WRF HadGEM2-ES 50 km, 25 km

13 WRF MPI-ESM-LR 50 km, 25 km

Table 2. De�nition of eight climate indices used in this study. Details of the �rst seven indices can be
found at Climdex (https://www.climdex.org/learn/indices/).

Climate index De�nition Unit

TXx Annual maxima of daily maximum temperature K

TNn Annual minima of daily minimum temperature K

TX90p Percentage of days when daily maximum temperature > 90th percentile %

TN10p Percentage of days when daily minimum temperature < 10th percentile %

Rx5day Annual/seasonal maximum consecutive 5-day precipitation mm

R10mm Annual/seasonal count of days when daily precipitation ≥ 10mm days

CDD Annual maximum number of consecutive days with daily precipitation <
1mm

days

drought
frequency

Percentage of months when standardized precipitation index < -0.8 %

Table 3. Avoided intensi�cation (in %) of climate extremes in nine climate regions of the US. The values

https://www.climdex.org/learn/indices/
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are ensemble medians of all CMIP5 and NA-CORDEX models. Bold indicates that more than 75% of the
models agree on the sign of the change. Shading of the table cell indicates the magnitude of the change.

  1.

NW

2.

NP

3.

NE

4.

MD

5.

OV

6.

WS

7.

SW

8.

ST

9.

SE

TXx -36.0 -36.7 -39.2 -41.0 -46.2 -33.8 -31.8 -39.5 -43.7

TX90p -35.1 -36.7 -41.6 -40.3 -40.0 -35.3 -36.2 -38.9 -39.7

TNn -42.5 -42.5 -42.0 -40.5 -44.5 -32.3 -35.1 -40.4 -38.4

TN10p -31.0 -33.6 -35.1 -35.2 -37.1 -31.0 -32.1 -37.2 -39.0

Rx5day -40.8 -41.3 -23.3 -36.6 -37.7 -22.6 -25.6 -37.3 -36.6

R10mm -28.3 -37.6 -5.5 -27.8 -17.3 -61.1 -30.0 -26.3 -4.8

CDD -25.0 -49.2 -31.9 -24.3 -29.8 -34.7 -63.7 -19.4 -22.2

drought frequency -24.9 -37.9 -18.5 -18.9 -6.3 -26.2 -40.3 -16.8 -6.2

Figures

Figure 1

Nineteen CMIP5 GCMs used in the study and the identi�ed timing of 1.5°C and 2.0°C warming under the
RCP8.5 scenario.
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Figure 2

Nine climatically consistent regions within the contiguous US: Northwest (NW), Northern Rockies and
Plains (NP), Northeast (NE), Upper Midwest (MD), Ohio Valley (OV), West (WS), Southwest (SW), South
(ST), Southeast (SE). Note: The designations employed and the presentation of the material on this map
do not imply the expression of any opinion whatsoever on the part of Research Square concerning the
legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries. This map has been provided by the authors.
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Figure 3

Projected changes in TXx (in K) under the 1.5°C warming (a-c) and the 2.0°C (d-f), and the impacts of
0.5°C less global warming (g-i) based on multimodel ensemble median of the CMIP5 models (left), the
NA-CORDEX raw output (middle), and the NA-CORDEX bias-corrected output (right). Stippling indicates
that more than 75% of the models agree on the sign of the change. Note: The designations employed and
the presentation of the material on this map do not imply the expression of any opinion whatsoever on
the part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.
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Figure 4

Projected changes in TX90p (in %) under the 2.0°C (a-c), and the impacts of 0.5°C less global warming (d-
f) based on multimodel ensemble median of the CMIP5 models (left), the NA-CORDEX raw output
(middle), and the NA-CORDEX bias-corrected output (right). Stippling indicates that more than 75% of the
models agree on the sign of the change. Note: The designations employed and the presentation of the
material on this map do not imply the expression of any opinion whatsoever on the part of Research
Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning
the delimitation of its frontiers or boundaries. This map has been provided by the authors.
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Figure 5

Same as Figure 3 but for the cold extreme indices: TNn (in K, top) and TN10p (in %, bottom). Note: The
designations employed and the presentation of the material on this map do not imply the expression of
any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This
map has been provided by the authors.
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Figure 6

Same as Figure 3 but for the heavy precipitation extremes: Rx5day (in %, top) and R10mm (in days,
bottom). Rx5day is shown as the percent change relative to the present reference period (1986-2005).
Note: The designations employed and the presentation of the material on this map do not imply the
expression of any opinion whatsoever on the part of Research Square concerning the legal status of any
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries. This map has been provided by the authors.
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Figure 7

Same as Figure 3 but for the drought extremes: CDD (in days top) and SPI-based drought frequency (in %,
bottom). Note: The designations employed and the presentation of the material on this map do not imply
the expression of any opinion whatsoever on the part of Research Square concerning the legal status of
any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries. This map has been provided by the authors.
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Figure 8

Boxplots of the impacts of 0.5°C less global warming on temperature extremes in nine sub-regions of the
US based on three climate datasets: CMIP5 (black), raw NA-CORDEX (red), and bias-corrected NA-
CORDEX (blue). Boxes indicate the interquartile model spread (25th and 75th quantiles) with the
horizontal line indicating the ensemble median and the whiskers showing the maximum and minimum of
the ensemble.

Figure 9

Same as Figure 8 but precipitation extremes.
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Figure 10

Projected seasonal changes in Rx5day (in %) under the 2.0°C warming based on multimodel ensemble
median of the CMIP5 models (a-d), the NA-CORDEX raw output (e-h), and the NA-CORDEX bias-corrected
output (i-l). Note: The designations employed and the presentation of the material on this map do not
imply the expression of any opinion whatsoever on the part of Research Square concerning the legal
status of any country, territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries. This map has been provided by the authors.
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Figure 11

Impacts of 0.5°C less global warming on TX90p (in %, a-c) and Rx5day (in %, d-f) based on GFDL-ESM2M
(left) in CMIP5, the corresponding WRF downscaling raw (middle) and bias-corrected output (right) in NA-
CORDEX. Note: The designations employed and the presentation of the material on this map do not imply
the expression of any opinion whatsoever on the part of Research Square concerning the legal status of
any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries. This map has been provided by the authors.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SupplementaryInformation.pdf

https://assets.researchsquare.com/files/rs-249323/v1/9208a6f68b8a639b666a969c.pdf

