We hypothesised that improvements in objective outcome measures combining strength, agility and balance would mirror patients’ own perceptions of their recovery after open lower limb fractures. There is a paucity of published data to establish reliable core clinical outcome measures in this group of patients (5, 24). Open lower limb fractures can be life-changing injuries. Even when complication rates are low, a recent randomised multi-centre study has shown significant levels of patient reported disability throughout the first 12 months post-injury (3, 25, 26). In this study of 427 patients who completed the trial, DRI scores improved from the mid-sixties at 3 months to mid-forties at 12 months. By comparison, the DRI score of patients with closed distal tibial fractures were distinctly better with average scores in the low 20 s, around double the MCID for this measure (4).
Qualitative research has thrown light on patients’ experiences and perceptions of the impact of open lower limb fractures, which extend far beyond the obvious physical consequences (3, 13, 25). Nevertheless, functional recovery is the key determinant in patients being able to return to work and provide for themselves and their family or resume independent living for older patients. A painless limb free of contractures may lack the strength, proprioception and endurance necessary to undertake everyday activities. This study has demonstrated a clear relationship between combined measures of strength, agility and balance with patient reported measures of recovery and health-related quality of life collected in parallel in the 12 months after open lower limb fractures. Focussing rehabilitation towards improvement in these combined measures may help hasten recovery.
Isolated parameter objective functional outcomes measures did not show any consistent improvement with the passage of time. In a previous observational study, ankle dorsiflexion at the time of cast removal in post-ankle fracture patients has been associated with better recovery quantified by Olerud and Molander ankle score, the Lower Extremity Functional Scale and also the Global Perceived Effect score (GPE) six weeks and six months later (15). While the lunge weight-bearing method to measure dorsiflexion may be very reliable (14), it cannot be used effectively in those unable to fully weight-bear. In this study, patients with articular fractures (AO 43B/C and AO 44 n = 22) were advised to be non-weight-bearing for 6 weeks and then incrementally increase to be fully weight-bearing by 12 weeks.
Gait speed is a recognised form of assessment in patients following stroke and hip fracture, with faster gait speeds associated with greater degrees of independence and mobility (27). Speeds greater than 1.2 m/s are considered normal, 0.8–1.2 m/s community ambulators, 0.4–0.8 m/s limited community ambulators and walking speeds lower than this leading to the patient essentially being housebound. In Fig. 2a it can be seen that by 9 months, approximately 75% of the patients completing the assessment were comfortable walking at a pace of 1 m/s or faster.
Comfortable and maximum gait speeds have been assessed in healthy individuals and stratified according to gender, height and age (7). Gender had little demonstrable effect, however gait speed did correlate with muscle strength, in particular hip abductors for comfortable gait speed and knee extensors for maximum gait speed. Comfortable gait speed declined slowly with increasing age from 20th to 70th decades (mean 1.4 m/s – 1.3 m/s) and maximum gait speed more sharply (mean 2.5 m/s – 1.9 m/s). In this study population, Fig. 2(b) shows that by 6 months approximately 75% of patients completing the assessment achieved a fast gait speed of 1 m/s or greater. By 12 months post injury, over half the patients could sustain a speed of 1.5 m/s. At 12 months, only 9 patients had TUAG times greater than 10 seconds, indicating normal mobility as determined by this test, although none exceeded 18 seconds.
In terms of patient reported outcome, the use of the GPE scale in the manner described yielded responses specific to the injury itself, inviting comparison of themselves at their worst immediately after injury versus how they were at their best beforehand. The responses elicited using the DRI gave medians comparable to those reported previously (approximately 60 at 3 months recovering to 40 at 12 months) but with a wide range of responses. The lack of consistent improvement with time for individual patients suggests that this score may be better restricted to studies of populations at defined and well separated timepoints, rather than being used as a “monitoring” score with serial measurements taken only a few months apart.
This study has limitations. Not all patients sustaining lower limb fractures will have been identified for potential enrolment. A very small proportion of those approached declined consent to attend the OPRC. Of those who did, few were able to attend every single appointment and so the data is inevitably incomplete. Nevertheless the results obtained are consistent across the population studied. No comparison has been made with recovery in patients with comparable closed fracture types. Available resources did not permit this, although the log-term goal of the project is to extend this approach to closed fracture patients. While such a comparison would have been of interest, published data and clinical experience would strongly suggest that these injuries are distinctly different in their outcomes, as well as surgical strategy {Costa, 2018 #52; Costa, 2017 #121}.
Determining outcomes in healthcare has moved beyond measuring the frequency of technical problems or achievements. Patients with deep infection or non-union after open fractures will require further management and so those complications may be better regarded not as outcomes, but events along the road to recovery. PROMS, even if derived from the specific patient population under review, will introduce an element of subjectivity. However patients’ perception of their recovery is essential in completing the picture. Functional recovery is vital as this will determine independence, resumption of caring for their family and return to work, all of which are so important in sustaining an individual’s self-worth. Identifying objective functional outcome measures which mirror patients’ perception of recovery has great value in helping to focus rehabilitation and forming part of a set of core clinical outcomes for future research.
The ideal outcome measures for these severe (and indeed many less severe) injuries are yet to be determined. In a recent workshop involving patients, their family members, researchers and clinicians, walking ability/mobility was identified as a key outcome after open lower limb fractures (28). The objective measures described here were originally developed with patients whose mobility was impaired in mind. Further research is needed to refine these measures or develop new ones which reflect recovering mobility more precisely. In this way, a future core outcomes set will enable surgical strategies within and between studies to be meaningfully compared.