Cells and plasmids
HEK 293T and LLC cells (ATCC) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Thermo Fisher Scientific) containing 10% FBS (Gibco, USA) and 1% penicillin-streptomycin (Invitrogen). Stbl3 and DH5α competent cells were used for plasmid transformation.
The pCDH-CMV-MCS-EF1-GFP-Puro vector (cat. no. CD511B-1; System Biosciences, Mountain View, CA, US), psPAX2 (12,260; Addgene), and pMD2.G (12259; Addgene) were used as the expression plasmid and the auxiliary plasmids for the lentivirus packaging system, respectively. These three plasmids were purchased from Shanghai Genery Biotechnology Company. The pCDH-CMV-MCS-Luc2-P2A-MEM-GFP-Puro plasmid was obtained by modifying pCDH-CMV-MCS-EF1-MEM-GFP-Puro in our laboratory, and was used to construct a stable lung cancer cell line expressing luciferase.
The nucleotide sequence encoding the MSLN protein was synthesized by BGI (Beijing, China). pCDH-MSLN-puro was obtained by cloning the MSLN sequence into the pCDH-CMV-MCS-Luc2-P2A-MEM-GFP-Puro vector. The target plasmid PCDH-MSLN-puro and two helper plasmids (psPAX2 and pMD2.G) were mixed at a 4:3:1 ratio. After 48 h, the lentivirus was collected and concentrated using polyethylene glycol 8000 (PEG 8000). Next, LLC cells were transfected with LV-MSLN-puro and cell lines were selected with puromycin to generate LLC cell lines stably expressing MSLN.
Vector Construction And Preparation Of Cart Cells
The anti-MSLN scFv nucleotide sequence was derived from patent WO2015/090230, as published by Novartis. The gene sequence was synthesized by BGB (Beijing, China), and then a CD8α signal peptide was connected to the front end of anti-MSLN scFv. This connects the MYC tag, CD8 hinge, and transmembrane domains, a 4-1BB transactivation domain, and a CD3 zeta signaling domain. The MSLN-CAR was then obtained. The MSLN-CAR was inserted into the polyclonal site of pCDH-CMV-MCS-EF1-copGFP to obtain the corresponding lentiviral expression plasmid, pELNS-MSLN. Next, pELNS-MSLN was co-transfected into 293T cells with psPAX2 and pMD2.G at a 4:3:1 ratio. The lentivirus in the supernatant was collected 48 h later and then obtained by concentration with PEG 8000.
CD3+ T cells were collected by negative selection of peripheral blood PBMCs from healthy volunteers using a RosetteSep Kit (Stem Cell Technologies). All samples were collected according to the protocols approved by the review board of the Fifth Affiliated Hospital of Sun Yat-sen University, with written informed consent obtained from each donor. The sorted T cells were then cultured in X-VIVO-15 (Lonza) medium containing 10% fetal bovine serum and 100 U/mL recombinant human IL-2. Following stimulating with the T cell activator CD3/CD28 for 48 h, the above concentrated CAR lentivirus was added to infect T cells at a multiplicity of infection (MOI) of 10. After infection, the CAR-T cells were cultured in fresh medium (without FBS), and the supernatant was collected for the preparation of exosomes.
Cytotoxicity Assay
The cytotoxicity of CAR-T cells and CAR-Exos toward target cells (MSLN-LLC) was assessed using the Lactate Dehydrogenase Assay (LDH assay) (Abcam, UK). Briefly, 1×104 MSLN-LLC cells were seeded per well in 96-well plates. Following overnight incubation, CAR-T cells were incubated with MSLN-LLC cells at different E:T ratios. For CAR-Exos, different concentrations of exosomes were mixed with MSLN-LLC cells. After 24 h co-culture, the cell supernatant was measured for LDH reactivity by enzymatic reaction and measured with a microplate reader. Cell death was measured as a percentage of total LDH release, according to the manufacturer’s protocol.
Live/dead Assay With Calcein-am/pi Staining
The killing efficacy of PTX@CAR-Exo against MSLN-LLC cells was assessed using the Calcein-AM/PI Double Stain Kit (Sigma-Aldrich), which stains live and dead cells. Briefly, 1×105 MSLN-LLC cells per well were seeded in 12-well plates. Then, 100 µL of PBS, 100 µg of T-Exos, 100 of µg CAR-Exos, 100 µL of PBS containing 10 µg of PTX, 100 µg of T-Exos containing 10 µg of PTX, and 100 µg of CAR-Exos containing 10 µg of PTX were added to the Petri dishes. After incubation for 24 h, the live and dead cells stained with Calcein-AM/PI were observed under an inverted fluorescence microscope (Olympus). Then, quantification was performed using ImageJ software.
Exosome Characteristics
The morphology and size of the CAR-Exo and PTX@CAR-Exo were examined by transmission electron microscopy (TEM, Tecnai G2 Sphera FEI 200 kV). Briefly, 10 µL of exosome was loaded onto a 300-mesh copper mesh, followed by negative staining using 2% aqueous uranyl acetate for 2 min at room temperature; excess solution was removed by suctioning with filter paper. After air-drying, the samples were imaged using transmission electron microscopy.
The size distribution and concentration of exosomes were analyzed by tracking Brownian motion using a NanoSight NS300 system (NanoSight NS300, Malvern, UK). The exosomes were diluted with PBS and added to the NanoSight sample chamber. The samples were continuously measured through the top plate of the flow cell at a steady speed, and the Brownian motion of nanoparticles was recorded three times (120 s each). The measured data were analyzed with the use of NTA 3.0 analysis software (Malvern).
The surface zeta potential of exosomes was measured using dynamic light scattering (DLS, ZEN 3600 Zetasizer, Malvern). The experiment was carried out according to the instructions in the manual.
Flow Cytometry Analysis Of Exosomes
Exosomes were conjugated to aldehyde/sulfate latex beads with a diameter of 4 µm (catalog no. A37304, Invitrogen) in PBS overnight at 4°C. The mixture was subjected to immunostaining and flow cytometric analysis using a standard flow cytometry protocol. The exosome-latex beads or cells were incubated with biotinylated protein L (Piscataway, NJ) to detect surface CAR expression. After incubation, staining was performed for 30 min using phycoerymoglobin (PE)-conjugated avidin (Biolegend, San Diego, CA, USA) and the excess dyes were then washed. The kit (eBioscience) was used for fixation/permeabilization before intracellular staining for 45 min. The assay was carried out using an Attune NxT flow cytometer (Thermo Fisher Scientific) and data were analyzed using FlowJo software (version 10.8). The corresponding IgG antibody was used as an isotype control.
Western Blot Analysis
Cells and exosomes were treated with lysis buffer (1% Triton X-100, 0.1% SDS, 0.1 M Tris HCl, pH 7, 1 mM PMSF, Sigma-Aldrich). Samples were then subjected to protein quantification using the BCA Protein Assay Kit (Thermo Fisher Scientific). Protein samples (20 µg/well) were loaded onto 10% SDS-PAGE gels and separated. Following transfer, the membranes were blocked with 5% skim milk or BSA for 1 h and washed twice with PBST, incubated overnight at 4°C with the corresponding primary antibody, and then washed three times with PBST. The membranes were incubated with the corresponding horseradish peroxidase-coupled secondary antibodies (Cell Signaling Technology) for 2 h at room temperature. The immunoreactive bands were detected on a Mini-Medical/90 Developer (Image Works) using ECL chemiluminescence substrate (GE Healthcare). The following primary antibodies were applied: Calnexin (ab133615, Abcam), CD9 (ab263019, Abcam), CD63 (ab134045, Abcam), Hsp70 (ab181606, Abcam), TSG101 (ab125011, Abcam), GAPDH (390035, ZENBIO), Granzyme B (ab255598, Abcam), and Perforin (ab256453, Abcam).
Laser Confocal Microscopy
To investigate the targeting of CAR-Exo to LLC cells overexpressing mesothelial (MSLN-LLC), CAR-Exo and MSLN-LLC were incubated together. Briefly, exosomes were stained with DiI (C1991S, Beyotime, Shanghai, China) at 37°C for 25 min, purified by ultracentrifugation to remove free dye, and the labeled exosome weight was suspended in 100 µL of PBS after washing twice. Then, the exosomes were incubated with MSLN-LLC in a confocal dish for 4 h at 37°C, washed three times with PBS, and the cells were fixed with 4% paraformaldehyde for 20 min. DAPI (C1002, Beyotime, Shanghai, China) was added to stain the nuclei of MSLN-LLC cells for 15 min. The cells were imaged under a confocal microscope (Zeiss LSM 880) to observe the fluorochromes with the following excitation (Ex) and emission (Em) wavelengths (GFP [Ex: 488 nm; Em: 530 nm], DiI [Ex: 549 nm; Em: 565 nm], DAPI [Ex: 364 nm; Em: 454 nm]).
Preparation Of Ptx@car-exos
PTX (MB1178, Dalian Meilun Biotech Co.) was loaded into the CAR-Exo using an electroporator (Scientz-2C, Ningbo SCIENTZ Biotech Co., Ltd., Ningbo, China). Exosomes and PTX were mixed into 200 µL of PBS buffer containing 25 mM trehalose, then added to a chilled 4-mm electroporation cuvette and electroporated at 125 µF, 350 V, and 400 Ω. The cells were then incubated at 37°C for 30 min to recover the exosome membranes. Next, paclitaxel-loaded exosomes were resuspended in PBS and dissociated at 120,000 xg for 60 min at 4°C to remove excess drug. Finally, the intensity of the specific paclitaxel absorption peak at 227 nm was measured by ultraviolet spectrophotometer, and the mass of paclitaxel loaded in exosomes was evaluated. The loading efficiency of paclitaxel was calculated using the following the equation: WPTX/WExosomes × 100%.
Biocompatibility of exosomes in vivo
The animal experiments were approved and carried out in accordance with protocols approved by the Animal Care and Use Occasion of the Fifth Affiliated Hospital of Sun Yat-sen University. Healthy, C57BL/6J mice (5–6 weeks old) were obtained from the Guangdong Medical Experimental Animal Center.
The C57BL/6J mice were divided into four groups based on inhaled agents, which were PBS, 293-Exo, CAR-Exo, and PTX@CAR-Exo. All of the agents were administered at the same dose of 20 mg/kg using an aerosol inhalation instrument (YLS-8B, Yiyan Technology) on the 1st, 5th, and 10th days. The mice were sacrificed on day 14 post inhalation and major organs (lung, liver, spleen, heart, and kidney) were fixed in 4% paraformaldehyde buffer solution for H&E staining and histological analysis.
Biodistribution Of Car-exos
The CAR-Exos were incubated with the DiR (M5122, Abmole, USA) at 37°C for 30 min, ultracentrifuged at 100,000 ×g for 60 min to remove free DiR, and DiR fluorescent dye-labeled exosomes were obtained. The exosomes were diluted in PBS and administered by aerosol through a mouse nebulizer. The mice were treated with different concentrations of CAR-Exos (5 mg/kg, 10 mg/kg, 15 mg/kg, 20 mg/kg, and 25 mg/kg) by aerosol inhalation, and then sacrificed 12 h after administration. To test the biodistribution of CAR-Exos at different time points, C57BL/6J mice were nebulized with CAR-Exos (10 mg/kg) and then sacrificed at each time point (1 h, 6 h, 12 h, 24 h, and 48 h) post administration. The Xenogen IVIS Spectrum system (Caliper Life Sciences, Hopkinton, MA) was used to detect the biodistribution of CAR-Exos in different organs (heart, lungs, liver, spleen, stomach, intestine, and kidneys) of the mice.
Orthotopic Lung Cancer Model With Nebulized Exosomes
For the orthotopic lung cancer model, MSLN-LLC cells suspended in Matrigel were injected into the left lungs of mice. On the 7th day post injection, the mice were randomly divided into four groups: PBS, 293-Exo, CAR-Exo, and PTX@CAR-Exo. The mice inhaled different aerosol formulations through the mouse atomization instrument for two weeks. Lung tumor growth was measured on days 14 and 21. Mice were anesthetized with isoflurane and injected intraperitoneally with 100 mg/kg of luciferin solution (Abmole, USA). After 10 min, the Xenogen IVIS Spectrum system (Caliper Life Sciences, Hopkinton, MA) was used to detect the bioluminescent intensity of mouse lung tumors to determine tumor growth.
Analysis Of Antitumor Effect
Flow cytometry and ELISA assay analysis were performed to further verify the antitumor effects of the inhalation therapy. On day 14 of treatment, mice were sacrificed and tumors were collected.
To analyze the tumor immune cells, lung tissue was cut into pieces and digested with type IV collagenase (1 mg/ml, Sigma-Aldrich) at 37°C for 60 min. The cell suspension was then filtered through a 100-mesh pore-size nylon mesh to remove insufficiently digested tissue. Cells were stained with the corresponding fluorescent antibodies for flow cytometric analysis. The antibodies used included: anti-45-PE/Cyanine7 (Biolegend, Clone: 30-F11), anti-CD3-FITC (Biolegend, Clone: 17A2), anti-CD4-APC (Biolegend, Clone: GK1.5), anti-CD8a-Brilliant Violet 421 (Biolegend, Clone: 53 − 6.7), anti-Granzyme B-PE (Biolegend, Clone: M1/70). Then, CD4+ T cells (CD45+CD3+CD4+), CD8 + T cells (CD45+CD3+CD8+), and CD8+GzmB+ T cells (CD45+CD3+CD8+GzmB+). The corresponding IgG antibody was used as an isotype control.
To analyze tumor cytokines, tissue was weighed according to the test indicators and instructions, ground in PBS (containing 1% PMSF), and then sonicated. After centrifugation at 12,000 rpm for 10 min, the supernatant was removed and analyzed via ELISA. To analyze the cytokines in peripheral blood, eyeball blood samples were collected in centrifuge tubes and centrifuged at 1000 ×g for 10 min after 30 min of agglutination. Then, the serum layers were removed and used for ELISA analysis. The below kits were used for cytokine evaluation: Mouse IL-6 ELISA Kit (EK206/3–96, Multi Sciences), Mouse IL-2 ELISA Kit (EK202/2–96, Multi Sciences), Mouse IFN-γ ELISA Kit (EK280/3–96, Multi Sciences), and Mouse TNF-α ELISA Kit (EK282/4–96, Multi Sciences).
Statistical analysis
The quantitative data from one representative experiment are expressed as mean ± standard deviation (SD). At least three independent experiments were carried out. Student’s paired t-test was used for two group comparisons. OriginPro 2022 was used to fit curves. Statistical analysis was performed using GraphPad Prism 8.0, and the statistical significance was set as (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant).