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Abstract
Backgrounds: Therapeutic hypercapnia was shown to have a potential neuroprotective role in our
previous studies in a rat model of ischemia followed by hypoxia; however, it is unknown how hypercapnia
affects blood-brain barrier (BBB) function under hypoxic conditions in cerebral ischemia. We aimed to
observe the BBB permeability changes in response to cerebral ischemia followed by acute hypoxia or
hypercapnic hypoxia using in vivo and in vitro models.

Methods: Adult rats underwent unilateral common carotid artery ligation, at 60 min of ligation, they were
exposed to systemic hypoxia with ventilation of 15% oxygen (O2) combined with 8% carbon dioxide (CO2)
for 180 min. Cerebral blood flow, BBB integrity, infarct volume and behavior were assessed in this study.
In vitro, rat brain microvascular endothelial cells (BMECs) were isolated and cultured under O2 (1% or
21%) with or without 15% CO2 for 6 h. Cell viability and transendothelial electrical resistance (TEER) were
measured. The ZO-1 and occludin protein levels were explored in BMECs by Western blotting.

Results: Arterial blood O2 (PaO2) tensions averaged 56.1 mmHg during simple hypoxia, and arterial blood
CO2 tensions (PaCO2) were maintained at normal values or 60–80 mmHg. Hypercapnia treatment
significantly reduced brain infarct volume and pathophysiological changes in hypoxic ischemia rats.
Furthermore, in the in vitro experiment, hypercapnia significantly improved the growth condition of
BMECs, reduced endothelial cell permeability and attenuated the loss of ZO-1 and occludin protein in
BMECs induced by hypoxia.

Conclusions: Hypercapnia exerts beneficial effects on the BBB permeability in the rat model of hypoxic-
ischemic injury and recovers the neurologic status especially within one week, possibly by preventing the
loss of tight junction proteins.

Backgrounds
Acute ischemic stroke is a major cause of mortality and long-term neurologic morbidity in the adult
population.[1] Hypoxia is one of the most important mechanisms in the development of stroke
pathological processes.[2, 3] Cerebrovascular endothelial cells play a central role in the formation of the
blood–brain barrier (BBB) which has the function to limit the transport of potentially harmful substances
from blood to brain and provides a steady state environment for proper neural function. Hypoxia and
ischemia may affect the integrity of the BBB.[4] Several lines of evidence have shown that hypoxic-
ischemic (HI) insults trigger a cascade of biochemical, cellular, and pathological events that result in cell
injury and death in the brain.[5–7] Hypoxic factors were reported to be important pathogenic factors in
the alteration of tight junction (TJ) proteins and induction of vascular leakage in the brain.[8] The
disruption of BBB can be major part of the pathology of cerebral ischemia through altered TJ
permeability.[9, 10] Exposure of brain-derived endothelial cells to hypoxia was reported to result in the
depressed localization of occludin and ZO-1 to the plasma membrane, although their protein levels were
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barely affected.[11, 12] However, some studies have demonstrated that TJ proteins of cerebral
microvessels are down-regulated in response to hypoxia/aglycemia.[13, 14]

Hypercapnia has been shown to have a significant therapeutic effect on brain injury,[15–17] and arterial
blood CO2 tension (PaCO2) at 60–100 mmHg had a protective impact on the brain during ischemic injury.
[18–20] In our previous study, hypercapnia exerted beneficial effects under mild to moderate hypoxemia
and augmented the detrimental effects on the brain during severe hypoxemia in a rat model of hypoxia-
ischemia.[7] However, BBB dysfunction did not further deteriorate after combined exposure to moderate
hypoxia and hypercapnia in this animal model. Moreover, little is known about how the hypercapnia
affects molecular and functional changes, such as hypoxia-induced disruption of the TJs, in BBB
dysfunction.

In the present study, the effect of moderate hypercapnia on ischemic outcomes was determined in a rat
model of transient cerebral hypoxic ischemia by assessing the following parameters: infarct volumes,
BBB permeability and neurological function. Furthermore, a primary culture model for brain microvascular
endothelial cells (BMECs) was established to explore the effect of hypercapnia on permeability and TJ
protein expression after hypoxic exposure for 6 h. This study provided experimental evidence to help
elucidate the effects of hypercapnia on hypoxic-ischemic brain injury.

Methods

Animal care
In accordance with the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines for animal
research, adult male Wister rats weighing 250–300 g were purchased from the Laboratory Animal Center
of Harbin Medical University (Harbin, China). The experimental protocol and animal care were approved
by the Ethics Committee of Animal Care and Guidelines in Harbin Medical University for the care and use
of laboratory animals.

Experimental protocol
Eighty-five rats were divided randomly into three groups: control group (normoxia, FiO2 21%, PaCO2 35–
45 mmHg), hypoxia-ischemia (HI) group (FiO2 15%, PaO2 50–59 mmHg, PaCO2 35–45 mmHg), and
hypercapnia group (PaCO2 60–80 mmHg + HI group). The rats in the control group (n = 25) were
anesthetized with an intraperitoneal injection of 30 mg/kg pentobarbital sodium (Abbott, North Chicago,
IL) and underwent left common carotid artery (CCA) was exposed and ligated. At 1 h of ligation, rats were
mechanically ventilated with air via tracheostomy (Harvard ventilator 683, USA) for 3 h. 0.5% ropivacaine
was injected for local infiltration when the brain skin was made incision and when performed
tracheostomy. In the HI group (n = 30), under the same anesthetic conditions and surgical procedures as
rats in the control group, the CCA was ligated, and at 1 h of ligation, followed by ventilation and
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inhalation of a gas mixture of 15% O2 for 3 h. In the hypercapnia group (n = 30), rats received the same HI
protocol and the same fraction of inspired oxygen as described for the HI group with an additional 8%
CO2, but hypercapnia was applied at the beginning of ventilation. The body temperature of rats was kept
constant at 37 °C using a rectal thermometer and a servo-controlled heating pad. The skull was fixed in a
stereotaxic frame (model 51600; Stoelting Co., Wood Dale, IL) for preparation of the cranial window over
the left parietal hemisphere for laser Doppler flowmetry assessment. We first made a midline incision of
the rat brain skin, then carefully stripped the subcutaneous tissue as well as skull periosteum of the left
parietal lobe to make the skull surface smooth and clean. Then we used a 20 ml syringe needle to drill a
craniotomy (a diameter of 1.5 mm) to perfectly place a laser doppler flow probe (PeriFlux 5000, Perimed,
Sweden) onto the surface of dura and was fixed in place by dental acrylate to record regional cortical
blood flow every 30 min. In this process, the probe was inserted to 1–2 mm, avoiding to puncture the
dura. When the probe was pulled out, the craniotomy was sealed by dental acrylate. Inhaled and exhaled
CO2 and O2 were monitored continuously using a gas monitor (MindaryBeneView T8, Mindray Medical
International Limited, P. R. China). Systemic mean arterial blood pressure (mmHg) was measured in the
left ligated proximal CCA. A cannula was inserted to the left femoral vein for blood gas determination and
peripheral drug administration. After 3 h of ventilation, the catheters were removed, a thin layer of
erythromycin ointment on each layer of tissue before the closure of skin as prophylactic antibiotics and
the animals were extubated and placed in an oxygenated Plexiglass box until the animals were awake.
Rats were given free access to food and water immediately after recovering from anesthesia. Rats that
died during systemic hypoxia with or without hypercapnic ventilation were excluded from measuring
infarct size and BBB permeability. The neurological severity scores (mNSS) were calculated for the HI and
HP groups and used as an important parameter to assess the beneficial effect of hypercapnia.

Assessment of BBB permeability
Five rats from each group were randomly selected to assess the BBB permeability. The quantitative
evaluation of BBB disruption during HI and hypercapnia was achieved by measuring fluorescence in the
defined brain areas as previously described [21]. Before the end of ventilation with hypoxic and
hypercapnic gas for 10 min, rats were injected (0.5 mL) with fluorescent dextran (10 kDa in saline,
2 mg/mL) via a unilateral cannula implanted into the left CCA. The rats were then transcardially perfused
with 0.9% saline to remove the intravascular dextran. The brain was rapidly removed, and the left and
right hippocampus and left and right cortex were dissected. Brain tissues were homogenized in 50%
wt/vol trichloroacetic acid (Sigma, St. Louis, MO, USA). After centrifugation (10,000 g), the supernatant
was collected. The fluorescence intensity (ng/mL) in 96-well plates was measured by a microplate
fluorescence reader (TECAN Infinite M200, Mӓnnedorf, Switzerland) and analyzed at an excitation
wavelength of 495 nm and an emission wavelength of 520 nm. The differences in the fluorescence
intensity between the control and HI groups were calculated as tracer leakage, and the data are presented
as percent changes from the control (normoxia) tissues.
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Infarct volume measurement
Infarction volumes were measured by analysis of the 2,3,5-triphenyltetrazolium chloride (TTC) staining in
brain sections taken 24 h after HI using standard protocols [22]. Briefly, five rats from the HI and HP
groups were randomly selected for analysis. Brain tissues were immediately collected and cut into 2 mm
coronary slices using a stainless steel mold (68709, RWD Life Science Co., Ltd., China). These slices were
placed flat in 2% TTC (Sigma, St. Louis, MO, USA) for 30 min. The sections were immersed in 10%
formalin at 37 °C for 12 h. Non-infarct tissues were stained red, and the infarct regions were white after
TTC staining. The slices were photographed, and the area of ischemic injury as well as the hemisphere
area was measured by Image-Pro Plus software (Version 6.0, Media Cybernetics, Bethesda, MD, USA).
The infarct volume was calculated as follows: (a1 + a2 + a3…+a6) × t, where a1 to a6 is the infarct area of
each section, and t is the serial section thickness. Edema area was defined as the ipsilateral hemisphere
area minus the contralateral hemisphere area. For elimination of the effects of edema, the percentage of
ischemic area was assessed according to the following formula: percentage of infarction=[measured
infarct area-edema area]/[(ipsilateral hemisphere area + contralateral hemisphere area)-edema area].

Anti-Endothelial Cell antibody (RECA-1) expression in the
brain
After hypoxia for 3 h with or without hypercapnic treatment, four rats from each group were randomly
selected. Rats were transcardially perfused with ice-cold phosphate buffered saline (PBS) (pH 7.2) under
anesthesia. The brain was removed, fixed with 4% paraformaldehyde and sliced into coronal sections
(4 µm thick). The brain sections were incubated in the primary antibody anti-RECA-1 (mouse monoclonal
antibodies, 1:20 dilution, ab9774; Abcam, Cambridge, MA, USA) overnight at 4 °C. After washes with PBS,
the sections were then incubated with a goat anti-mouse fluorescein-conjugated secondary antibody
(1:1000 dilution, 1031-01; Southern Biotech, Birmingham, USA) for 20 min at 37 °C. The sections were
incubated with DAPI (1:1000) in 1% bovine serum albumin for 10 min, mounted on albumin-coated slides,
and sealed. Images were captured under a laser scanning confocal microscope (Fluoview 1000; Olympus,
Tokyo, Japan).

Evaluation of neurological function
The neurological function test was performed in a double-blinded manner by two unbiased investigators.
The neurological function was evaluated at 2 h before and 3 ,7,14d after hypoxia with or without
hypercapnic exposure using the mNSS score as described in a previous modified assay. [23] The mNSS
was a composite of motor, sensory, reflex, and balance tests. The neurological function evaluation was
graded on a scale of 0–18 (0 = normal score; 18 = maximal deficit score). In the injury severity scores, 1
score point was awarded for the inability to perform the test or for the lack of a tested reflex; thus, the
higher the score is, the more severe is the injury.
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Primary cell culture
Brain microvascular endothelial cells (BMECs) were extracted from 3-week-old rats as a described in a
previous study. [24] Briefly, BMECs were cultured in DMEM/F12 with puromycin at 37 °C with a humidified
atmosphere of 5% CO2/95% air for 2 d. On the 3rd day, the puromycin was removed from the medium.
When the cells reached 80% confluence (5th − 6th day), the endothelial cells were passed using a
trypsin/EDTA mixture (Sigma). The cells were transferred to 12-well Transwell inserts coated with
collagen type IV and fibronectin to form the BBB model in vitro. The endothelial monolayer showed
positive expression of the endothelial marker von Willebrand factor (supplementary Fig. 1) after
immunostaining. BMECs were incubated at 37 °C for 6 h. The cells were divided into three groups (each
group, n = 3): the normoxia (21% O2), hypoxia (1% O2 + 5% CO2 + 94% N2) and hypercapnia groups (1% O2 
+ 15% CO2 + 84% N2).

Assessment of gas analysis and cell viability
Cell culture media (before hypoxia, after hypoxia with or without hypercapnia) were removed, and gas
values (pH, PCO2, PO2) were measured using a blood gas analyzer (Bayer Rapid Lab 855, Leverkusen,
Germany). The viability of the endothelial cells in response to oxidative stress was assessed by
measuring the lactate dehydrogenase (LDH) activity in the cell culture medium after each experiment. For
this purpose a Lactate Dehydrogenase Activity Assay Kit (Sigma,MAK066) has been used. For further
analysis only cultures with no increased LDH activity has been used.

Measurement of transendothelial electrical resistance
(TEER)
Since resistance is inversely proportional to permeability, TEER (in Ω × cm2) was measured using an
EVOM2 membrane potentiometer (World Precision Instruments, Inc., U.S.). After the samples were
exposed to hypoxia with or without hypercapnia for 2, 4 or 6 h, the TEER values were measured in BMECs.
The resistance of blank inserts was subtracted as background resistance from the total resistance of
each treatment. [25]

Western blotting
The treated or control cells were lysed for 30 min on ice. The total protein was measured by a BCA kit
(Beijing Kangwei Century, China). The electrophoresis was performed and the membrane was hybridized
as described in previous studies. [26, 27] The primary antibodies were used as follows: rabbit polyclonal
anti-ZO-1, anti-occludin, and mouse anti-β-actin antibodies (Zhongshan Golden Bridge, China). Anti-rabbit
or anti-mouse horseradish peroxidase-conjugated secondary antibodies were purchased from Zhongshan
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Golden Bridge. Band intensity was normalized to protein loading band density and expressed as a
percentage of normoxic values.

Statistical analysis
Statistical analysis was performed using the Statistical Package of Social Sciences (SPSS) 13.0 (Beijing
Stats Data Mining Co., Ltd.). The data are expressed as the mean ± standard deviation (S.D.). One-way
analysis of variance (ANOVA) was used to assess the differences followed by a post hoc test to evaluate
the differences in variables among groups. The changes in variables with time were analyzed using
repeated measures ANOVA followed by a post hoc test. All P values are 2-tailed, and P < 0.05 was
considered significant.

Results

Physiological data
No significant differences in body weight and rectal temperature were found among the three groups
(date not shown). Three rats (two from the HI and one from the HP group) that died after delivery of low
oxygen were excluded from this study because of progressive hypotension.

Changes in cortex cerebral blood flow induced by hypoxia
and hypercapnia
Cortex CBF was measured in each group for 10 min as a baseline. After the initial hypoxia/hypercapnia,
CBF in each group was measured every 30 min, and the trend of CBF was calculated using the
percentage of the baseline value. When ischemia was induced, the CBF in the left cortex was decreased
to approximately 30% of the baseline value. No changes of CBF were observed in the control group during
mechanical ventilation. CBF in the rats was decreased to approximately 50% of the baseline values in the
HI group after ventilation with 15% O2 for 3 h; however, CBF was significantly increased to 75% of the
baseline values of the HP group after ventilation combined with 8% CO2 for 3 h (Fig. 1).

Effect of hypercapnia on infarct volume after HI
Cerebral infarction volume was assessed after hypoxic ischemia for 24 h using TTC staining. TTC
staining in the brain sections of the HI group showed dramatic lesions as pale regions in the areas that
were supplied by the middle cerebral artery. Hypercapnia treatment significantly attenuated the brain
damage compared to that of the hypoxic ischemia alone group. The infarct volume in the rats of the
hypercapnia with HI group was smaller than that in the HI rats (12.2 ± 3.3% vs. 22.4 ± 3.6%, P < 0.05,
Fig. 2).
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Hypercapnia inhibited the increasing BBB permeability of
hypoxia induced by ischemia and affected the RECA-1
expression in the cortex
RECA-1 expression was observed and quantified by fluorescence intensity in the rat brain sections of the
control group (Fig. 3A). The fluorescence intensity of RECA-1 expression in the rat left cortex was
significantly lower in the HI group than the control and HP groups. Obviously incomplete endothelial cell
layers and disjunction were observed in the HI group. An increased permeability to 10 kDa fluorescent
dextran was observed in both the left and right brains of rats in the HI group compared with the rats in the
control group (P < 0.05; Fig. 3B). However, there was a significantly decreased BBB permeability in both
the left and right hippocampus and cortex in the HP group compared with the HI group (P < 0.05; Fig. 3B).
These results suggested that hypercapnia could reverse the damage to the brain microvascular
endothelial barrier function caused by HI.

Hypercapnia improved the recovery of neurological function
in HI rats
The mNSS scores in rats was significantly increased after 3 day in the HI and HP groups compared to the
control group (P < 0.05) (Fig. 4), the mNSS scores in the Group HP rats were significantly reduced at day 7
after hypoxia ischemia compared with the Group HI rats (p < 0.05), however, there were no differences in
the mNSS between the hypoxia with or without hypercapnia groups at day 14 (p > 0.05) (Fig. 4).

Blood gas analysis in the culture medium treated by hypoxia
and hypercapnia
After hypoxia, pH values in the cultural medium were decreased to 6.91 ± 0.02 and PO2 to 50.2 ± 
3.11 mmHg at 6 h as shown by blood gas analysis. These values were significantly lower than those in
the normoxic group (pH value was 7.27 ± 0.03 and PO2 was 152.6 ± 3.6 mmHg) (P < 0.05). PCO2

gradually increased and was maintained at 75–80 mmHg after hypoxia for 6 h in the hypercapnia group
(Fig. 5).

Hypercapnia increased the cell viability of BMECs exposed
to hypoxia
To exclude that the changes observed after hypoxia with or without hypercapnia arises from nonspecific
cell injury, LDH release was determined in order to asses cell viability and membrane integrity. Hypoxia
alone (6 h) caused a significant increase in the LDH activity of the culture medium (36 ± 8 and 67 ± 
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11 mU/mL), however, when BMECs exposed to hypoxia with hypercapnia (6 h), the change of the LDH
activity of the culture medium (33 ± 7 and 45 ± 8 mU/mL) were not significant which indicating that the
endothelial cells maintained their membrane integrity during the hypercapnic exposure.

Hypercapnia increased the TEER of BMECs exposed to
hypoxia
TEER values in BMECs remained stable (54 ± 6 Ω • cm2) during normoxic control conditions. After
hypoxic treatment for 6 h, TEER values were dramatically decreased to 147 ± 14 Ω • cm2. There were
significant differences between hypoxia and normoxia (P < 0.01). However, hypercapnia caused a
significant increase in the TEER values (88 ± 9 Ω • cm2) in BMECs after hypoxia for 6 h (Fig. 6A).

Hypercapnia inhibited the expression of ZO-1 and occludin
protein in BMECs induced by hypoxia
After hypoxia for 4 h and 6 h, ZO-1 protein expression was significantly decreased in BMECs compared
with the cells in normoxia (Fig. 6B). In the hypercapnia group, ZO-1 protein expression was significantly
increased after hypoxia for 2 h, reached a maximum at 4 h, and was then markedly reduced to
approximately 60% compared to that of cells in the normoxic group at 6 h. The protein expression was
significantly higher than that in the hypoxia group (P < 0.01). In addition, occludin protein expression in
the hypoxia group was decreased gradually to approximately 50% of that of the normoxic group after
hypoxia for 4 h or 6 h (Fig. 6C). In the hypercapnia group, occludin protein expression was also
significantly decreased compared to that of the normoxia group after hypoxia for 4 h (P < 0.05). Occludin
protein expression in the hypercapnia group was significantly higher than that in the hypoxia group (P < 
0.05).

Discussion
Our data demonstrated that hypercapnia improved cerebral blood flow and ameliorated BBB permeability
disturbances induced by ischemic injury followed by hypoxic, and hypercapnia promote the recovery of
neurological function in this rat model within 7 days. Furthermore, hypercapnia significantly increased the
expression levels of ZO-1 and occludin protein in BMECs under hypoxic conditions.

The principal pathogenetic mechanism underlying most of the neuropathology attributed to HI is
impairment of the cortex CBF.[28] In the present study, the ipsilateral cortical CBF fell to approximately
30% or 40% of the baseline value after left CCA ligation. Following exposure to hypoxia (15% O2, PaO2 > 
50 mmHg) at 60 min of ischemia, the CBF was decreased over time; however, this decreased CBF was
fully recovered when the treatment was combined with moderate hypercapnia. Cerebral vascular
reactivity was shown to be strongly influenced by CO2, [29] Cyclo-oxygenase-1(COX-1)-derived PGE2 and
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EP1 receptors, which may play a role in the hypercapnic regulation of the cerebral circulation.[30]
Hypercapnia may maximally dilate the cerebral vessels during mild or moderate hypoxia (PaO2 > 
50 mmHg); thus, it can improve O2 delivery to the cerebral hemisphere even when the CCA has been
previously ligated, which in turn promotes cerebral glucose utilization and oxidative metabolism for
optimal maintenance of tissue high energy phosphate reserves. [15]

Edema volume has a deleterious impact on the morbidity and mortality after stroke by increasing ICP and
impairing cerebral perfusion and oxygenation during reperfusion.[31–33] BBB disruption permits the
extravasation of albumin and other high molecular weight compounds, resulting in edema formation and
increased ICP.[34, 35] In this study, acute hypoxia rapidly increased cortical and hippocampal vascular
permeability to 10 kDa dextran. While mild hypoxemia was associated with restoration of vascular
integrity by hypercapnia, based on the immunofluorescence results of RECA-1, brain microvascular
endothelial barrier function in the ischemic cerebral region was protected by hypercapnia in rats during
acute hypoxia. However, in this study, a significant functional recovery within 7d after hypercapnia
treatment was observed but not seen the obvious protective effect at 14d compared to that of the rat
model of CCA that only underwent hypoxic ventilation. This result was not the same as a previous study
[18] showing that mild and moderate hypercapnia were associated with better neurologic deficit scores
(at 72 h) compared with normocapnia in a rat model of global cerebral ischemia. It may be due to the use
of different animal cerebral ischemic models. In this study, the left CCA was permanently ligated followed
by hypoxic condition, which causes ipsilateral infarction together with hypoxic stress. Hypoxia is
frequently associated with a range of clinical conditions, such as chronic obstructive pulmonary disease,
neuromuscular disease and sleep apnea syndrome. This model simulates these patients, when
underwent ischemic disease, would suffer double stress from both stroke and hypoxia and this was
much severer than that of cerebral ischemic followed by reperfusion. We believe hypercapnia though did
not significantly improve the mNSS scores after one week, it still exerts beneficial effects to this severe
and complicated physiopathological process as shown in our results.

This BBB model in vitro could approximately mimic in vivo oxygen and CO2 changes in the cerebral
ischemia rats under moderate hypoxia (PaO2 between 50–60 mmHg) with high CO2 ventilation. Since
endothelial cells are the initial cells within the vascular wall exposed to changes in the ambient O2 and
CO2 concentrations in the blood, the effects of hypoxia with or without hypercapnia on endothelial BBB
function were explored in primary BMECs. To assess the membrane integrity of BMECs after
hypoxia/hypercapnia, we have measured the LDH activity in the culture medium. When BMECs were
exposed to only hypoxic stress for 6 h, our results show that BMECs exhibit a significant increase in LDH
activity indicating that the experimental conditions used by us do affect cell viability. Although there is a
general agreement that BMECs are sensitive to oxidative stress, the effect on their viability is still
controversial. Mertsch et al. demonstrated a significant membrane damage even after 120 min
hypoxia/30 min reoxygenation.[36] On the other hand, Plateel et al. reported that LDH activity in the
culture medium of BMECs did not increase even after prolonged hypoxia.[37] This discrepancy may arise
from the differences in the experimental conditions. Furthermore, our findings also showed that hypoxic
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stress causes a rapid and intense decrease of the TEER which is a sign of increased paracellular
permeability. However, the results presented here clearly indicate that the integrity and viability of the cells
are little affected by exposure to hypercapnia (15%) for 6 h. This finding was similar to those previously
described by Tsuji, in which both hypercapnic acidosis and buffered hypercapnia improved the rate of
wound healing due to stimulation of cell proliferation under the influence of hypoxia in human umbilical
venous endothelial cells. [38]

Here we show that hypoxic stress leads to a downregulation of ZO-1and occluding, this led us to assume
that junctional proteins which are responsible for the maintenance of the paracellular barrier may
represent a potential target of hypoxic stress. Changes in the expression of junctional proteins in
response to hypoxia/reoxygenation have been demonstrated in several recent studies as well. Fischer et
al. have shown that hypoxia causes a decrease in ZO-1 levels accompanied by an increased
phosphorylation and redistribution of this protein. ZO-1 is directly linked to the COOH terminus of
occludin [39] and is important for localization of occludin to the TJs [40]. In this study, although the trans-
localization of the ZO-1 and occludin proteins was not determined, the expression levels of ZO-1 and
occludin protein were explored and determined to be associated with increased paracellular permeability
along with hypoxic stress for 6 h in BMECs. Conversely, hypercapnia also significantly inhibited the loss
of ZO-1 and occludin induced by hypoxia and may protect against the disruption of BBB permeability
during hypoxia. Interestingly, in our previous study in a rat model of lateral FPI, we have confirmed that
only the neuroprotective isozyme PKCε (but not PKCα and PKCβⅡ) was significantly elevated after
hypercapnia, and also found hypercapnia significantly increased the mRNA expression of PKCε at 48 h
post-FPI.[17] This was accompanied by augmented expression of TJ proteins ZO-1, occludin, and claudin-
5 as well as decreased brain edema. These results suggest that hypercapnia exerts neuroprotective
effects via upregulation of PKCε expression.[17]

An important aspect of this study is the attempt to translate our findings from the ligation of a CCA
hypoxia model in vivo to the BBB model in vitro. HI primarily affects infants, and mild hypercapnia was
shown to be protective in an immature rat model of cerebral hypoxia and ischemia.[15, 29] To the best of
our knowledge, few studies have been performed on adult rats that were subjected to cerebral HI with or
without CO2 added to the hypoxic gas mixture to which the animals were exposed. In our previous study,
our findings suggested that the addition of hypercapnia aggravated the injury after CCA ligation along
with severe hypoxemia (PaO2 < 50 mmHg), but hypercapnia produced protective effects against HI-
induced brain damage in rats treated with mild to moderate systemic hypoxia (15% and 18% O2, PaO2 > 
50 mmHg).[7] It is possible that the severe injury exceeded the short-term therapeutic potential of
exposure to hypercapnia gas. The large volume of ischemic tissue may have overwhelmed any possible
benefit of hypercapnia gas exposure. However, in our clinical study and under intravenous anesthesia, the
induction of therapeutic hypercapnia by continual inhalation of carbon dioxide during one-lung
ventilation (OLV) could improve respiratory function and mitigate the OLV-related lung and systemic
inflammation in patients undergoing a lobectomy.[41] Based on the studies presented above, the
differential effects of hypercapnia after cerebral ischemia on functional and structural changes for weeks
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and even months after the insult should be examined, and further experimental analyses are needed to
justify clinical use.

Conclusions
In summary, we found significant recovery of neurologic status by hypercapnia treatment in the rat model
of hypoxic-ischemic injury within one week, our findings demonstrated that hypercapnic potentiation
increased neuroprotective efficiency during moderate (PaO2 > 50 mmHg) hypoxia-ischemic injury
including decreasing infarct volumes and improving BBB permeability. The principal mechanisms of
these effects may include maintenance of BBB integrity by increasing the expression of TJ proteins in
BMECs.
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therapeutic hypercapnia
CO2

carbon dioxide
PaCO2

arterial blood CO2 tension
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traumatic brain injury
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blood-brain barrier
TJ
tight junction
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fluid percussion injury
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hypoxic-ischemic
MAP
mean arterial pressure
HR
heart rate
ICP
Intracranial pressure
CBF
cerebral blood flow
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2,3,5-triphenyltetrazolium chloride
BMECs
brain microvascular endothelial cells
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Anti-Endothelial Cell antibody
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transendothelial electrical resistance
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OLV
one-lung ventilation

Declarations

Ethics approval and consent to participate
The experimental protocols were approved by the Institutional Animal Care Committee of Harbin Medical
University, and all procedures were conducted in strict accordance with the guidelines for the care and use
of laboratory animals of Harbin Medical University as well as the ARRIVE (Animal Research: Reporting In
Vivo Experiments) guidelines for animal research.

Consent for publication
Not applicable

Availability of data and material
The datasets used and/or analyzed during the current study are available from the corresponding author
on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding



Page 14/23

This study was supported by the National Natural Science Foundation of China (No. 81171076 and
81400989)

Authors' contributions
WCY and WZL designed the study. QW and QW performed the animal modes. XHW performed the cell
experiments. TTL collected and analyzed the data. WCY drafted and wrote the manuscript. WZL revised
the manuscript critically for intellectual content. All authors gave intellectual input to the study and
approved the final version of the manuscript.

Acknowledgements
Not applicable

References
1. Siniscalchi A, Gallelli L, Malferrari G, Pirritano D, Serra R, Santangelo E, De Sarro G. Cerebral stroke

injury: the role of cytokines and brain inflammation. J Basic Clin Physiol Pharmacol.
2014;25(2):131–7.

2. Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A,
Foulkes MA. The role of secondary brain injury in determining outcome from severe head injury. J
Trauma. 1993;34(2):216–22.

3. Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin.
2006;24(1):1–21.

4. Olesen SP. Rapid increase in blood-brain barrier permeability during severe hypoxia and metabolic
inhibition. Brain Res. 1986;368(1):24–9.

5. Shian WJ, Chi CS, Chen JW, Hsieh KS. Hypoxic-ischemic effect on infants and children with cyanotic
congenital heart disease: clinical assessment of neurological examination and brain magnetic
resonance images. Zhonghua Yi Xue Za Zhi (Taipei). 1994;53(3):154–7.

6. Zhang Q, Ding Y, Yao Y, Yu Y, Yang L, Cui H. Creating rat model for hypoxic brain damage in neonates
by oxygen deprivation. PLoS One. 2013;8(12):e83589.

7. Yang W, Zhang X, Wang N, Tan J, Fang X, Wang Q, Tao T, Li W. Effects of Acute Systemic Hypoxia
and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia. PLoS One.
2016;11(12):e0167359.

8. Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression
causes vascular leakage in the brain. Brain. 2002;125(Pt 11):2549–57.

9. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 1999;22:11–
28.



Page 15/23

10. Benarroch EE. Blood-brain barrier: recent developments and clinical correlations. Neurology.
2012;78(16):1268–76.

11. Mark KS, Davis TP. Cerebral microvascular changes in permeability and tight junctions induced by
hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol. 2002;282(4):H1485–94.

12. Fischer S, Wiesnet M, Marti HH, Renz D, Schaper W. Simultaneous activation of several second
messengers in hypoxia-induced hyperpermeability of brain derived endothelial cells. J Cell Physiol.
2004;198(3):359–69.

13. Krizbai IA, Bauer H, Bresgen N, Eckl PM, Farkas A, Szatmari E, Traweger A, Wejksza K, Bauer HC.
Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell Mol
Neurobiol. 2005;25(1):129–39.

14. Brown RC, Davis TP. Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial
cells. Biochem Biophys Res Commun. 2005;327(4):1114–23.

15. Vannucci RC, Brucklacher RM, Vannucci SJ. Effect of carbon dioxide on cerebral metabolism during
hypoxia-ischemia in the immature rat. Pediatr Res. 1997;42(1):24–9.

16. Tregub P, Kulikov V, Motin Y, Bespalov A, Osipov I. Combined exposure to hypercapnia and hypoxia
provides its maximum neuroprotective effect during focal ischemic injury in the brain. J Stroke
Cerebrovasc Dis. 2015;24(2):381–7.

17. Yang WC, Wang Q, Chi LT, Wang YZ, Cao HL, Li WZ. Therapeutic hypercapnia reduces blood-brain
barrier damage possibly via protein kinase Cepsilon in rats with lateral fluid percussion injury. J
Neuroinflammation. 2019;16(1):36.

18. Zhou Q, Cao B, Niu L, Cui X, Yu H, Liu J, Li H, Li W. Effects of permissive hypercapnia on transient
global cerebral ischemia-reperfusion injury in rats. Anesthesiology. 2010;112(2):288–97.

19. Tao T, Zhao M, Yang W, Bo Y, Li W. Neuroprotective effects of therapeutic hypercapnia on spatial
memory and sensorimotor impairment via anti-apoptotic mechanisms after focal cerebral
ischemia/reperfusion. Neurosci Lett. 2014;573:1–6.

20. Tao T, Liu Y, Zhang J, Xu Y, Li W, Zhao M. Therapeutic hypercapnia improves functional recovery and
attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model.
Brain Res. 2013;1533:52–62.

21. Singhal AB, Wang X, Sumii T, Mori T, Lo EH. Effects of normobaric hyperoxia in a rat model of focal
cerebral ischemia-reperfusion. J Cereb Blood Flow Metab. 2002;22(7):861–8.

22. Tsubokawa T, Jadhav V, Solaroglu I, Shiokawa Y, Konishi Y, Zhang JH. Lecithinized superoxide
dismutase improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic
mechanisms in rats. Stroke. 2007;38(3):1057–62.

23. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M. Intravenous
administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke.
2001;32(11):2682–8.

24. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M. A new
blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.



Page 16/23

Neurochem Int. 2009;54(3–4):253–63.

25. Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M. Effects of hypoxia on
endothelial/pericytic co-culture model of the blood-brain barrier. Regul Pept. 2004;123(1–3):77–83.

26. Dong HW, Zhang S, Sun WG, Liu Q, Ibla JC, Soriano SG, Han XH, Liu LX, Li MS, Liu JR. beta-Ionone
arrests cell cycle of gastric carcinoma cancer cells by a MAPK pathway. Arch Toxicol.
2013;87(10):1797–808.

27. Liu Q, Dong HW, Sun WG, Liu M, Ibla JC, Liu LX, Parry JW, Han XH, Li MS, Liu JR. Apoptosis initiation
of beta-ionone in SGC-7901 gastric carcinoma cancer cells via a PI3K-AKT pathway. Arch Toxicol.
2013;87(3):481–90.

28. Vannucci RC, Vannucci SJ. A model of perinatal hypoxic-ischemic brain damage. Ann N Y Acad Sci.
1997;835:234–49.

29. Vannucci RC, Towfighi J, Heitjan DF, Brucklacher RM. Carbon dioxide protects the perinatal brain
from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics.
1995;95(6):868–74.

30. Uekawa K, Koizumi K, Hwang J, Brunier N, Hattori Y, Zhou P, Park L. Obligatory Role of EP1 Receptors
in the Increase in Cerebral Blood Flow Produced by Hypercapnia in the Mice. PLoS One.
2016;11(9):e0163329.

31. Aronowski J, Strong R, Grotta JC. Reperfusion injury: demonstration of brain damage produced by
reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab. 1997;17(10):1048–56.

32. Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, Sauerbeck L, Spilker J, Duldner J, Khoury J. Early
hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28(1):1–5.

33. Hamann GF, Okada Y, Fitridge R, del Zoppo GJ. Microvascular basal lamina antigens disappear
during cerebral ischemia and reperfusion. Stroke. 1995;26(11):2120–6.

34. Rosenberg GA. Ischemic brain edema. Prog Cardiovasc Dis. 1999;42(3):209–16.

35. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol
Rev. 2005;57(2):173–85.

36. Mertsch K, Grune T, Siems WG, Ladhoff A, Saupe N, Blasig IE. Hypoxia and reoxygenation of brain
endothelial cells in vitro: a comparison of biochemical and morphological response. Cell Mol Biol
(Noisy-le-grand). 1995;41(2):243–53.

37. Plateel M, Dehouck MP, Torpier G, Cecchelli R, Teissier E. Hypoxia increases the susceptibility to
oxidant stress and the permeability of the blood-brain barrier endothelial cell monolayer. J
Neurochem. 1995;65(5):2138–45.

38. Tsuji T, Aoshiba K, Itoh M, Nakamura H, Yamaguchi K. Hypercapnia accelerates wound healing in
endothelial cell monolayers exposed to hypoxia. Open Respir Med J. 2013;7:6–12.

39. Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S. Direct association of occludin with
ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol.
1994;127(6 Pt 1):1617–26.



Page 17/23

40. Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol. 2000;20(1):57–
76.

41. Gao W, Liu DD, Li D, Cui GX. Effect of Therapeutic Hypercapnia on Inflammatory Responses to One-
lung Ventilation in Lobectomy Patients. Anesthesiology. 2015;122(6):1235–52.

Figures

Figure 1

The values of cortex cerebral blood flow (CBF) in the ipsilateral hemisphere during hypoxia-ischemia (HI)
insulted with 15% oxygen or hypercapnia (HP) ventilated with an additional 8% carbon dioxide. A and B
show the differences in CBF between HI and HP；the CBF values are expressed as a percentage of the pre-
ligation value (100%) in each animal (n=10). *P<0.05, when compared to the baseline; # P<0.05, when
compared to the control group.
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Figure 2

Hypercapnia reduced infarct volume in rats after hypoxia-ischemia for 24 h. (A) Representative
photographs of brain sections stained with 2% TTC in the HI and HIP groups. (B) Measurement of infarct
volume showed a significant decrease in the infarct areas of the HP group compared to the HI group
(n=5). * P<0.05, when compared to the HI group.
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Figure 3

Vascular endothelial cells in the cortex (A) and changes in BBB permeability (B) determined by
immunofluorescence. (A) The RECA-1 expression in cerebral cross-sections of rat brain. RECA-1 (green)
and DAPI (blue) were stained in cerebral cross-sections by double immunostaining. The pictures were
captured at ×60 with a fluorescence microscope (n=4, scale bar=100 μm). Arrows indicate the incomplete
and lack of endothelial barrier. (B) The magnitude of blood-brain barrier disruption was quantified by
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measuring the extent of leakage of 10 kDa dextran. The values are expressed as the mean±S.D. as a
percentage of the values in the control group (n=5). * P<0.05, when compared to the control group; #
P<0.05, when compared to the HI group.

Figure 4

Neurological severity scores were evaluated with or without hypercapnia exposure 2 h before and 1, 3, or
7 d after hypoxia. There were no differences between the HI and HP groups (P<0.05) (n=6).
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Figure 5

Effects of hypoxia with or without hypercapnia on blood gas analysis and cell proliferation assayed by
CCK8 for BMEC. *P<0.05 indicate differences versus Normoxia group. ФP<0.05 indicate differences
versus Hypoxia group.
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Figure 6

Effects of hypoxia with or without hypercapnia on TEER in BMECs. TEER was measured in BMECs
exposed to hypoxia with or without hypercapnia (A). The TEER values are expressed as the mean±S.D.
(Ω•cm2). The expression of ZO-1 (B) and occludin (C) protein in BMECs by Western blotting,
(n=3).*P<0.05, when compared to the normoxia group. ФP<0.05, when compared to the hypoxia+15%
CO2 group.
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