Studies have suggested that MHC class I (MHC I) molecules fluctuate rapidly between conformational states as they sample peptides for potential ligands. To date, MHC I intermediates are largely uncharacterized experimentally and remain elusive. We present x-ray crystal structures of HLA-B8 loaded with 20mer peptides that show significant conformational heterogeneity at the N-terminus of the groove. Long stretches of N-terminal residues were missing in the electron density maps creating an unstructured and widely open-ended groove. Our structures also revealed highly unusual features in MHC I and peptide conformations, and in MHC I-peptide interaction at the N-terminus of the groove. Molecular dynamics simulations showed that the complexes have varying degrees of flexibility in a manner consistent with the structures. We suggest that our structures represent transient substates explored by MHC I molecules during peptide editing. The visualization of peptide-dependent conformational flexibility in MHC I groove is a major step forward in our conceptual understanding of peptide repertoire development in antigen presentation. Our study also raises questions about the role of the N-terminus of the groove in peptide editing.