
A Scalable and Flexible Platform for Service
Placement inMulti-Fog and Multi-Cloud
Environments
Sadoon Azizi ( s.azizi@uok.ac.ir)

University of Kurdistan
Pedram Farzin ( p.farzin@uok.ac.ir)

University of Kurdistan
Mohammad Shojafar ( m.shojafar@surrey.ac.uk)

University of Surrey
Omer Rana ( RanaOF@cardiff.ac.uk)

Cardiff University

Research Article

Keywords:

DOI: https://doi.org/

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/
mailto:s.azizi@uok.ac.ir
mailto:p.farzin@uok.ac.ir
mailto:m.shojafar@surrey.ac.uk
mailto:RanaOF@cardiff.ac.uk
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

Noname manuscript No.
(will be inserted by the editor)

A Scalable and Flexible Platform for Service Placement in

Multi-Fog and Multi-Cloud Environments

Sadoon Azizi · Pedram Farzin ·

Mohammad Shojafar · Omer Rana

Received: 00 November 0000 / Revised: 00 December 0000/ Accepted: 00 February 0000

Abstract Provisioning services for Internet of Things (IoT) devices leads to sev-
eral challenges: heterogeneity of IoT devices, varying Quality of Services (QoS)
requirements, and increasing availability of both Cloud and Fog resources. The
last of these is most significant to cope with the limitations of Cloud infrastructure
providers (CIPs) for latency-sensitive services. Many Fog infrastructure providers
(FIPs) have recently emerged and their number is increasing continually. FLEX is
proposed in this work as a platform for selecting a location for service placement
in a multi-Fog and multi-Cloud environment. For each service, FLEX broadcasts
service requirements to the resource managers (RMs) of the available Fog and
Cloud service providers and then selects the most suitable provider for that ser-
vice. FLEX is scalable and flexible as it leaves it up to the RMs to have their own
policy for the placement of submitted services. Service placement and resource se-
lection has been formulated as an optimization problem and an efficient heuristic
algorithm is proposed to solve it. Results show that the proposed algorithm can
be used across both Cloud and Fog-based providers.

Keywords Internet of Things (IoT), Fog Computing, Cloud Computing, Multi-
Fog and Multi-Cloud, Service Placement, Scalable and Flexible Platform, Quality
of Service (QoS).

S. Azizi (Corresponding Author) and P. Farzin
Department of Computer Engineering and Information Technology, University of Kurdistan,
Sanandaj, Iran
E-mail: {s.azizi, p.farzin}@uok.ac.ir

M. Shojafar
5G Innovation Centre, Institute for Communication Systems, University of Surrey, Guildford,
United Kingdom
E-mail: m.shojafar@surrey.ac.uk

O. Rana
School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
E-mail: RanaOF@cardiff.ac.uk

2 Sadoon Azizi et al.

1 Introduction

With recent advances in Internet of Things (IoT) technologies, the number of
connected devices has increased exponentially [1,50]. These devices generate data
that needs to be stored, processed, and analyzed to extract valuable informa-
tion. To achieve these goals, many applications and services in IoT, big data, and
machine learning have recently emerged [49,21,16,17]. The characteristics and re-
quirements of these services vary in the number of resources and Quality of Service
(QoS). For example, services such as healthcare systems [35], virtual reality [3],
and autonomous and connected cars [30] are time-sensitive. In contrast, big data
analysis [36], pollution monitoring [9], and scientific computations [22] may be
delay-tolerant.

Cloud computing serves various services and applications by providing a model
where you pay as you go. A cloud infrastructure provider (CIP) enjoys a large num-
ber of privileges, including hardly limited resources for computation and storage
and little cost. Nevertheless, the network bandwidth may be overused, and com-
munication may be delayed extremely [38,29,24,47], since CIPs are centralized by
nature, unlike IoT devices, which are decentralized by nature. Such limitations
account for the presentation of Fog computing to supplement the Cloud properly
[6]. The Fog is aimed mainly at extending Cloud services and resources toward the
network edge. More Fog infrastructure providers (FIPs) are likely to become ca-
pable of deploying their own infrastructures. A FIP may offer limited storage and
computation resources despite its huge advantages to latency-sensitive services.
Furthermore, the operation and maintenance of a Fog node (FN) are often costlier,
making it less reasonable for an end user [42]. Joint multi-Fog and multi-Cloud
environments are turning into environments frequently used to deploy emerging
services capable of using both Fog and Cloud providers [23].

The placement of services and applications in Fog computing and Cloud com-
puting has widely appealed in the past years to industrialists as well as researchers
[26,33]. The service placement problem (SPP) is complex as it has to specify what
services are needed, where end users are located, and how much each infrastruc-
ture provider (IP) costs. Due to the incremental trends in the number of IPs and
services, the task has become a more serious issue. This makes it necessary to
adopt a flexible, scalable platform for selecting a suitable IP for every service from
among the available Fog and Cloud IPs.

1.1 Motivation & Context

There have recently been a large number of proposals of solutions to the SPP
in the Fog or the Cloud [13,31,25,15,12,5,34,40,44], each concentrating on only
one of the two environments rather than considering both at the same time [13,
5,34]. Few of these solutions have assumed integrated Fog and Cloud computing
platforms that have been presented by particular IPs, including Google, Ama-
zon, Microsoft, etc. [25,27]. Moreover, most of them fail to consider the cost and
communication delay conditions required and intended by a service provider since
there are strict requirements for time-sensitive services [12,15,40,44]. We raise the
research questions below to attempt to resolve the above problems. i) How can
an SPP be addressed in a hybrid multi-Fog and multi-Cloud environment through

Title Suppressed Due to Excessive Length 3

the design and implementation of an efficient platform? ii) How can the proposed
platform identify the most suitable method in a certain context to take advantage
of available schedulers, given that an IP would rather implement its own policies
to schedule resources? iii) How can the placement algorithm of the proposed plat-
form be used to meet the desired requirements of every service in terms of cost
and QoS?

1.2 Contributions of the paper

We propose a flexible and scalable FLEX platform to place services in an en-
vironment involving multiple FIPs and CIPs. FLEX delegates the management
of resources to the most suitable of the available IPs for each request for ser-
vice according to requirements. This involves two significant advantages, namely
flexibility and scalability. Flexibility means that the platform enables an IP to
implement its policies of service placement and adapt them independently. Scal-
ability means the platform is simple enough to support a new IP easily. The key
contributions of this work are as follows:

– A flexible and scalable platform for service placement in a multi-Fog and multi-
Cloud environment.

– Formulation of the placement problem using integer linear programming (ILP)
and a heuristic algorithm to solve it efficiently.

– Using extensive simulations, the performance of the proposed algorithm is eval-
uated under different conditions.

This work extends our previous conference paper [10] in the following ways:

– Extending & widening the literature review;
– Using a UML sequence diagram to provide a conceptual design and an il-

lustrative example to demonstrate the benefits of the proposed platform and
algorithm;

– Providing a motivating example to clarify the anticipated application of the
proposed platform;

– Showing that the service placement problem in multi-Fog and multi-Cloud
environments is in the class of NP-hard problems;

– Comparing the performance of the proposed algorithm using an evolutionary
search algorithm;

– Additional experiments to evaluate the effectiveness of the proposed algorithm
under more scenarios;

– Adding the discussion and limitation section to shed light on future research
directions.

The rest of this paper is organized as follows. In Section ??, related works are
reviewed and discussed. The high-level and detailed architecture of the proposed
platform is described in Section 3. Section 4 presents the integer linear program-
ming model of an SPP. To solve the model, an efficient heuristic algorithm is given
in Section 5. Section 6 evaluates the proposed platform using various scenarios.
The limitation of our work is discussed in Section 7. Finally, Section 8 concludes
the paper, followed by a discussion of future research directions.

4 Sadoon Azizi et al.

2 Related Work

We present a review of the literature on the SPP and proposed frameworks here.
In [13], Grozev and Buyya investigate the deployment of applications in a multi-
Cloud environment. Their proposed method aims to minimize the end user’s delay
and total cost by considering auto-scaling, selection of Cloud data centers, and
distribution of load. Omer et al. [34] study the placement of IoT applications in
a Cloud data center by modeling each application as a series of virtual machines
(VMs) depending on one another. They adopt a mixed-integer linear program-
ming (MILP) model to formulate the problem to minimize network consumption,
resource wastage, and energy consumption in a Cloud data center. They present
a priority-aware heuristic to solve the model with high efficiency. Javed et al. in
[19] propose Cloud Market Maker (CMM), a dynamic pricing system for Cloud
providers. The CMM adjusts the price of Cloud resources based on current mar-
ket conditions. CMM also assists customers in the selection of the most suitable
provider for their requirements.

Skarlat et al. [41] presented a framework for Fog computing according to the
notion of Fog colonies, composed of Fog nodes and cells along with actuators and
sensors. The nodes and cells are managed in a Fog colony by a Fog orchestration
control node, which sends an IoT application to another colony or Cloud without
adequate resources to support it. An extended version of Fog colonies is FogFrame
[40], a decentralized framework for managing applications in a Fog landscape.

FOGPLAN, introduced by Yousefpour et al. [48], is a dynamic framework for
provisioning IoT services within a Fog computing environment. It is aimed mainly
at minimizing overall execution cost and delay violation using two proposed effi-
cient greedy algorithms. Studying how heavily stateful low-latency services (LLAs)
are provisioned in the Fog, Tasiopoulos et al. [45] use a mechanism of spot pricing
[2] under a framework known as FogSpot to assign cloudlet computation resources
to end users given their demands for service. Ghaemi et al. [11] present a serverless
platform known as ChainFaaS based on blockchain technology to deliver comput-
ing service based on the Internet to end users using the computing capacity of
a PC. It is aimed mainly to function as a reliable, transparent platform that de-
creases the cost for the user.

To satisfy users’ QoS needs, Mahmud et al. [25] introduce a method based on
edge affinity for application placement on a Fog-Cloud system. In this method,
applications are first classified based on the primary features, including IoT de-
vice frequency rate, data amount per input, and user-defined deadline. Then, a
selection of allowable applications are placed on a Fog cluster to minimize the
time required for delivering service. Hassan et al. [15] present an efficient policy
for IoT service placement in a Fog-Cloud computing environment. They classify
each service as normal or critical to provide FIPs with low energy consumption
and IoT users with high QoS. They propose two algorithms: MinEng, to decrease
energy consumption in the Fog environment, and MinRes, to minimize response
time for critical services. Sami et al. [37] propose an on-demand fog computing
architecture based on volunteer devices to deploy IoT services. The Memetic algo-
rithm is presented for solving the container/ service placement in their proposed
architecture. Sriraghavendra et al. [43] investigate QoS-aware service placement
in a dynamic Fog-Cloud environment. They propose a deadline-oriented service

Title Suppressed Due to Excessive Length 5

placement (DoSP) strategy which uses a genetic algorithm to host IoT services on
suitable Fog and Cloud nodes.

After proposing an ILP model for an SPP, Velasquez et al. [46] present an
algorithm based on PageRank to use the popularity of applications for ranking
them. The research is aimed mainly at decreasing latency for popular applica-
tions. Natesha and Guddeti [32] attempt to provision resources in the Fog by
designing a framework with two levels. They formulate the SPP as an optimiza-
tion problem with multiple minimization objectives for cost, energy consumption,
and service time and use an elitism-based genetic algorithm (EGA) to solve it. Iyer
et al.[18] propose a broker-based architecture to connect users to different Fog and
Cloud service providers. Users submit their tasks to a broker and then the broker
gets price offers from service providers. The users then apply a utility function
to choose a particular provider for task execution. The utility function takes into
account cost, risk and trust values to select the best provider. Cao et al. [7] present
an integrated model for provisioning resources, known as Edge federation, to use
multiple Edge infrastructure providers (EIPs) for placing latency-critical services.
They formulate the process of provisioning as a linear program (LP) aimed to min-
imize resource cost and ensure service latency. Moreover, they extend their model
in the Edge federation environment by proposing a dynamic service provisioning
solution.

Although there exist a number of mechanisms for service placement in Fog
and/or Cloud computing, none have focused on the following features collectively:
(i) considering the service placement problem on joint multi-Fog and multi-Cloud
environments, (ii) scalablity and flexibility by leaving it up to Fog and Cloud
providers to have their own policy for service placement, (iii) automated selection
of a provider by the platform and not the user, and (iv) taking into account the
service preference of both delay and cost.

3 FLEX Platform

In this section, a motivating scenarios is presented followed by a conceptual ar-
chitecture of the FLEX platform. How FLEX achieves flexibility and scalability is
also described, through a description of components that are used to implement
FLEX.

3.1 Motivation Example

A practical use case scenario is used to illustrate how the FLEX platform can
be used. Consider a provider offering service Sx to a set of IoT users in a smart
city. The service provider searches for a suitable infrastructure provider to host
the service. It must check each available Fog/ Cloud IP before making a decision,
which is a time-consuming and error prone process. For example, assume that the
service provider decides to submit Sx to infrastructure provider IPy as it is a well-
known provider. However, there exists another infrastructure provider, IPz, which
is a new provider and is not selected by the service provider because the service
provider does not have sufficient knowledge of its reputation and cost model. This
may leads to an increase in cost and a decrease in the QoS for the Sx’s users.

6 Sadoon Azizi et al.

IoT

Devices

FRM1 FRMM

. . . .

Fog

Layer

Cloud

Layer

Gateways

. . . .

CIPN
CIP1

CRMN

FIP1 FIPM

CRM1

Low

Latency

Low

Cost

Proposed Platform

(FLEX)

Fig. 1: FLEX architecture.

Let us now look at the scenario from the flexibility and scalability perspective.
Assume infrastructure providers IPa and IPb have some available computing nodes
to host service Sx. There are mainly two approaches to do this. First, the aforemen-
tioned infrastructure providers register their available resources in the marketplace
and the system selects the most suitable node and assign the service Sx on that
node. In this case, the system act as a centralized resource scheduler. Second,
the system submits the service requirements and users’ locations to infrastructure
providers IPa and IPb, delegating control over the resource scheduling to them.
In this case, each IP can run its own service placement algorithm, allowing the
system to be highly scalable and providing flexibility to infrastructure providers.
The main idea of the proposed platform is based on the second approach.

3.2 High-level Architecture

A general architecture of the multi-Fog and multi-Cloud environment is shown in
Fig. 1. Using the proposed platform to augment the IoT-Fog-Cloud pattern with
one more layer, we end up with an environment composed of five parts, including
the IoT devices, gateways, FIPs, CIPs, and the proposed platform, as detailed in the
following subsections.

– IoT devices: These are end-point devices including sensors, actuators, radio
frequency identification devices, industry devices, wearable devices, cameras,

Title Suppressed Due to Excessive Length 7

smartphones, smart meters, and smart home appliances. They are distributed
around the world with Internet connection via gateways with various wireless
technologies including 3G/4G/5G, Bluetooth, Wi-Fi, and ZigBee. These devices
can hardly host latency-sensitive services or computing-intensive ones due to
their limited battery power, storage, and processing resources.

– Gateways: These include home switches, cellular base stations, Wi-Fi access
points, and similar Edge devices located in the vicinity of an IoT device.

– FIPs: There are several FIPs in a multi-Fog environment each of which provides
the resources required for networking, computing, and storage. Called FNs, Fog
layer devices include cloudlets, servers, PCs, switches, routers, micro data cen-
ters, and Raspberry Pies. They are often resource-richer than Edge devices.
There is a specialized node in every FIP that is dedicated to resource man-
agement and establishment of a persistent communication with the proposed
platform. Known as a Fog resource manager (FRM) [25], this node can host
services and applications as containers or VMs.

– CIPs: These are located in the top layer of the vertical dimension to use their
robust, large-scale data centers to provide a large number of services. A series
of virtualized storage and computing resources make up a cloud data center.
As with FIPs, there is a node known as the Cloud resource manager (CRM)
that allows each CIP to communicate with the proposed platform as well as
managing its resources. Although normally more cost-effective than an FIP, a
CIP is unsuitable for time-sensitive services, as it is often far from IoT devices.

– Proposed platform (FLEX): The major design philosophy behind FLEX is to
enable efficient distribution of services and applications among FIPs and CIPs
to provide flexibility and scalability in a multi-Fog and multi-Cloud computing
environment. FLEX places services after receiving them along with predefined
requirements from their various end-users and providers. For this purpose, it
broadcasts the requirements and user locations of a submitted service or batch
of services to the resource managers (RMs) of all Fog and Cloud IPs. It then
chooses the most suitable service provider in each case according to the cost and
communication delay that IPs offer. It should be noted that FLEX allows the IP
resource manager to consider its own policy for service placement on available
nodes.

3.3 Detailed Architecture

Fig. 2 shows the components of FLEX: Service Receiver, Service Analyzer, Admission

Control, and Provider Selector. Details on their functionality are explained below.

– Service Receiver: It functions as an interface for submission of provided services.
The requirements of every service, known as the service profile, are specified
in this step. These include the privacy and security concerns, cost and delay
priority, and bandwidth, computing, and storage resource amount. In a latency-
sensitive service, for instance, delay needs to be given a far greater weight than
cost.

– Service Analyzer: It analyzes every service and uses the service profile to store it
in the database of services. Services are classified and sorted here according to
a number of important parameters including the requirement for resource, level
of sensitivity to privacy and security, and latency-sensitivity degree.

8 Sadoon Azizi et al.

Service Reciever

Service Analyzer

Provider SelectorAdmission Control

PX PY PZ

PX

PY

PZ

?

1
2

43

Fig. 2: The details of FLEX architecture.

– Admission Control: It broadcasts requests for service received from the service
analyzer to the Fog and Cloud RM of each Fog and Cloud IP, a stage known
as the process of matchmaking. The RM examines whether the requirements of
each service in each IP can be met. In that case, it obtains cost by estimating the
communication delay between the user’s location and the node considered for
service placement. The RM then includes cost and delay information in response
to admission control, which receives responses from all providers and then sends
the list of providers capable of hosting the service to provider selector along with
relevant information.

– Provider Selector: It chooses the most appropriate provider for placing each ser-
vice according to the list received from admission control. Various methods of
multi-criteria decision-making (MCDM) are used to carry out the process of
provider selection. We propose an efficient heuristic algorithm in Section V and
use it in provider selector. Once an IP is chosen, information is provided to the
IP and service users. The corresponding gateways then store the placed node
address so that the requests for service are redirected to that node.

It should be mentioned that the cross-IP interactions between FRMs and
CRMs and admission control occur only once, immediately after the request for
placement of service. There will be direct communication between the chosen IP
and the end user once served.

The process of placing a service on a multi-Fog and multi-Cloud environment is
illustrated in Fig. 3. The process is initiated when some IoT devices send a service
request, say Sx, to FLEX in order to find an appropriate provider for hosting it
(step 1). Once FLEX receives the request, it estimates its resource requirement
(e.g., CPU, memory, etc) and the importance of delay and cost for that service,
and then forwards the service’s resource requirement to all available FIPs and
CIPs (step 2). After receiving the request, each FIP and CIP checks whether it
has enough resources to host the service or not (step 3). If a provider does not have

Title Suppressed Due to Excessive Length 9

sufficient resources, it rejects the request and informs FLEX (step 4). Otherwise,
it calculates the delay and cost for the service Sx and sends the related values
to FLEX (steps 5-6). Based on the values, FLEX obtains the suitability of each
provider in order to decide which one is the best to host the service. Following
this, the selected provider is informed by FLEX (step 7) and it sends the address
of hosted node, say Fj,l to FLEX (step 8). Next, FLEX publishes this address to
all of the IoT devices that have requested for this service (step 9). Now, the set
of IoT devices I can directly communicate with the hosted node Fj,l and submit
their offloaded tasks to this node (step 10). The hosted node executes the tasks
and returns the results (steps 11-12).

1.Snd(Sx) 2. Fwd (Sx)

3.C
h

k (R
)

3.C
h

k (R
)

3.C
h

k (R
)

3.C
h

k (R
)

3.C
h

k (R
)

5.C
lc (D

x
 ,C

x)

5.C
lc (D

x
 ,C

x)

5.C
lc (D

x
 ,C

x)

5.C
lc (D

x ,C
x)

1FIP jFIP ……….. MFIP 1CIP ……….. NCIP

6. Snd (Dx ,Cx)

..………..

8. Addr (Fj, l)

10.Snd (T| I |)

11
.E

x
e (T

| I |)

12.Res (T| I |)

IoT Devices

Proposed Platform

(FLEX)

4.

7.

9. Addr (Fj, l)

Fig. 3: Sequence diagram.

4 Addressing Service Placement in FLEX

In this section, we formulate the service placement problem as an integer linear
programming model.

10 Sadoon Azizi et al.

4.1 Sets

Let S = {S1,S2, . . . ,Sn} denotes the set of n services in which each service Si has
some specific characteristics. The resource requirement of service Si is represented
as Sr

i where r is belong to R={CPU, memory, bandwidth, storage}. Also, Ss
i is

used to indicate the size of the service Si (in terms of million instructions – MI).
For each service Si, a coefficient αi ∈ [0, 1] shows the importance of delay and cost
for that service.

Let F = {F1,F2, . . . ,FM} be the set of M FIPs where each FIP Fj has |Fj |

FNs. We use Fr
j,l to show the resource capacity of the l-th FN of the FIP Fj

along different r ∈ R dimensions. Similarly, let C = {C1, C2, . . . , CN} is the set of N
CIPs where each provider Ck has |Ck| cloud nodes (CNs). To denote the resource
capacity of the l-th CN of the CIP Ck along the dimension r the symbol Crk,l is
used. c(Fr

j) and c(Crk) are respectively used to define the resource cost of the FIP
Fj and CIP Ck along each dimension. It is worth mentioning that FIPs and CIPs
provide their resources in the form of VMs and/or containers to host IoT services.

4.2 Decision Variables

Decision variables xij,l and yik,l are two main variables of Our model which are
defined as below.

x
i
j,l =

{

1 if service Si is placed on the Fj,l

0 otherwise
(1)

and

y
i
k,l =

{

1 if service Si is placed on the Ck,l

0 otherwise
(2)

4.3 Delay

In this subsection, the delay model for a service service placement strategy in
the proposed system is presented. To calculate the delay of a request for the i-th
service Si, denoted by Di, the following delay factors should be taken into account
in the model.

– Communication time (ci): This is the amount of time a request gets to reach
from an IoT device Iz to the Fog or Cloud node that the i-th service Si is hosted
on it.

ci =
M
∑

j=1

N
∑

k=1

max(|Fj |,|Ck|)
∑

l=1

[

D
(

Iz → Fj,l

)

× x
i
j,l+

D
(

Iz → Ck,l
)

× y
i
k,l

]

, ∀i ∈ S

(3)

where D
(

Iz → Fj,l

)

and D
(

Iz → Ck,l
)

are the communication delay from IoT
device Iz to the l-th FN of the FIP Fj and l-th CN of the CIP Ck, respectively.
Note that if more than one IoT device requests a service, the average of their
communication time is taken into account.

Title Suppressed Due to Excessive Length 11

– Execution time (ei): This is the amount of time required to process the service
request. Thus, we have

ei =
Ss
i

SCPU
i

, ∀i ∈ S (4)

where SCPU
i is the CPU requirement of the i-th service Si (in terms of million

instruction per second - MIPS). Hence, the following equation can be used to
obtain the delay.

Di = 2× ci + ei, ∀i ∈ S (5)

We use the following equation to obtain the total weighted delay for a service
placement strategy.

D =
n
∑

i=1

αi ×Di (6)

4.4 Cost

The cost of a service depends on the provider selected for hosting that service.
The following equation can be used to calculate the cost of service Si.

Ci =
M
∑

j=1

N
∑

k=1

∑

∀r∈R

[

c(Fr
j)× x

i
j,l + c(Crk)× y

i
k,l

]

, ∀i ∈ S (7)

Therefore, the total weighted cost for all of n services can be obtained as
follows.

C =
n
∑

i=1

(1− αi)× Ci (8)

4.5 The Objective Function

The main goal of the proposed FLEX is to solve the problem of service placement
in multi-Fog and multi-Cloud environments in a way that the total weighted delay
and cost of the services is simultaneously minimized. Hence, the final objective
function can be expressed as follows. Let S = {1, 2, . . . ,max(|Fj |, |Ck|)}

min (C+ D) (9)

Subject to the following constraints:

n
∑

i=1

x
i
j,l + y

i
k,l = 1, ∀j ∈ F , ∀k ∈ C, ∀l ∈ S (10)

n
∑

i=1

Sr
i × x

i
j,l ≤ Fr

j,l, ∀j ∈ F , ∀r ∈ R, ∀l ∈ {1, 2, . . . , |Fj |} (11)

12 Sadoon Azizi et al.

n
∑

i=1

Sr
i × y

i
k,l ≤ Crk,l, ∀k ∈ C, ∀r ∈ R, ∀l ∈ {1, 2, . . . , |Ck|} (12)

x
i
j,l ∈ {0, 1}, yik,l ∈ {0, 1} (13)

where constraint (10) ensures that each service can be hosted only to one comput-
ing node. Constraints (11) and (12) respectively guarantee that resource demand
of services must not exceed from the capacity of each Fog and Cloud node. Finally,
the domain of variables are specified by the constraint (13).

Theorem 1 SPP in multi-Fog and multi-Cloud environments is in the class of NP-

hard problems.

Proof. The SPP is a kind of a weighted bin-packing problem. In this case, a
service represents an item, and the FIPs/CIPs are represented bins. In weighted
bin-packing problem, the aim is to select the minimum weighted bin among the
weighted bins such that to minimize the cost of the used item. Similarly, in SPP,
our aim is to find the best FIPS/CIPs that be allocated to the services and help to
minimize cost and delay of the service (i.e., item). Since the weighted bin packing
problem is NP-hard [14], our SPP is also NP-hard.

5 FLEX Heuristic Algorithm

For efficient solution of the SPP, we propose and describe a new heuristic here,
which is aimed mainly to minimize service delay and cost at the same time. For
that purpose, providers are ranked in the algorithm according to the delay and
cost preferences of the service. Therefore, we refer to the proposed heuristic as
minimum cost and delay first (MCD1), where a provider is chosen if it minimizes
weighted delay and cost. The proposed heuristic is detailed below.

5.1 Proposed algorithm

Let us assume that we submit a list of n services to the proposed algorithm in
order to obtain an appropriate provider for each. The algorithm first considers the
sensitivity of the services to delay to sort them, prioritizing those with higher α

values. Admission control then broadcasts the requirements of every given service
and the user locations to all Fog and Cloud IPs, as detailed in Subsection 3.2. Next,
the algorithm waits for all Fog and Cloud RMs that are contacted to respond to
admission control. The responses include three values for each service: (i) a Boolean
value that shows the capability of the provider of hosting the service, (ii) the service
monetary cost, and (iii) an estimate of the delay between the service placement
candidate and user gateway. For each service, the candidate provider list is sent
by admission control according to the Boolean value to provider selector, where
MCD1 is run once the list is received, so that the most appropriate provider is
chosen for each service.

The MCD1 pseudocode is shown in Algorithm 1. Si represents the service
received by the algorithm, P indicates the list of candidate Fog and Cloud IPs,
C and D denote the cost and delay vectors for service Si, presenting the most

Title Suppressed Due to Excessive Length 13

appropriate provider according to the service preferences. Let Cij and Dij be the
cost and delay of provider Pj for service Si, as can be seen in lines 1 and 2.
The providers with maximal cost and delay are found in lines 3 and 4. Lines 5
to 9 involve a loop that aims at scoring providers according to the delay and
cost reported about them and the preferences for service Si. For that purpose, we
obtain the objective function for each of the providers according to the predefined
weight of service Si assigned to cost and delay after normalizing them in lines 6
and 7. After that, the algorithm generates the vector for the objective function, as
can be seen in line 10. In lines 11 to 13, the provider that exhibits the lowest value
for the objective function is finally found and chosen at the destination provider
to host service Si.

Algorithm 1 MCD1 Algorithm
INPUT: Si, P:list of available FIPs and CIPs, C:monetary cost vector for Si, D:delay vector
for Si
OUTPUT: Selecting the most suitable provider for service Si

1: Let Cij ∈ C is the monetary cost of provider Pj for Si;
2: Let Dij ∈ D is the delay of provider Pj for Si;
3: Cmax

j ← find maximum Cij ∈ C;

4: Dmax
j ← find maximum Dij ∈ D;

5: for Each Pj ∈ P do
6: Cnorm

ij ← Cij/C
max
ij ;

7: Dnorm
ij ← Dij/D

max
ij ;

8: Fij ← αi × Cnorm
ij + (1− αi)×Dnorm

ij ;

9: end for
10: Let F is objective function vector for Si;
11: Fmin

j ← find minimum Fij ∈ F;

12: Let Pindex is the provider with the value of Fmin
j ;

13: return Pindex as the destination provider for hosting Si;

5.2 Time complexity

Here the time complexity of the proposed algorithm is analyzed. The complexity
of lines 3 and 4 is O(M + N), where M and N are the number of available FIPs
and CIPs, respectively. Note that |P|= M + N . Lines 5-9, i.e., the normalization
step, also requires O(M +N). Again, the time complexity of line 11 is O(M +N).
Therefore, the overall time complexity of the proposed MCD1 for one service is
O(|P|), i.e., O(M +N).

5.3 An illustrative example

Now, we give an illustrative example to show how our proposed platform works
(see Fig. 4). Let FLEX receives two requests for service Sx from two different
IoT devices. Based on the requests’ characteristics, FLEX estimates the resource
requirements of that service, e.x., SCPU

x = 600 MIPS, Smem
x = 1024 MB, and

14 Sadoon Azizi et al.

Ss
x = 1000 MI plus the coefficient αx = 0.8. Now, FLEX sends this service request

to the resource managers of two FIPs, say FIP1 and FIP2, and two CIPs, say
CIP1 and CIP2. Then, each provider calculates the delay and cost for the service
Sx and informs FLEX about the results. FLEX gathers the responses and creates
a table like Table 1. Finally, it obtain the objective function for each provider (see
eq.16) and selects the one with the minimum value. Here FIP2 is selected and
service Sx is hosted on it.

FLEX

Sx
Sx

Internet

CIP1
CIP2

FIP1

FIP2

Fig. 4: An illustrative example.

Table 1: Information gathered from providers. OF:= Objective Function; FIP:=
Fog infrastructure provider; CIP:= Cloud infrastructure provider.

Providers Delay [ms] Cost [G$ per hour] OF
FIP1 1696.7 301.4 0.45
FIP2 1676.8 306.5 0.44
CIP1 212.3 241.0 0.50
CIP2 2668.5 191.9 0.59

Title Suppressed Due to Excessive Length 15

6 Performance Evaluation

To evaluate the performance of the FLEX platform, we conducted comprehensive
experiments. To this end, we have implemented FLEX using our custom simulation
environment written in Java programming language. All the experiments were
carried out on a PC with Intel Core i7-4790 CPU 3.6 GHz (4 processors), 8 GB
RAM and Windows 10 OS. To achieve results with high statistical confidence, we
repeated each experiment 10 times.

6.1 Simulation settings

For a full understanding of the merits of FLEX and the relevant heuristic, we
demonstrated the effects of a number of scenarios considering four experiments
(Table 2). In all the experiments, we set the ratio of latency-sensitive services,
greatly emphasizing delay, to all services to 25% and the ratio of FIPs to all
providers to 75%. The latency-sensitive services put a lot of emphasis on delay,
e.g., αi ≥ 0.9.

Table 2: Experiments settings. Rate of latency-sensitivity:= R(s); Rate of FIPs:=
F(f).

Experiments Services Providers R(s) F(f)
1 100 8 (25%, 50%, 75%) (25%, 50%, 75%)
2 100 20 (25%, 50%, 75%) (25%, 50%, 75%)
3 500 8 (25%, 50%, 75%) (25%, 50%, 75%)
4 500 20 (25%, 50%, 75%) (25%, 50%, 75%)

We employed a synthetic dataset in the experiments due to the unavailability of
the real one for simulation of services, Fog and Cloud providers, and other aspects
of the environment. The attributes of services are shown in Table 3, and those of
Fog and Cloud nodes appear in Table 4. While we imposed no restriction on the
number of CNs in each CIP, we considered the limited value for the number of
FNs for an FIP, i.e., a value within the [6, 12] range.

Table 3: Attributes of Services.

Parameter Value Unit
CPU requirements [300, 800] (MIPS)
Memory requirements [0.5,2] (GB)
Number of instructions [400, 1500] (MI)

6.2 Simulation metrics

To evaluate the performance of the proposed heuristic algorithm for the FLEX
framework, we use the following metrics in our experiments.

16 Sadoon Azizi et al.

Table 4: Attributes of Fog/Cloud nodes.

Parameter Fog Cloud Unit
Processing power [600,2000] [4000,10000] (MIPS)
Memory capacity [4,8] [16,32] (GB)
CPU usage cost [0.3,0.7] [0.2,0.4] (G$ per MIPS)
Memory usage cost [0.05,0.08] [0.03,0.06] (G$ per MB)
Communications delay [5,15] [50,1250] (ms)

– Average Weighted Delay (AWD): The following equation is used to measure
the delay given by a service placement strategy to host n submitted services on
the considered multi-Fog and multi-Cloud environment.

AWD =
1

n
×

n
∑

i=1

αi ×Di (14)

– Average Weighted Cost (AWC): To evaluate the effectiveness of a service
placement policy in terms of monetary cost, we use the following metric.

AWC =
1

n
×

n
∑

i=1

(1− αi)× Ci (15)

– Objective Function (OF): To measure the performance of a service placement
strategy in both of delay and cost perspective, we define the following metric.

OF =
1

n
×





n
∑

i=1

αi ×
Di

Dmax
i

+ (1− αi)×
Ci

Cmax
i



 (16)

where Dmax
i and Cmax

i denote the maximum possible delay and monetary cost
which are provided for i-th service Si, respectively. It is worth mentioning that
the decreased value of this metric represents the enhanced performance of a
placement strategy in terms of both delay and cost.

6.3 Baseline Algorithms

The performance of the proposed FLEX’s heuristic algorithm, i.e., MCD1, is com-
pared with the following baselines.

– The Most Cost-effective Provider First (MC1): For each service, MC1 se-
lects the provider with the minimum cost for that service.

– The Minimum Delay Provider First (MD1): This algorithm selects the
provider which offers the minimum delay for each service placement request.

– Genetic Algorithm (GA): GA is one of the most used meta-heuristic tech-
niques for the SPP in Fog and Cloud environments, e.g., [39,28,32,43]. Here,
we have implemented our custom GA according to the OF provided in eq. 16.
The initial population and the number of iterations are set to 100 and 500,
respectively. For parent selection, the roulette wheel technique and uniform
probability are respectively applied for the first and second parents. Regarding
crossover, single-point operation is used. Each chromosome participates in one-
point mutation with the rate of 10%. The location of the mutant gene is selected
randomly and replaced by a different value.

Title Suppressed Due to Excessive Length 17

6.4 Results

In this section, we present and discuss the results of the four considered experi-
ments. Tables 5 through 8 respectively show the simulation results for experiments
one to four in terms of AWD and AWC. Also, Figures 5 through 8 demonstrate
the box plot of OF values for experiments one to four respectively. We make some
important observations from the obtained results as follows.

6.4.1 Experiment one

It can be seen in Table 5 that AWD is significantly reduced for all the policies as
FIP rate rises from f = 25% to f = 75%, while the reverse is true of AWC, which
is in line with expectations because an FIP often exhibits greater cost but less
delay than a CIP. Moreover, GA and MCD1 meet the end user’s QoS needs by
hosting more services on FIPs as latency-sensitive service rate rises from s = 25%
to s = 75%. Whereas AWC rises, therefore, AWD decreases. MCD1 obtains far
greater AWC and AWD than GA in all cases, however. Furthermore, the smallest
value of AWD (AWC) is provided by MD1 (MC1), which exhibits the largest value
of AWC (AWD) in virtually all cases, in line with expectations.

From Fig. 5a to Fig. 5c, it is evident that MCD1 has excellent performance.
This is because the proposed MCD1 is the service’s profile aware as it selects the
most suitable provider based on both delay and cost. Here, the improvement is up
to 13.7% in comparison with the second-best approach, i.e., GA.

Table 5: AWD and AWC results of experiment one for #Service=100,
#Providers=8.

Comparing Ratio AWD (ms) AWC (G$)
Algorithms f=25% f=50% f=75% f=25% f=50% f=75%

MC1

s=25%
1884 1839 1786.3 173.6 198.2 196.3

(std=132.3) (std=89.5) (std=81.8) (std=23.3) (std=39.3) (std=33.4)

s=50%
1903 1842.5 1768 168.2 200 216.2

(std=285.3) (std=132.5) (std=133.1) (std=23) (std=40.8) (std=38.1)

s=75%
2004.7 1836.3 1729.5 191.2 211.3 223.2

(std=260) (std=92.2) (std=128.1) (std=34.9) (std=41.1) (std=31.3)

MD1

s=25%
1307.5 1299.2 1254.6 304 357.7 341.6

(std=309.3) (std=120.1) (std=145.8) (std=46.2) (std=36) (std=44.8)

s=50%
1356.3 1250.8 1249.6 329.7 366.2 328.8

(std=203.3) (std=72.5) (std=257.1) (std=48.9) (std=33.6) (std=30.7)

s=75%
1338.8 1246.9 1188.4 346.6 345 351.6

(std=213.7) (std=129.3) (std=200.9) (std=44) (std=28.6) (std=28.4)

GA

s=25%
1788.3 1691.8 1700.5 228.4 238 263.9

(std=99) (std=96.3) (std=81.5) (std=35.3) (std=39.4) (std=43.5)

s=50%
1664.3 1618.8 1590.6 243.7 272.2 283.5

(std=172.3) (std=162) (std=192.1) (std=46.6) (std=44.4) (std=49.8)

s=75%
1568.2 1484.9 1472 285.5 275 310.6

(std=205.5) (std=110.2) (std=92.4) (std=60.8) (std=43.2) (std=34.1)

MCD1

s=25%
1691.5 1618 1643.3 207.2 226.8 252.3

(std=103.3) (std=101.1) (std=108.1) (std=29.8) (std=38.2) (std=32.6)

s=50%
1576.3 1545.8 1498.6 234.7 254 269.1

(std=156.3) (std=178.5) (std=184.1) (std=54) (std=33.6) (std=42.8)

s=75%
1497.4 1409.2 1379.5 259.8 263.3 290.1

(std=229.4) (std=126.1) (std=172.6) (std=42.2) (std=33.1) (std=45.3)

18 Sadoon Azizi et al.

(a) f=25% (b) f=50% (c) f=75%

Fig. 5: Simulation results for experiment one with #Service=100, #Providers=8.

6.4.2 Experiment two

Table 6 demonstrates the performance of the algorithms in terms of the AWD and
AWC. There are two important observations. First, as the rate of latency-sensitive
services increases, the AWD and AWC of MC1 and MD1 do not change much.
However, these values remarkably change for MCD1 and GA. The reason behind
this is that MC1 (MD1) always tries to host services on CIPs (FIPs) as far as
possible. In MCD1 and GA when the rate of latency-sensitive services is low, i.e.,
s = 25%, most of services are placed on CIPs which lead to higher delay and lower
cost. By increasing the vaule of s, FIPs are selected for most of services which
results in lower delay at higher cost. Second, although MC1 (MD1) provides the
best AWC (AWD), it suffers from the worst AWD (AWC). However, the proposed
MCD1 gives the second-best performance both in terms of cost and delay. The OF
results for Experiment two have been displayed in Fig. 6. As can be seen from the
figure, the proposed MCD1 achieves better trade-off between the AWD and AWC
than the other strategies and significantly performs better than the others in all
cases. In particular, the proposed policy can reduce the OF value by 26.8%, 16.1%,
and 8.8% compared to MC1, MD1, and GA, respectively, for the case s=75% and
f=50%.

(a) f=25% (b) f=50% (c) f=75%

Fig. 6: Simulation results for experiment two with #Service=100, #Providers=20.

6.4.3 Experiment three

Table 7 and Fig. 7 show the results of simulation for experiment three. Overall,
the algorithms behave almost similarly to those in experiment one. AWD generally
rises as more services are provide, which makes sense because a larger number of

Title Suppressed Due to Excessive Length 19

Table 6: AWD and AWC results of experiment two for #Service=100,
#Providers=20.

Comparing Ratio AWD (ms) AWC (G$)
Algorithms f=25% f=50% f=75% f=25% f=50% f=75%

MC1

s=25%
1793.5 1752.3 1774.8 174.6 182.5 180

(std=118.5) (std=99.6) (std=96.1) (std=20.9) (std=22) (std=10.3)

s=50%
1784 1831.1 1789.3 172.7 173 185.1

(std=106.4) (std=122.2) (std=134.1) (std=8.5) (std=12.6) (std=11.3)

s=75%
1789.8 1825.1 1802.6 171.3 172.4 180

(std=153.5) (std=117.8) (std=87.1) (std=14) (std=12.9) (std=13.7)

MD1

s=25%
1311.4 1225.1 1193 323.3 354.6 345.4

(std=265) (std=91.4) (std=290.8) (std=34.3) (std=26.5) (std=37.4)

s=50%
1333.5 1254.3 1170 347.5 357.2 349

(std=137.8) (std=100) (std=225) (std=27.8) (std=41.3) (std=38.7)

s=75%
1275.4 1224.8 1223.3 351.1 355.8 350.3

(std=148.8) (std=121.3) (std=202.1) (std=32.3) (std=40.2) (std=38.8)

GA

s=25%
1656.7 1647.4 1714.4 223.3 229.9 223.6

(std=112.2) (std=99.9) (std=107.5) (std=17.3) (std=34.3) (std=14.8)

s=50%
1630.8 1531.3 1642.3 242 265.2 258

(std=154.5) (std=194.9) (std=179.5) (std=40.2) (std=73.7) (std=44.8)

s=75%
1500.4 1447.1 1486.3 275.7 293.6 301.6

(std=170.5) (std=97.7) (std=97.1) (std=40.8) (std=49.9) (std=45.5)

MCD1

s=25%
1613.9 1599.8 1661.6 204.3 220.7 210

(std=100.9) (std=114) (std=121.1) (std=8.6) (std=32.1) (std=13.3)

s=50%
1557.5 1455.4 1575.1 224.7 255 242.8

(std=161.3) (std=189.7) (std=171.8) (std=31.9) (std=54.6) (std=36.5)

s=75%
1461.5 1384.5 1398.5 241.2 286.3 277.1

(std=168.7) (std=94) (std=91.1) (std=30.2) (std=44.1) (std=439.4)

services should be placed on CIPs in that case. As the rates of FIPs and latency-
sensitive services both rise, significantly greater values of AWD are exhibited by
MD1 and the proposed algorithm than by MC1 and GA. For AWC, however, the
rise is far less in the case of MCD1 than for MD1, since the former algorithm
prefers a CIP for a latency-tolerant service despite the simultaneous availability
of FIPs.

(a) f=25% (b) f=50% (c) f=75%

Fig. 7: Simulation results for experiment three with #Service=500,
#Providers=8.

20 Sadoon Azizi et al.

Table 7: AWD and AWC results of experiment three for #Service=500,
#Providers=8.

Comparing Ratio AWD (ms) AWC (G$)
Algorithms f=25% f=50% f=75% f=25% f=50% f=75%

MC1

s=25%
1830.7 1727.7 1757.6 179.2 197.1 206.6

(std=175.1) (std=117.2) (std=103.1) (std=15.6) (std=37.8) (std=30.8)

s=50%
1814.2 1783.7 1703.9 184 189.9 207.2

(std=109.3) (std=91.2) (std=100.6) (std=17.8) (std=21.9) (std=47.3)

s=75%
1786.6 1771.5 1656.1 193.4 195.7 219.4

(std=72.2) (std=78.6) (std=112.1) (std=19) (std=24.3) (std=37.8)

MD1

s=25%
1400.9 1306.8 1155.3 344.5 359.9 367.4

(std=63.7) (std=48.4) (std=157.9) (std=45.5) (std=31) (std=37.1)

s=50%
1370.2 1313.8 1183.3 338.2 380.8 371

(std=61.5) (std=122.2) (std=120.7) (std=33.8) (std=32) (std=33.7)

s=75%
1361.2 1293.2 1234.8 353.6 344.8 371.6

(std=101.2) (std=172.3) (std=126) (std=36.8) (std=27) (std=37.1)

GA

s=25%
1689 1656.2 1706.2 239.3 256.9 269.1

(std=113.9) (std=78.8) (std=69.9) (std=33) (std=32.5) (std=35.4)

s=50%
1655.4 1641.6 1504 249.1 265 260.7

(std=148.4) (std=110.4) (std=157.7) (std=31.9) (std=34.3) (std=41.1)

s=75%
1564.5 1537 1450.7 274.6 279.3 282.9

(std=112.1) (std=147.7) (std=138.5) (std=34.3) (std=35.6) (std=36.9)

MCD1

s=25%
1624.1 1581 1649.7 215.3 238.4 240.8

(std=92.3) (std=85.6) (std=86.8) (std=24.9) (std=30.7) (std=30.6)

s=50%
1578.5 1573.8 1434 230.8 249.4 244.6

(std=132.5) (std=139.3) (std=174.8) (std=22.6) (std=26.8) (std=45.1)

s=75%
1492.1 1443.9 1345.6 246.5 249.3 265.6

(std=110.7) (std=135.1) (std=134.3) (std=22.1) (std=38.7) (std=38.4)

6.4.4 Experiment four

Table 8 and Figs. 8a to 8c show the results of experiment four. From the table and
figures, we can again observe that by considering both of the AWD and AWC, the
proposed MCD1 shows the best performance in all cases.

(a) f=25% (b) f=50% (c) f=75%

Fig. 8: Simulation results for experiment one with #Service=500, #Providers=20.

7 Discussion

In the following, we discuss the limitations of FLEX and give some research direc-
tions in the domain of service placement in multi-Fog and multi-Cloud environ-
ments.

Title Suppressed Due to Excessive Length 21

Table 8: AWD and AWC results of experiment four for #Service=500,
#Providers=20.

Comparing Ratio AWD (ms) AWC (G$)
Algorithms f=25% f=50% f=75% f=25% f=50% f=75%

MC1

s=25%
2391.7 2017.3 1803.4 167.2 187.9 193.2

(std=552.2) (std=285.6) (std=60.3) (std=20.2) (std=19.9) (std=20.8)

s=50%
2110.1 1952.5 1789.1 173.4 171.4 184.6

(std=470.1) (std=274.3) (std=70) (std=15) (std=8.6) (std=13.4)

s=75%
2201 2047.3 1805.3 166.1 176.7 186.3

(std=432.7) (std=347.3) (std=83) (std=16.9) (std=14.1) (std=21.8)

MD1

s=25%
1215 1143.6 1054.3 361.9 387.6 373.7

(std=162.4) (std=148.2) (std=232.2) (std=38.1) (std=37) (std=39.1)

s=50%
1222.8 1165.6 1086.7 349 381.2 379.7

(std=172.2) (std=197.9) (std=258.7) (std=45.4) (std=45.6) (std=23)

s=75%
1242.4 1160.6 1057.5 358.1 359.5 350.4

(std=153.6) (std=126.2) (std=244) (std=38.2) (std=24) (std=29.6)

GA

s=25%
2196.7 1829.4 1700.1 204.6 221.3 241.3

(std=515.6) (std=179.1) (std=62.9) (std=27.1) (std=30.1) (std=34.8)

s=50%
1680.3 1592.9 1555.8 264.4 279.5 273.5

(std=436.3) (std=229.9) (std=210.7) (std=58.1) (std=53.8) (std=52.2)

s=75%
1435.9 1381.1 1345.7 282.3 287.2 294.2

(std=113.2) (std=93.8) (std=189.5) (std=35.5) (std=35.8) (std=30.4)

MCD1

s=25%
2128.7 1742 1624.6 190.6 201.2 219.5

(std=519.2) (std=131.4) (std=83.4) (std=23.3) (std=17.8) (std=21.6)

s=50%
1562.3 1520.2 1480 246.4 232.7 251.6

(std=441.9) (std=219.7) (std=241.8) (std=46.4) (std=47.2) (std=33.6)

s=75%
1354 1309.8 1225.8 265 252.4 277.1

(std=141.5) (std=78.4) (std=226.3) (std=31.1) (std=42.1) (std=39.7)

One of the main responsibilities of FLEX is the estimation of a service’s re-
source requirements. However, this is not a trivial task and needs careful analysis
of the set of IoT requests for that service. The dynamicity of requests such as their
frequency rate, priority of delay and cost, and security and privacy concerns can
further increase the complexity of this phase. To address this issue, we aim to use
machine learning methods such as deep reinforcement learning (DRL) as future
work.

In IoT-Fog-Cloud architectures, changes in the profile of IoT devices, e.g.,
mobility, and Fog/Cloud infrastructure providers, e.g., availability, is inevitable
and this gives rise to the service migration problem. Therefore, as another future
research direction, this important feature can be investigated and applied in FLEX.

Serverless computing is an emerging computing and a ”pay-per-use” model
for on-demand processing of requests [20,8,4]. This model allows application and
service developers to focus only on their code without thinking about manag-
ing servers. Given that the number of Serverless computing providers in Edge
and Cloud environments is expected to significantly increase, this is viable for
FLEX to be extended for function placement in Serverless computing with multi-
ple providers.

22 Sadoon Azizi et al.

8 Conclusions and Future Work

The current research presented a novel platform, known as FLEX, for the SPP
in a multi-Fog and multi-Cloud computing environment, which offers two signif-
icant characteristics: flexibility and scalability. It is considered flexible since it
enables FIPs and CIPs to implement their own strategies for placing services. It
is regarded as a scalable platform since it facilitates the addition of new Fog and
Cloud providers. We formulated the SPP as a problem of optimization in order to
minimize cost and delay and then solved the problem efficiently by presenting a
cost- and delay-aware algorithm. We used a simulation environment to implement
FLEX and assessed its performance by conducting a variety of experiments. Ac-
cording to the results of simulation, the presented heuristic exhibits significantly
higher performance than the baseline policies. Application of techniques from the
game theory in the provider selection step is a future line of research that we plan
to pursue. Also, we aim to take more criteria into account for the provider selection
such as reliability, availability, and so on.

Declarations

Ethical Approval

This manuscript has not been published and is not under consideration for publi-
cation elsewhere.
Competing interests

The authors have no competing interests to declare that are relevant to the content
of this article.
Authors’ contributions

Sadoon Azizi conceived of the presented idea. Sadoon Azizi and Pedram Farzin
wrote the original draft. Sadoon Azizi, Mohammad Shojafar and Omer Rana
shaped the research and commented on the manuscript. Pedram Farzin made the
simulations. All authors reviewed the manuscript.
Funding

No funding was received for conducting this study.
Availability of data and materials

The dataset used in this study is available in the text.

References

1. Number of Internet of Things (IoT) connected devices worldwide from 2019 to
2030. https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
(Accessed: 2021-09-05)

2. Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing ama-
zon ec2 spot instance pricing. ACM Transactions on Economics and Computation (TEAC)
1(3), 1–20 (2013)

3. Alencar, D., Both, C., Antunes, R., Oliveira, H., Cerqueira, E., Rosário, D.: Dynamic
microservice allocation for virtual reality distribution with qoe support. IEEE Transactions
on Network and Service Management (2021)

4. Aslanpour, M.S., Toosi, A.N., Cicconetti, C., Javadi, B., Sbarski, P., Taibi, D., Assuncao,
M., Gill, S.S., Gaire, R., Dustdar, S.: Serverless edge computing: vision and challenges.
In: 2021 Australasian Computer Science Week Multiconference, pp. 1–10. IEEE (2021)

5. Baranwal, G., Yadav, R., Vidyarthi, D.P.: Qoe aware iot application placement in fog
computing using modified-topsis. Mobile Networks and Applications 25(5), 1816–1832
(2020)

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

Title Suppressed Due to Excessive Length 23

6. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: A platform for internet of
things and analytics. In: Big data and internet of things: A roadmap for smart environ-
ments, pp. 169–186. Springer (2014)

7. Cao, X., Tang, G., Guo, D., Li, Y., Zhang, W.: Edge federation: Towards an integrated
service provisioning model. IEEE/ACM Transactions on Networking 28(3), 1116–1129
(2020)

8. Castro, P., Ishakian, V., Muthusamy, V., Slominski, A.: The rise of serverless computing.
Communications of the ACM 62(12), 44–54 (2019)

9. Dhingra, S., Madda, R.B., Gandomi, A.H., Patan, R., Daneshmand, M.: Internet of things
mobile–air pollution monitoring system (iot-mobair). IEEE Internet of Things Journal
6(3), 5577–5584 (2019)

10. Farzin, P., Azizi, S., Shojafar, M., Rana, O., Singhal, M.: Flex: a platform for scalable
service placement in multi-fog and multi-cloud environments. In: Australasian Computer
Science Week 2022, pp. 106–114 (2022)

11. Ghaemi, S., Khazaei, H., Musilek, P.: Chainfaas: An open blockchain-based serverless
platform. IEEE Access 8, 131,760–131,778 (2020)

12. Goudarzi, M., Wu, H., Palaniswami, M., Buyya, R.: An application placement technique
for concurrent iot applications in edge and fog computing environments. IEEE Transac-
tions on Mobile Computing 20(4), 1298–1311 (2020)

13. Grozev, N., Buyya, R.: Multi-cloud provisioning and load distribution for three-tier ap-
plications. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 9(3), 1–21
(2014)

14. Hartmanis, J.: Computers and intractability: a guide to the theory of np-completeness
(michael r. garey and david s. johnson). Siam Review 24(1), 90 (1982)

15. Hassan, H.O., Azizi, S., Shojafar, M.: Priority, network and energy-aware placement of
iot-based application services in fog-cloud environments. IET communications 14(13),
2117–2129 (2020)

16. Hernández, Á.B., Perez, M.S., Gupta, S., Muntés-Mulero, V.: Using machine learning to
optimize parallelism in big data applications. Future Generation Computer Systems 86,
1076–1092 (2018)

17. Hudson, N., Khamfroush, H., Lucani, D.E.: Qos-aware placement of deep learning services
on the edge with multiple service implementations. arXiv preprint arXiv:2104.15094 (2021)

18. Iyer, G.N., Raman, V., Aswin, K., Veeravalli, B.: On the strategies for risk aware cloud and
fog broker arbitrage mechanisms. In: 2020 Fourth International Conference on Computing
Methodologies and Communication (ICCMC), pp. 794–799. IEEE (2020)

19. Javed, B., Bloodsworth, P., Rasool, R.U., Munir, K., Rana, O.: Cloud market maker: An
automated dynamic pricing marketplace for cloud users. Future Generation Computer
Systems 54, 52–67 (2016)

20. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.C., Khandelwal, A., Pu, Q., Shankar,
V., Carreira, J., Krauth, K., Yadwadkar, N., et al.: Cloud programming simplified: A
berkeley view on serverless computing. arXiv preprint arXiv:1902.03383 (2019)

21. Kassab, W., Darabkh, K.A.: A–z survey of internet of things: Architectures, protocols,
applications, recent advances, future directions and recommendations. Journal of Network
and Computer Applications 163, 102,663 (2020)

22. Liu, L., Zhang, M., Buyya, R., Fan, Q.: Deadline-constrained coevolutionary genetic algo-
rithm for scientific workflow scheduling in cloud computing. Concurrency and Computa-
tion: Practice and Experience 29(5), e3942 (2017)

23. Luo, J., Yin, L., Hu, J., Wang, C., Liu, X., Fan, X., Luo, H.: Container-based fog computing
architecture and energy-balancing scheduling algorithm for energy iot. Future Generation
Computer Systems 97, 50–60 (2019)

24. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: A taxonomy, survey and future
directions. In: Internet of everything, pp. 103–130. Springer (2018)

25. Mahmud, R., Ramamohanarao, K., Buyya, R.: Edge affinity-based management of appli-
cations in fog computing environments. In: 12th IEEE/ACM International Conference on
Utility and Cloud Computing, pp. 61–70. IEEE/ACM (2019)

26. Mahmud, R., Ramamohanarao, K., Buyya, R.: Application management in fog comput-
ing environments: A taxonomy, review and future directions. ACM Computing Surveys
(CSUR) 53(4), 1–43 (2020)

27. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Profit-aware application
placement for integrated fog–cloud computing environments. Journal of Parallel and Dis-
tributed Computing 135, 177–190 (2020)

24 Sadoon Azizi et al.

28. Maia, A.M., Ghamri-Doudane, Y., Vieira, D., de Castro, M.F.: An improved multi-
objective genetic algorithm with heuristic initialization for service placement and load
distribution in edge computing. Computer Networks 194, 108,146 (2021)

29. Mukherjee, M., Shu, L., Wang, D.: Survey of fog computing: Fundamental, network ap-
plications, and research challenges. IEEE Communications Surveys & Tutorials 20(3),
1826–1857 (2018)

30. Nanda, A., Puthal, D., Rodrigues, J.J., Kozlov, S.A.: Internet of autonomous vehicles
communications security: overview, issues, and directions. IEEE Wireless Communications
26(4), 60–65 (2019)

31. Natesha, B., Guddeti, R.M.R.: Heuristic-based iot application modules placement in the
fog-cloud computing environment. In: 2018 IEEE/ACM International Conference on Util-
ity and Cloud Computing Companion (UCC Companion), pp. 24–25. IEEE (2018)

32. Natesha, B., Guddeti, R.M.R.: Adopting elitism-based genetic algorithm for minimizing
multi-objective problems of iot service placement in fog computing environment. Journal
of Network and Computer Applications 178, 102,972 (2021)

33. Nayeri, Z.M., Ghafarian, T., Javadi, B.: Application placement in fog computing with ai
approach: Taxonomy and a state of the art survey. Journal of Network and Computer
Applications p. 103078 (2021)

34. Omer, S., Azizi, S., Shojafar, M., Tafazolli, R.: A priority, power and traffic-aware vir-
tual machine placement of iot applications in cloud data centers. Journal of Systems
Architecture 115, 101,996 (2021)

35. Qi, J., Yang, P., Min, G., Amft, O., Dong, F., Xu, L.: Advanced internet of things for
personalised healthcare systems: A survey. Pervasive and Mobile Computing 41, 132–149
(2017)

36. ur Rehman, M.H., Yaqoob, I., Salah, K., Imran, M., Jayaraman, P.P., Perera, C.: The
role of big data analytics in industrial internet of things. Future Generation Computer
Systems 99, 247–259 (2019)

37. Sami, H., Mourad, A.: Dynamic on-demand fog formation offering on-the-fly iot service
deployment. IEEE Transactions on Network and Service Management 17(2), 1026–1039
(2020)

38. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges. IEEE
internet of things journal 3(5), 637–646 (2016)

39. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized iot service
placement in the fog. Service Oriented Computing and Applications 11(4), 427–443 (2017)

40. Skarlat, O., Schulte, S.: Fogframe: a framework for iot application execution in the fog.
PeerJ Computer Science 7, e588 (2021)

41. Skarlat, O., Schulte, S., Borkowski, M., Leitner, P.: Resource provisioning for iot services
in the fog. In: 2016 IEEE 9th international conference on service-oriented computing and
applications (SOCA), pp. 32–39. IEEE (2016)

42. Sonkoly, B., Czentye, J., Szalay, M., Németh, B., Toka, L.: Survey on placement methods
in the edge and beyond. IEEE Communications Surveys & Tutorials (2021)

43. Sriraghavendra, M., Chawla, P., Wu, H., Gill, S.S., Buyya, R.: Dosp: A deadline-aware
dynamic service placement algorithm for workflow-oriented iot applications in fog-cloud
computing environments. In: Energy Conservation Solutions for Fog-Edge Computing
Paradigms, pp. 21–47. Springer (2022)

44. Sterz, A., Felka, P., Simon, B., Klos, S., Klein, A., Hinz, O., Freisleben, B.: Multi-
stakeholder service placement via iterative bargaining with incomplete information.
IEEE/ACM Transactions on Networking (2022)

45. Tasiopoulos, A., Ascigil, O., Psaras, I., Toumpis, S., Pavlou, G.: Fogspot: Spot pricing for
application provisioning in edge/fog computing. IEEE Transactions on Services Comput-
ing (2019)

46. Velasquez, K., Abreu, D.P., Paquete, L., Curado, M., Monteiro, E.: A rank-based mecha-
nism for service placement in the fog. In: 2020 IFIP Networking Conference (Networking),
pp. 64–72. IEEE (2020)

47. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong,
J., Jue, J.P.: All one needs to know about fog computing and related edge computing
paradigms: A complete survey. Journal of Systems Architecture 98, 289–330 (2019)

48. Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X., Cankaya, H.C., Zhang, Q.,
Xie, W., Jue, J.P.: Fogplan: A lightweight qos-aware dynamic fog service provisioning
framework. IEEE Internet of Things Journal 6(3), 5080–5096 (2019)

Title Suppressed Due to Excessive Length 25

49. Zeinab, K.A.M., Elmustafa, S.A.A.: Internet of things applications, challenges and related
future technologies. World Scientific News 2(67), 126–148 (2017)

50. Zikria, Y.B., Ali, R., Afzal, M.K., Kim, S.W.: Next-generation internet of things (iot):
Opportunities, challenges, and solutions. Sensors 21(4), 1174 (2021)

	Introduction
	Related Work
	FLEX Platform
	Addressing Service Placement in FLEX
	FLEX Heuristic Algorithm
	Performance Evaluation
	Discussion
	Conclusions and Future Work

