1. Bracken, C.J. et al. Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2. Nat Chem Biol 17, 113-121 (2021).
2. Chen, M. et al. Nanotraps for the containment and clearance of SARS-CoV-2. Matter 4, 2059-2082 (2021).
3. Chung, Y.H., Beiss, V., Fiering, S.N. & Steinmetz, N.F. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS Nano 14, 12522-12537 (2020).
4. Huang, W.C. et al. SARS-CoV-2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination. Adv Mater 32, e2005637 (2020).
5. Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115-119 (2020).
6. Li, C. et al. Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell 185, 1389-1401 e1318 (2022).
7. Li, Z. et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat Nanotechnol 16, 942-951 (2021).
8. Shi, R. et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120-124 (2020).
9. Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616-622 (2021).
10. Zhang, H. et al. Inhalable nanocatchers for SARS-CoV-2 inhibition. Proc Natl Acad Sci U S A 118, e2102957118 (2021).
11. Zost, S.J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443-449 (2020).
12. Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676-681 (2022).
13. Sun, M. et al. Spherical Neutralizing Aptamer Inhibits SARS-CoV-2 Infection and Suppresses Mutational Escape. J Am Chem Soc 143, 21541-21548 (2021).
14. Arvin, A.M. et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 584, 353-363 (2020).
15. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220 (2020).
16. Tang, Z. et al. A materials-science perspective on tackling COVID-19. Nat Rev Mater, 5, 847–860 (2020).
17. Huang, X. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat Nanotechnol, 17, 1027–1037 (2022).
18. Bachmann, M.F. & Jennings, G.T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10, 787-796 (2010).
19. Blume, J.E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun 11, 3662 (2020).
20. Sperling, R.A., Rivera Gil, P., Zhang, F., Zanella, M. & Parak, W.J. Biological applications of gold nanoparticles. Chem Soc Rev 37, 1896-1908 (2008).
21. Yang, M. et al. Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nat Chem 9, 287-294 (2017).
22. Malay, A.D. et al. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 569, 438-442 (2019).
23. Silveira, G.D. et al. Supraparticle Nanoassemblies with Enzymes. Chem Mater 31, 7493-7500 (2019).
24. McMillan, J.R., Hayes, O.G., Winegar, P.H. & Mirkin, C.A. Protein Materials Engineering with DNA. Acc Chem Res 52, 1939-1948 (2019).
25. Kostiainen, M.A. et al. Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nat Nanotechnol 8, 52-56 (2013).
26. Li, S. et al. Single- and multi-component chiral supraparticles as modular enantioselective catalysts. Nat Commun 10, 4826 (2019).
27. Park, J.I. et al. Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles. Nat Commun 5, 3593 (2014).
28. Xu, L. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 601, 366-373 (2022).
29. Zhang, J. et al. Spatially Patterned Neutralizing Icosahedral DNA Nanocage for Efficient SARS-CoV-2 Blocking. J Am Chem Soc 144, 13146-13153 (2022).
30. Palika, A. et al. An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. Nat Nanotechnol 16, 918-925 (2021).
31. Zhang, G. et al. A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination. Nat Nanotechnol 17, 993-1003 (2022).
32. Lauster, D. et al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat Nanotechnol 15, 373-379 (2020).
33. Cagno, V. et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater 17, 195-203 (2018).
34. Monopoli, M.P., Aberg, C., Salvati, A. & Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7, 779-786 (2012).
35. Ai, X. et al. Surface Glycan Modification of Cellular Nanosponges to Promote SARS-CoV-2 Inhibition. J Am Chem Soc 143, 17615-17621 (2021).
36. Cha, S.H. et al. Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. ACS Nano 9, 9097-9105 (2015).
37. Noy-Porat, T. et al. A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes. Nat Commun 11, 4303 (2020).
38. Yao, H. et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell 183, 730-738 e713 (2020).
39. Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114-119 (2021).
40. Ching-Lin Hsieh, J.A.G., Jeffrey M. Schaub, Andrea M. DiVenere, Hung-Che Kuo, Kamyab Javanmardi, Kevin C. Le, Daniel Wrapp, Alison G. Lee, Yutong Liu, Chia-Wei Chou, Patrick O. Byrne, Christy K. Hjorth, Nicole V. Johnson, John Ludes-Meyers, Annalee W. Nguyen, Juyeon Park, Nianshuang Wang, Dzifa Amengor, Jason J. Lavinder, Gregory C. Ippolito, Jennifer A. Maynard, Ilya J. Finkelstein, Jason S. McLellan Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501-1505 (2020).
41. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263 (2020).
42. Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642-648 (2020).
43. Gonzalez-Rubio, G. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472-1477 (2020).
44. Ben-Moshe, A. et al. The chain of chirality transfer in tellurium nanocrystals. Science 372, 729-733 (2021).
45. Lu, J. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 371, 1368-1374 (2021).
46. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology 5, 783-787 (2010).