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ABSTRACT

This article investigates the inverse design of a reconfigurable multi-band patch antenna based on graphene for terahertz

applications to operate frequency range (2THz – 5THz). In the first step, this article evaluates the dependence of the antenna

radiation characteristics on its geometric parameters and the graphene properties. The simulation results show that it is

possible to achieve up to 8.8 dB gain, 13 frequency bands, and 360°beam steering. Then and due to the complexity of the

design of graphene antenna, a deep neural network (DNN) is used to predict the antenna parameters by given inputs like

desired realized gain, main lobe direction, half power beam width, and return loss in each resonance frequency. The trained

DNN model predicts almost with 93% accuracy and 3% mean square error in the shortest time. Then, this network was used to

design five-band and three-band antennas, and it has been shown that the desired antenna parameters are achieved with

negligible errors. Therefore, the proposed antenna finds many potential applications in the THz frequency band.

Introduction

Nowadays, the terahertz band is used in wireless telecommunications1, hyperthermia treatment of breast cancer2, biomedical

imaging, security screening, and material identification3 due to its remarkable properties. In wireless communication, the need

for multi-band antennas has increased due to a reduction in the number of antennas, a reduction in the complexity and cost of

the system, and providing the possibility of integration with other circuits of the structure4, 5.

On the other hand, the use of graphene has been very impressive in recent years in the field of Nano-electronic and THz

devices due to its high conductivity and the changeability of the conductivity by tuning the bias voltage. The use of graphene

in THz imaging6, patch antennas7–9 ultra-broadband absorbers10, and photoconductive antennas11 has been reported. In12, a

dual-band antenna with an average gain of 2.45 dB is designed by creating two circle strips on the graphene. In13, a three-band

frequency reconfigurable antenna has been proposed for a slotted patch graphene antenna. In14, a three-band antenna is

implemented with a series feed circle graphene patch with a gain close to 10 dB. In15, a four-band antenna has been reported

for a four L-shaped stub graphene patch antenna. Generally, for graphene antennas, it is possible to change the number of

operating frequency bands by the variation of graphene chemical potential, similar to16, 17 in which a four-band and three-band

graphene antenna has been designed with the gain of 2.58 dB and 9.51 dB, respectively.

Making less computational time of resources with an acceptable result is of substantial importance in electromagnetic

applications. In this regard, the machine learning approach has recently demonstrated outstanding performance compared to the

computational and iterative methods in dealing with electromagnetic problems. Deep learning (DL) or DNN is a subset of

machine learning (ML) with more robust computing capabilities, which is based on neural networks (NNs) and can learn the

nexus between inputs and outputs. After learning, the designed model based on trained data can show a reasonable prediction

as outputs for various given inputs in a fraction of a second. By taking advantage of this, DL was a suitable technique for

inverse scattering problems18, 19, metasurface design20, 21, beamforming22, 23, design of antenna24–26.

We have classified using the neural networks in antenna design into three approaches. First, NNs and ML enhance some

radiation properties by optimizing the antenna parameters and can not control antenna radiation patterns in real-time27. Second,

by giving the antenna dimensions as input, the antenna radiation will be estimated as output in real-time so DL and ML can

speed up the antenna simulation directly24, 25. And third, the most widely used method is the inverse design of the antenna using

DL. The required radiation pattern characteristics are provided as input, and the DNN’s output estimates the antenna parameters.

In this case, depending on the circumstances, the antenna parameters may be fully adjustable or non-adjustable22, 26. Although

in23 a VO2 is used as a reconfigurable component in the antenna, the proposed DNN outputs geometrical antenna parameters.

In this article, an inverse design of reconfigurable graphene circular patch antenna at THz frequencies is proposed and

surveyed to the realization of an intelligent antenna for 6G wireless communication. Also, for the first time we apply a chemical



potential of graphene as a reconfigurable component in the output of DNN to control the radiation properties in real-time. The

antenna parameters are divided into two groups, variable and constant parameters. After analysis we generate data set with

variable parameters then filter data set with two conditions. Then, a deep neural network is presented, which can accurately

estimate the values of the structural parameters of the antenna for desired the number of frequency bands and the main lobe

directions. So we could control the radiation parameters of the graphene antenna with reconfigurable parameters of graphene

and antenna geometry.

For this, in section II, the design and simulation of the antenna have been discussed. Then, the used deep learning method

will be explained and the achieved results have been examined in section III. Finally, some conclusions are remarked.

1 Antenna Design and Simulation

The flow chart of the activity steps is plotted in Fig. 1. At first, the behavior and dependency of the antenna characteristics

on its parameters are investigated by taking into account the antenna parameters are divided into two groups, variable and

constant parameters (see Fig. 1 (a)). Secondly, the data needed for training the DNN model is generated by changing variable

parameters in antenna simulations (see Fig. 1(b)). Thirdly, after coding and excerpting the data, we organized it to achieve

better performance for the DNN model (see Fig. 1(c)). Finally, we present a DNN model, which can accurately estimate the

values of the thickness of the substrate, τ , and µc for desired inputs. In this work, Desired inputs of DNN comprise resonance

frequencies, realized gain, null level, main lobe direction, and half-power beam width (see Fig. 1(d)). Based on the mentioned

procedure, each section will be explained below.

Figure 1. flow chart of the main steps in the inverse design of graphene patch antenna

1.1 Antenna structure definition
The structure of the antenna along with its parameters is plotted in Fig. 2. As shown in this figure, the structure is comprised of

three layers. At the top and bottom, a graphene layer with thickness Hg = 0.08mm and temperature Tk = 273K is deposited.

For the middle layer, a silicon layer by the relative permeability εr = 11.9 and conductivity σ = (25∗10−5) is used. The other

characteristics and dimensions of layers are given in table. 1. A 50-ohm microstrip feed line is used in this structure, as shown

in Fig. 1. After the explanation of the antenna structure, the influence of parameters on the radiation characteristics is explained

in the next section.

1.2 Antenna parameter study and the generation of data sets
In this section, the effect of antenna parameters on the radiation properties is studied and the results are categorized to learn the

neural network. For this, full-wave simulations are done in CST Microwave Studio. The study parameters include chemical

2/8



Parameters Range

µc [0-2] eV

τ [0.1-1] ps

Hs [10-30] µm

Ws and Ls [50-90] µm

Rp [15-25] µm

Hg [0.01-0.1] µm

Wf [4-12] µm

L f [8-20] µm

Table 1. Range of initial values of the antenna parameters

potential (µc = [0-7] eV ), relaxation time (τ = [0.1-2] ps), substrate thickness (Hs = [20,30] µm), the width of the substrate (Ws

= [70,90] µm), the patch radius (Rp = [18,25] µm), the feed length (L f = 17 µm), the feed width (Wf = 6 µm), and the graphene

thickness (Hg = 0.08 µm) . Finally, the number of simulations is equal to 2880. It is worth mentioning that the simulations are

done in the frequency range of [1-5] THz and S11, radiation pattern in E-plane, and realized gain is extracted in 101 equally

spaced frequency points in the mentioned bandwidth. Then, the number and directions of main beams are extracted from the

realized gain data based on the condition Grealized > 1dB. Furthermore, the number of frequency bands is determined on the

condition that |S11| > 10dB. In the next step, the dependency of the antenna characteristics on the parameter values will be

investigated.

1.3 Studying the dependence of antenna characteristics on the values of its parameters

In Figs. 3 (a) and (b), the number of frequency bands is studied as a function of the relaxation time and the chemical potential

for Hs = 20 µm and Hs = 30 µm, respectively. As shown in this figure, the number of frequency bands enhances with increasing

chemical potential. Also, the antenna with a thicker substrate will create more frequency bands. Furthermore, Changing

the relaxation time will not affect the increase in the number of frequency bands for the zero chemical potential. It is worth

mentioning that in Fig. 3, the color bar is devoted to relaxation time to make more clearance. Similarly, in Figs. 3 (c) and (d)

the center of the frequency bands which is named here as the resonance frequency, has been studied. As shown in this figure,

multi-band operation is achieved for lower values of relaxation time chemical potential. Likewise, high values of chemical

potential and relaxation time will result in higher frequency bands. Resonance frequencies in the range of [2-3] THz are

achieved if Hs=30 µm. In the same manner, Figs. 3 (e) and (f) are devoted to studying gain. As shown in these figures, the

values of gain are distributed in the range of [1-8.8]dB. Furthermore, higher gain values are achieved for thicker substrates and

lower chemical potentials. In Figs. 3 (g) and (h), the angles of the main lobe directions are plotted. Based on the presented

results in this figure, the distribution of the main lobe angle is wider for higher values of relaxation time, chemical potentials,

and substrate thickness and can cover all the range of [0-360] degrees.

Figure 2. The structure of the patch antenna
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a b c d

e f h g

Figure 3. the study of the radiation properties of the antenna as a function of relaxation time (τ), and chemical potential (µc).

antenna. The number of frequency bands (a,b), resonance frequency [THz] (c,d), gain [dB] (e,f), and main beam direction

[degree] (g, h).

2 Deep learning

Artificial neural networks are machine learning techniques inspired by the human nervous system. The neural network consists

of interconnected neurons, and by changing the weight of the interconnected neurons, they can learn the input and output

relationship and generalize it based on empirical knowledge. Fig. 4 shows the schematic of a neural network. In this figure, n is

the number of inputs and xi is the value of each input. Each input has a specific weight called wi, which is multiplied by the

input and added. After summation, an activation function (φ ) is provided to estimate the output, which can be biased with an

initial value (b). In equation (1), the output and input of the neural network are presented. Neural networks include an input

layer, one/several hidden layers, and an output layer, and each layer has a specific number of neurons. Also, the weights of

each neuron will change during a back propagation process to learn the input and output relationship pattern. In general, as the

number of neurons and hidden layers increases, the ANN network becomes more DNN, which will cause the complexity of the

model.

Y = φ(
n

∑
i=1

WiXi +bi) (1)

Figure 4. Schematic of neural network

In this research, the inputs of the deep neural network include the number of bands, the resonance frequencies of the bands,

the beam direction, the half-power beam width, the gain, and the depth value of S11 at each resonance frequency of the antenna.

After the presented neural network has been learned, the required antenna parameters including the dimensions of the antenna
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and the characteristics of the required graphene can be estimated. As mentioned later, the maximum number of bands is

assumed to be m=13. Therefore, each input vector is a row matrix of order 65 including the vector for each 13 frequency bands.

In the proposed learning procedure, 60% of data has been used for learning while the others are used in the test sequence.

The output of the neural network includes a third-order vector including the thickness of the substrate, relaxation time, and

chemical potential. Since the goal of this research is to accurately estimate the antenna parameters, thus the Relu activation

function has been used in each network layer. It should be noted that the number of layers and neurons was optimized to

achieve the best performance in the proposed network. In the proposed model, the batch size and learning rate are 512 and

0.001, respectively, and the epoch number is equal to 5000. Also, Adam’s powerful optimization algorithm has been used to

determine the values of the weights in the model. Furthermore, the utility cost function MSE has been used to calculate the

difference between the real value and the value estimated by the model, which is given in equation 2 whereas yi and fi are real

and estimated values, respectively.

MSE =
1

N

N

∑
i=1

( fi − yi)
2 (2)

To achieve the best performance of DNN, we had several tests on the combination of layers and their output shape value.

Table 2 shows the best structure of DNN for learning the relationship between inputs and outputs.

Layers Activation Output Shape Parameters Number

Dense Relu (None,65) 4290

Dense Relu (None,200) 13200

Dropout - (None,200) 0

Dense Relu (None,200) 40200

Dropout - (None,200) 0

Dense Relu (None,200) 40200

Dropout - (None,200) 0

Dense Relu (None,3) 603

Table 2. The configuration of proposed DNN model

The loss and accuracy diagrams of the proposed model have been sketched in Figs. 5(a) and (b), respectively. As can be

seen in this figure, the values of accuracy and loss achieve 91.5% and 0.03, respectively. Furthermore, it can be seen that the

validation graph is very close to the training graph and was able to avoid overfitting in the model. In this procedure, the training

time was about 262 seconds and the model can estimate the output in less than 0.05 seconds which was obtained in a system

with an Intel Core i7-10750H processor and 16GB RAM.

(a) (b)

Figure 5. (a) accuracy and (b) loss of the proposed DNN.

3 Evaluation of deep neural network

For the evaluation of the proposed model, we have provided two arbitrary samples whose specifications are given in Figure

6. For this, the desired values are fed to the proposed network and the antenna parameters are estimated. Then, a full wave
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analysis has been done to simulate the performance of the antenna. As shown in Figs. 6(a) and (b), the gain and return loss of

a five-band and a three-band antenna are plotted versus frequency, respectively. In these figures, the desired values are also

shown using colored circles and are in good agreement with the simulation results. In the same way, the simulation results

and the desired values of the half-power beam width and the main lobe direction for five-band and three-band antennas are

plotted in Figs. 6(c) and (d), respectively. The small differences between the simulated and expected values are also evident in

these figures. The estimated values of the substrate thickness, chemical potential, and relaxation time are presented in Table 3.

Furthermore, the Mean Square Error of the resonance frequencies, half-power beam width, gain and return loss are shown in

table 3. According to these results, it can be claimed that a negligible error in the antenna desired parameters will be obtained

by the estimation of antenna thickness and graphene properties.

a b

c d

Figure 6. (a) and (b) simulation and expected values gain and S11 for a five-band and three-band antenna, respectively. (c) and

(d) simulation and expected values of half-power beam width and main lobe direction for five-band and three-band antenna,

respectively. In this figure, expected values have been specified by colored circles.

Estimated outputs MSE between fi andyi

Examples Hs τ µc Fr Gr θr HPr Nullr

Five-band 30 µm 0.50 ps 3.13 eV 1.2e−5 1.92e−3 1.69e−5 2.3e−4 25e−4

Three-band 20 µm 0.94 ps 2.64 eV 4e−5 25.7e−3 3.59e−5 6e−4 2e−4

Table 3. Estimated values and Mean Square Error (MSE) of predicted and real antenna properties. performance

Discussion

In this article, a planar graphene antenna was investigated and its radiation characteristics for different substrate thicknesses and

graphene characteristics including chemical potential and relaxation time have been extracted by full-wave FEM simulations.

Then, these parameters were examined as the design inputs and it was shown that in the proposed structure, by choosing the

appropriate values for the input, the number of bands and their resonance frequencies, antenna gain and main lobe directions

can be set. The simulations have been performed in the [2-5] THz frequency band and it has been shown that the maximum

gain of 8.8dB and up to 13 frequency bands can be achieved. Due to the complexity of the design and in the following, a deep

neural network has been used to provide a design solution. This network is trained based on the categorized simulation results

and the network parameters are determined in such a way that the most accurate matching between the estimated and simulated
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parameters has been achieved for minimum input data. In the end, it has been shown that the optimal radiation parameters can

be estimated with an error of less than 3%. This feature can be used to design antennas in various applications.
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