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ABSTRACT

The prevailing sentiment in the general population is that a Body Mass Index (BMI) above desired levels leads to less than

optimal health outcomes and increased likelihood of death. Recent medical studies, however, have found evidence that the

opposite is true for a certain subset of the population, particularly those with a history of cardiovascular disease (CVD). These

studies found that individuals with a BMI slightly above desired experience more optimal health outcomes compared to those

with a BMI in the desired range - a phenomenon known as the “obesity paradox.” However, these studies have primarily been

performed using classical tools of probability and statistics. In this study, we apply tools appropriated from causal inference,

with some loosened restrictions, to the age ≥ 65 population of the Kailuan dataset, a longitudinal dataset tracking almost 15,000

patients, 10,005 of which have a history of CVD , 4,641 have a BMI slightly above desired, 5,863 have a BMI in the desired

range, and 317 a BMI slightly below desired. We ultimately find some evidence of the obesity paradox in this dataset.

Introduction

The recent increase in ªhealth awarenessº in the general population is motivated in part by the understanding that our weight, or

body mass, can have a large influence on our health trajectory. Medical professionals have introduced the notion of Body Mass

Index (BMI) to quantify the relation between an individual’s weight and height, which can shed light on the overall health of

the individual. The equation for BMI is given equation 1 below.

BMI =
masskg

height2
m

=
masslb

height2
in

×703 (1)

BMI can be used to classify individuals as either underweight, desired weight, overweight, or obese as presented in table 1.

In studies across the general population, it has been shown that individuals with BMI < 18.5 and in the range of 25−29.9,

underweight and overweight respectively, have shorter life expectancy from age 40 than individuals with BMI in the range

18.5−24.9, the desired weight. The association between BMI and overall mortality is often called ªJ-shapedº in that a low

BMI (< 18.5) puts you at moderate risk for mortality, but the risk decreases as BMI increases before reaching an inflection

point where risk increases again as BMI approaches 25 and higher1.

BMI Value BMI Category

< 18.5 Underweight (OB 0)

18.5-24.9 Desired Weight (OB 1)

25-29.9 Overweight (OB 2)

30-34.9 Obese (OB 3)

≥ 35 Very Obese (OB 4)

Table 1. Typical BMI classification.

The correlation between BMI and mortality risk is not constant across all populations, however, and is in fact reversed in

some populations, such as for overweight individuals with a history of cardiovascular disease (CVD)2±4. CVD refers to a number

of conditions including heart disease, heart attack, stroke, heart failure, arrhythmia, or hearth valve problems. Specifically, the

obesity paradox posits that for individuals with a history of CVD, having a BMI slightly above desired leads to better health

outcomes compared to those with desired BMI.



While these findings have certainly been insightful, they have been performed using traditional statistical analysis methods,

such as the adjusted Cox regression model used by Horwish et al4. Ideally, to understand the causal effect of some treatment a

randomized controlled trial (RCT) would be performed, but this is not always suitable for a number of ethical and logistical

reasons5. In the case of exploring the casual effect of BMI, not only would it be ethically questionable to induce patients to

gain weight to achieve a certain BMI that may be unhealthy, but artificially inducing a person to gain weight will likely bias the

results in some fashion. Furthermore, as noted by Franks et al6, many weight loss trials, which touch upon BMI, often have

very stringent participation criteria, perhaps limiting the degree to which results can be generalized to the population at large.

Causal analysis methods such as the potential outcomes framework7, 8, then, may become appealing for their ability to make

use of existing observational data, performing pseudo-RCT’s. Such methods, however, are typically used to estimate the effect

of some discrete intervention, i.e. a treatment, while a BMI classification is more so a state of being. This then leads to the

question of whether or not this difference prohibits the application, or perhaps adaptation, of causal methods for this assay. For

causal analysis to yield valid results, in general, three conditions must hold9:

1. Stable Unit Treatment Value: The potential outcomes for any unit do not vary with the treatment assigned to other

units, and, for each unit, there are no different forms or versions of each treatment level, which lead to different potential

outcomes.

2. Positivity: For any value of variable X, treatment assignment is not deterministic; Each participant has a non-zero

probability of being assigned to each treatment.

3. Ignorability: Given the background variable, X, treatment assignment W is independent to the potential outcomes; a

hypothetical, unaccounted confounding variable will be evenly distributed among treatment and control groups.

Assumption one will hold in this application as one individual belonging to a certain BMI classification does not impact the

BMI classification of some other individual in the study. Although two participants are unlikely to have the same exact BMI

value, previous studies9 have demonstrated the validity of grouping real-valued treatments in to discrete classes, such as BMI

categories, satisfying assumption one.

Assumption two, positivity, is slightly more difficult to justify in this application, however, given the biological systems at

play. For example, according to the CDC10 , there may be some genetic factors at play, such as the MC4R gene, which has

been shown to make individuals feel extremely hungry, inducing over-eating (hyperfagia). An individual with the MC4R gene,

then, will be unlikely, although not explicitly prohibited, to be in the underweight BMI classification, for example, given their

genetic composition. Although genes such as MC4R may perhaps impact other aspects of the genetic composition, the gene

itself doesn’t directly induce a high BMI per se. According to the same CDC source, genes associated with obesity influence

the signals that are sent to the brain. In the case of MC4R, a signal of ªextreme hungerº is sent to the brain, encouraging the

individual to eat more. The source continues to say that although 50 genes have been associated with obesity, most have a very

tiny effect. Furthermore, biological systems may also induce a person to be underweight, an effect in the opposite direction,

such as repeated portions of chromosome 1611. The fact that genetic factors do not explicitly prohibit any individual from

being in a certain BMI classification, in conjunction with the small effect size of genetic factors when they are present, thus we

believe that the assumption of positivity is still valid for our purposes here.

The issues identified with assumption two also cause issues in satisfying assumption three, ignorability, which essentially

asserts that "if a variable is not accounted for, it has no impact on the outcome or treatment and is safe to ignore." If some

genetic factor influences an individual to feel more hungry more often, it is unlikely that individuals with this genetic factor

will be evenly distributed across BMI classifications - we would expect such individuals to appear more often on the higher

end of the BMI scale. As the community understands BMI to impact health outcomes, a gene that impacts BMI would be a

confounding variable.

Yao et al9 note that the assumption of ignorability is often difficult to satisfy in practice. As they mention, however, it

is possible to use big data to find latent, proxy variables for this unaccounted for, confounding variable. One such big data

approach to account for unobserved confounding variables is to use an autoencoder12 to encode the records. An autoencoder

essentially constructs a low dimensional representation from an original high dimension representation while retaining as much

of the important signal in the original representation as possible. In doing so, the model is able to infer complex relationships

between observed and latent confounding variables. While signal describing the unobserved confounding variable would be

ideal and preferred, the community has found that latent variables discovered by autoencoders are a reasonable stand-in9.

We propose adopting tools of causal inference, specifically by relaxing the assumption of positivity and definition of

treatment, to study the obesity paradox, hypothesizing that it will not necessarily disprove the notion of the obesity paradox, but

help refine the community’s understanding of the role that obesity, as indicated by BMI, plays in patients’ health prospects.

Instead of comparing how average health outcomes differ across two groups, these causal analysis methods pair two similar

individuals who underwent different treatment and compare their health outcomes, then report the average pair-wise difference
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as the estimated effect. In doing so, the goal is to isolate the effect that the treatment has on the outcome of interest. In this

study we relax the definition of treatment somewhat, such that it includes the five BMI classifications listed in table 1, and relax

the assumptions of positivity slightly. Even if others disagree this technically qualifies as ªcausal inferenceº because of these

changes, so be it, we believe such experiments can still provide valuable information to the community.

We apply our methodology to the subset of the Kailuan Study dataset, a dataset that follows over 100,000 individuals for up

to three check-ins over a period of six years13. Specifically, we apply these methods to a subset of the Kailuan dataset including

only participants 65 years of age or older with a history of CVD, a subset that includes around 15,000 individuals. Not all

participants completed all three check-ins, however, meaning the larger time frame included in the analysis, the fewer number

of individual participants are available. Our experiments explore how the tradeoff between temporal range of the data and raw

magnitude of participants impacts the stability of our findings. We ultimately find evidence in support of the obesity paradox.

Results

In this section we present results obtained from carrying out two pseudo-RCT experiments. These experiments - experiments A

& B - were designed to asses the effect that being overweight compared to being of the desired weight, expressed as BMI, has

on various health outcomes, specifically death, for individuals with and without a history of CVD. Experiment A will estimate

the casual effect that being overweight (OB 2), the treatment, has on different health outcomes with respect to being the desired

weight (OB 1), the control, for only individuals who have a history of CVD. Experiment B will be the same as experiment A,

but performed on all individuals included in the dataset. Only about a third of the population aged 65 or older do not have a

history of CVD, which we deem insufficient for performing an experiment on that subset alone given the ªbig dataº nature of

this methodology. For that reason, we will use experiment A as a reference point for the results of experiment B.

For each experiment, we explore how stable our findings are when more temporal data, but fewer individual participants, is

included in the analysis. In addition to denoting how many check-ins were included in the analysis, we also note how many

treatment and control records are in the population and how many pairs of ªsimilar recordsº resulted, which are used to obtain

the Estimated Casual Effect (ECE) on various outcomes. Alongside death, our primary outcome of interest, we explore the ECE

of the treatment on Ischemic Stroke, Intracerebral Hemorrhage, and Incident Myocardial Infarction, as they are also included in

the original Kailuan dataset. To gauge the impact of the matching process, we also present in parentheses the estimated effect

of the treatment that would be obtained by randomly pairing records from the treatment and control groups.

Check-ins 0 0 & 1 0, 1 & 2 0, 1, 2 & 3

N Treatment 4,641 2,668 1,422 838

N Control 5,863 3,266 1,826 1,075

N Pairs 4,402 2,488 1,197 541

E.C.E. on Death -0.038 (-0.026) -0.031 (-0.027) -0.051 (-0.0426) -0.033 (-0.022)

E.C.E. on Ischemic Stroke 0.024 (0.028) 0.03 (0.025) 0.02 (0.028) -0.009 (0.006)

E.C.E. on Intracerebral Hemorrhage -0.001 (0.0) 0.001 (-0.002) 0.002 (0.0011) -0.002 (-0.001)

E.C.E. on Incident Myocardial Infarction 0.012 (0.011) 0.001 (0.006) -0.001 (-0.009) -0.015 (-0.012)

Table 2. Results for experiment A, leveraging only individuals with a history of CVD. In general, we find overweight

individuals are less likely to experience death compared to individuals of the desired weight. This is in line with the core

assertion of the obesity paradox. The results for the other health outcomes are not as conclusive.

To gauge just how ªsimilarº paired records are, we present a visualization of the attributes for the treatment and control

records for each pair obtained in Experiment B in Figure 1. As we can see, both the treatment and control records from each

pair do have similar attributes, both categorical and real-valued. For example, consider the plot for fasting blood glucose in

Figure 1. Although there do appear to be clear regions of the plot where the treatment has a fasting blood glucose but the

paired control record has a low fasting blood glucose and vice-versa, the majority of points in the scatter plot fall within the

circumference of a unit-circle with radius 10, certainly a radius of 15.

Discussion

In analyzing the results from Experiment A presented in Table 2, we see that the ECE of death is consistently negative, and

rather stable, across all check-ins. The same cannot be said for the other health outcomes explored, however, as they all see a

change in sign across the different temporal scales. It is also worth noting that the estimated effect on these other outcomes

found by randomly pairing records varies in sign across check-ins as well. This perhaps suggests that the causal effect of being

overweight compared to the desired weight is marginal or negligible for for these outcomes. Furthermore, we see that the
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Check-ins 0 0 & 1 0, 1 & 2 0, 1, 2 & 3

N Treatment 4,887 2,804 1,510 892

N Control 6,565 3,663 2,058 1,214

N Pairs 4,129 2,367 1,157 588

E.C.E. on Death -0.011 (-0.02) -0.026 (-0.027) -0.03 (-0.031) -0.022 (-0.011)

E.C.E. on Ischemic Stroke 0.03 (0.03) 0.021 (0.025) 0.027 (0.031) 0.0 (0.008)

E.C.E. on Intracerebral Hemorrhage 0.001 (-0.001) 0.001 (-0.002) 0.003 (0.001) -0.002 (0.002)

E.C.E. on Incident Myocardial Infarction 0.008 (0.012) 0.003 (0.006) -0.013 (-0.008) -0.017 (-0.011)

Table 3. Results for experiment B, leveraging all individuals in the dataset. In general, we find overweight individuals are less

likely to experience death compared to individuals of the desired weight. While these results are not in line with the traditional

understanding of how BMI relates to health outcomes, we believe this can be attributed to the large portion of the dataset (2/3)

that have a history of CVD.

ECE on death is consistently higher than the estimate obtained by randomly pairing individuals from the treatment and control

groups.

The results of Experiment B presented in Table 3 tell a similar, but slightly different story. Of the possible outcomes

analyzed in this assay, the ECE on Death is again the most stable, followed by the ECE on Ischemic Stroke. Additionally, the

ECE on Death being negative implies that individuals who are overweight are less likely to experience death than those of the

desired weight. The ECE on Death in Experiment B, which leverages the entire population of the dataset, is lower in magnitude

than the ECE on Death identified in Experiment A, which only leverages the subset of the population with a history of CVD.

Here, we see that the ECE on death is lower than estimated effect found by randomly pairing individuals from the treatment and

control populations in all but one sub-experiment for Experiment B, albeit much closer in magnitude compared to Experiment

A.

In conjunction, these findings reinforce the notion of the obesity paradox. The ECE on death for being overweight as

opposed to the desired weight is higher (more protective) for the subset of the population in the Kailuan dataset aged 65+

with a history of CVD than it is for the whole population aged 65+. In Experiment A, the average ECE on Death across

all check-ins is -0.038, while for Experiment B the average ECE on Death is -0.022. The negative estimated effect implies

overweight individuals are less likely to experience death than individuals of the desired weight, and the estimate is higher for

the population with a history of CVD.

Finally, comparing the ECE of death with that found by randomly pairing individuals from the treatment and control groups

highlights the impact of the matching process. Treating each member of the treatment or control populations as identical results

in different results compared to when the unique attributes of each user are taken into account.

Methods

Here we describe the methods we employed to carry out the experiments described above. As mentioned above, we leverage

the potential outcomes framework to estimate a causal effect by finding similar individuals who underwent different treatment.

Participants in the Kailuan study participated in a variable number of check-ins, so we train an auto-encoder to encode individual

check-in records, and describe individuals in terms of their available encoded check-in records. All methods were performed in

accordance with the relevant guidelines and regulations.

Data Collection

The dataset was generated from the Kailuan Study, an ongoing, prospective, community-based cohort study in North China.

Detailed data collection methods in this cohort has been described previously14, 15. This study was approved by the Ethics

Committee of the Kailuan General Hospital. Participants gave their written informed consents on using the de-identified data

collected at each check-in.

Encoding Check-In Records

As part of the Kailuan study, at each check-in, participants would complete a questionnaire describing their smoking status,

physical activity level, and salt intake among other lifestyle characteristics. Height and weight were measure at each check-in

to compute BMI, and blood-samples were collected to identify blood glucose and cholesterol level, among others. From this set

of attributes, we identify 26 confounding variables which we control for in our experiments described in Table 4. Some values

are real-valued, described by a single number, while others are categorical, described using a one-hot encoding. In total, these

26 features result in a check-in vector that is 61-dimensions wide.
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Figure 1. Visualization of attributes between each record in a pair.
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# Confounding Variable # Confounding Variable # Confounding Variable

1 Diabetes status 11 Physical activity 21 Neutrophil

2 Diastolic blood pressure 12 Salt consumption 22 Marriage status

3 Systolic blood pressure 13 Smoking status 23 Education status

4 Dyslipidemia 14 Triglyceride 24 Employment status

5 Fasting blood glucose 15 Urate 25 Income level

6 Hypertension 16 Snoring status 26 Gender

7 HDL cholesterol 17 Red blood cell count

8 LDL cholesterol 18 White blood cell count

9 Total cholesterol 19 Blood platelet count

10 C-Reactive protein levels 20 Hemoglobin

Table 4. Identified confounding variables that were controlled for in our experiments.

To encode these features, we train an auto-encoder, taking advantage of the benefits described above in the introduction.

Specifically, using the Pytorch framework, we train an auto-encoder comprised of an encoder and decoder, each consisting

of 7 fully-connected dense layers, that constructs an 8-dimension representation given the 61-dimension check-in record. When

describing a participant who completed multiple check-ins we simply concatenate their corresponding 8-dimensional check-in

representations. Not all individuals in the dataset participated in each check-in, so 28,869 unique check-in records result from

the 15,000 or so individuals aged 65+. Given these 30,000 or so records, we train our autoencoder to minimize the mean

squared error (MSE) between the original check-in record and the record recovered by the model. Specifically, we use an Adam

optimizer, learning rate of 1e−5, dropout rate of 0.25, and batch size of 72 when training for 95 epochs.

Matching Records to Estimate Causal Effect

A key aspect of the potential outcome framework is the finding of records that are ªsimilar enoughº such that they can serve

as counterfactuals for each other. To do so, we match records based on their compressed check-in representations obtained

from our autoencoder. We determine that two records who underwent different treatments can serve as a counterfactual for one

another if the distance between their compressed check-in representation(s) is less than some threshold d. When quantifying

the distance between records, we use a metric known as Mahalanobis distance. Mahalanobis distance is preferred to other

distance metrics, such as the Euclidean distance, in that it accounts for correlations between variables, and gives a distance with

respect to some statistical distribution. The equation to compute Mahalanobis distance is given in equation 2.

d(⃗x, y⃗) =
√

(⃗x− y⃗)T S−1(⃗x− y⃗) (2)

To find an appropriate threshold d, for each experiment, we first compute the pairwise distance between all treatment

records and all control records. We then determine the first percentile value as d. A different threshold value is computed for

each experiment for each check-in configuration. Once a record has been matched, it is then ineligible to be included in other

pairs of records. In general, it is not expected that all records from either the treatment or control group will be paired in the

process.

Once all pairs of records have been found, the estimated causal effect of the treatment with respect to the control on

various health outcomes can be obtained. First, the pair-wise difference in outcomes between the individual from the treatment

population and the individual from the control population is computed. In our application, the various health outcomes explored

in this study are encoded as binary values - a 1 denoting the outcome occurred, a 0 denoting it did not. Then, the estimated

causal effect can be found by computing the average pair-wise distance between all pairs of matched records. In our case, the

estimated causal effect can be interpreted as the difference in the units of each outcome that would be expected for the same

individual if the only thing that changed about them was their BMI classification.

Data Availability

The data analyzed during the current study are available from the corresponding author on reasonable request and with

permission of the Kailuan Study.
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