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Abstract 

Selecting the appropriate training technique is a significant step in utilizing intelligent approaches. It 

becomes even more important when it comes to critical problems like analyzing the bearing capacity 

of foundations. This study investigates the feasibility of a capable metaheuristic algorithm, called 

water cycle algorithm (WCA), for training a multi-layer perceptron (MLP). The WCA-MLP is 

applied to a large finite element dataset to predict the settlement. The results of this model are 

compared with electromagnetic field optimization (EFO) and shuffled complex evolution (SCE) 

benchmarks. With reference to the obtained Pearson correlation factors (larger than 0.88 in all stages), 

all employed models are suitable for the mentioned objective. Moreover, it was observed that the 

training error of the WCA was 5.84 and 3.89% smaller than the EFO and SCE, respectively. Likewise, 

the accuracy of the WCA-MLP was 1.85 and 2.04% larger in the testing phase. Also, a predictive 

equation is finally elicited for practical applications in compatible circumstances.  

 

Keywords: Bearing capacity; Settlement measurement; Artificial neural network; Water cycle 

algorithm. 

 

1 Introduction 

With recent advances in computational intelligence, many scholars have replaced traditional methods 

with economical and accurate machine learning , deep learning [1-7], decision making [8; 9],  and 

artificial intelligence-based tools [10-14]. These novel approximation techniques are well employed 

in various engineering field such as in evaluating the environmental concerns [15-25], implications 

for natural environmental [26-34], water resources management [35-41], energy efficiency [42-50], 

structural design [51-61], image processing [62-65], feature selection/extraction [66-70], face 

recognition [71-74], control performance [75], vibration analysis [76], climate change [77], managing 

the smart cities [78], project management [79], while in the field of medical science artificial 

intelligence employed to have a better diagnosis of a particular patients [80-84], early diagnosis of 



them [85; 86], or medical image classification [87]. There have been many novel algorithms 

enhancing the current predictive neural network-based models. Metaheuristic algorithms have been 

highly regarded in various problems that demand an optimal solution [85]. The hybrid optimization 

techniques such as differential evolution [88], data-driven robust optimization [89], whale 

optimization algorithm [90; 91], harris hawks optimization [88; 92], differential edge detection 

algorithm [93], many-objective sizing optimization [94], fruit fly optimization [95], moth-flame 

optimization strategy [96; 97], bacterial foraging optimization [98], ant colony optimization [99], 

particle swarm optimization (PSO) [100-102], chaos enhanced grey wolf optimization [82], and 

quantum-enhanced multiobjective large-scale [103]. 

 

The efficient determination of ultimate bearing capacity (BC) of foundations is a significant 

consideration in designing various structures [104-106]. Khorrami et al. [107] presented an explicit 

formulation for ultimate BC for foundations settled on granular soil through an M5’ model tree. As 

an advantage, the proposed model showed lower uncertainty as well as larger efficiency in 

comparison with a number of conventional theories. Likewise, Khorrami and Derakhshani [108] used 

a hybrid of this model coupled with genetic programming for calculating the BC for a system of 

footing and cohesionless soil. Sethy et al. [109] introduced adaptive neuro-fuzzy inference system 

(ANFIS) as a capable approximator for computing the BC of rectangular footing with eccentrically 

loading. Also, in comparison with artificial neural network (ANN), the output pattern of the ANFIS 

was in a larger agreement with the expected one (the coefficients of determination of 0.9024 vs. 

0.9118). The competency of support vector machine (SVM) and random forest for estimating the BC 

of footings placed on rocks was demonstrated by Dutta et al. [110]. Moayedi and Hayati [111] tested 

several soft computing approaches for exploring the BC of shallow foundations installed near 

homogeneous slopes. The findings revealed the excellence of the feedforward ANN compared to 

models like tree regression fitting and SVM. In a similar effort, Acharyya and Dey [112] investigated 

the feasibility of the ANN. They also analyzed the importance of effective factors using this model 

and found that the angle of internal friction plays the most influential role. Aouadj and Bouafia [113] 

embedded a new mathematical activation function and fed the proposed network by the records of 

the cone penetration test. Large agreements between the desired and produced outputs, as well as 

around 30% higher accuracy compared to classical approaches, demonstrated the suitability of the 

proposed model. More applications of the ANNs for this objective can be found in many earlier 

studies [114-116]. 

It is well accepted that diverse optimization theories and algorithms can overcome the difficulties that 

come up with intricate problems [89; 117-127]. Genetic algorithm (GA) is a popular optimization 

method which was applied by Hamrouni et al. [128] for probabilistic analysis of seismic BC. Saha et 



al. [129] presented a solution to the ultimate BC problem using symbiosis organisms search. 

Confirmed by numerical analysis (in the PLAXIS environment), the acceptability of the proposed 

method was shown for future applications. Jin et al. [130] could accurately study the ultimate BC and 

critical slip surface of a rough embedded foundation placed on sands using improved radial movement 

optimization (IRMO). The efficiency of biogeography-based optimization algorithm (BBO), 

evolution strategy (ES), and differential algorithm (DE) was investigated by Kashani et al. [131] for 

the optimal design of the foundation. Gandomi and Kashani [132] professed the superiority of 

teaching-learning-based optimization algorithm (TLBO) over various swarm-based strategies, such 

as accelerated PSO, WOA, MFO, for the economical design of shallow foundations. 

 Moayedi et al. [133] compared two highly popular optimizers of imperialist competition algorithm 

(ICA) and particle swarm optimization (PSO) for enhancing the performance of the ANN applied to 

bearing capacity estimation of shallow circular footing. The outputs of the ANNs developed by the 

PSO and ICA achieved the R2 values of 0.9575 and 0.9467, respectively. Therefore, they concluded 

the excellence of the PSO-ANN model. A comparison between four metaheuristic strategies of ant 

colony optimization (ACO), league champion optimization (LCA), whale optimization algorithm 

(WOA), and moth–flame optimization (MFO) incorporated with ANN in forecasting the 

stability/failure of a soil-footing system was conducted by Moayedi et al. [134]. Respective accuracies 

of 94.4, 93.5, 93.9, and 93.9% showed the larger optimization competency of the ACO algorithm. 

 The literature addresses the wide application of metaheuristic algorithms in the BC calculation [135; 

136]. It has been well concluded that these algorithms can efficiently deal with providing optimal 

solutions, due to their global search capability. Based on the findings of earlier studies concerning 

the successful use of newly-designed techniques, this study uses water cycle algorithm (WCA) for 

training an ANN in the BC analysis. The WCA is a robust search strategy that has been broadly 

employed for different applications [137; 138]. Moreover, the competency of this model is checked 

by two benchmark techniques, namely electromagnetic field optimization (EFO) and shuffled 

complex evolution (SCE) which are known as relatively quicker algorithms. This strategy, i.e., 

utilizing automatic error minimization techniques as the trainer of ANN, has been regarded as a 

promising solution for complex engineering issues. 

 

2 Methodology 

2.1 The WCA technique 

Most metaheuristic algorithms are nature-inspired, meaning that the main idea is elicited from the 

natural phenomena or the behavior of creatures. The WCA, as is implied by the name, mimicks the 

way rivers and streams end up with the sea [139]. Melted snow and glaciers flow downhill to form a 

stream (or a river). Their water is evaporated, becomes clouds, and returns to the earth [140]. 



The steps required for implementing the WCA can be explained as follows: 

• Step1: Setting the parameters of the algorithm including 𝐾𝐾𝑠𝑠𝑠𝑠, 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚. 

• Step1: Scattering the initial population and determining sea, streams, and rivers. Assuming 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝 as the total size of the population, 𝐾𝐾𝑠𝑠𝑠𝑠 = 1 + Number of rivers, and 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠 (= 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝 - 𝐾𝐾𝑠𝑠𝑠𝑠) as the number of streams, this process is expressed by the below equation: 

Total population = 

⎣⎢⎢
⎢⎢⎡

𝑆𝑆𝑆𝑆𝑆𝑆
 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅1⋮𝑆𝑆𝐼𝐼𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝐾𝐾𝑠𝑠𝑠𝑠+1⋮𝑆𝑆𝐼𝐼𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝 ⎦⎥⎥

⎥⎥⎤ = ⎣⎢⎢⎢
⎡ 𝑥𝑥11 𝑥𝑥21 … 𝑥𝑥𝐾𝐾1𝑥𝑥12 𝑥𝑥22 … 𝑥𝑥𝐾𝐾2⋮ ⋮ ⋮ ⋮𝑥𝑥1𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥2𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝 … 𝑥𝑥𝐾𝐾𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝⎦⎥⎥⎥

⎤
 (1) 

where river, stream, and the sea represent a particular solution by a 1 × K-dimensional array 

as [𝑥𝑥1, 𝑥𝑥2, ..., 𝑥𝑥𝐾𝐾]. 

• Step 3: The cost of each member of the existing population is reflected as follows:  𝐶𝐶𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝑗𝑗 = f (𝑥𝑥1𝑗𝑗 , 𝑥𝑥1𝑗𝑗 , … , 𝑥𝑥𝐾𝐾𝑗𝑗 )        j = 1, 2, …, 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝 (2) 

• Step 4: Given 𝑁𝑁𝑆𝑆𝑘𝑘 as the number of streams discharging in the corresponding rivers or the 

sea, Equation 3 and 4 give the flow intensity of sea and rivers:  𝐶𝐶𝑘𝑘 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝑘𝑘 - 𝐶𝐶𝐶𝐶𝐾𝐾𝑠𝑠𝑠𝑠+1        k = 1, 2, …, 𝐾𝐾𝑠𝑠𝑠𝑠 (3) 

𝑁𝑁𝑆𝑆𝑘𝑘 = 𝑅𝑅𝐶𝐶𝑟𝑟𝑟𝑟𝑑𝑑  �� 𝐶𝐶𝑘𝑘∑ 𝐶𝐶𝑘𝑘𝐾𝐾𝑠𝑠𝑠𝑠𝑘𝑘=1 � × 𝐾𝐾𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠�,      k = 1, 2, …, 𝐾𝐾𝑠𝑠𝑠𝑠 (4) 

• Step 5: Below relationships describe the streams flowing into the sea and rivers: 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚(𝐼𝐼 + 1) = 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚(𝐼𝐼) + rand (0, 1) × G × (𝑋𝑋𝑠𝑠𝑠𝑠𝑚𝑚(𝐼𝐼) - 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚(𝐼𝐼)) 
(5) 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚(𝐼𝐼 + 1) = 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚(𝐼𝐼) + rand (0, 1) × G × (𝑋𝑋𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠(𝐼𝐼) - 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚(𝐼𝐼)) (6) 

where G is a number varying from 1 and 2 (close to 2). Notably, the streams are allowed to 

move to the rivers from different directions once C > 1. 

• Step 6: The movement of the rivers toward downhill (or the sea) can be formulated as follows: 𝑋𝑋𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠(𝐼𝐼 + 1) = 𝑋𝑋𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠(𝐼𝐼) + rand × G × (𝑋𝑋𝑠𝑠𝑠𝑠𝑚𝑚(𝐼𝐼) - 𝑋𝑋𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠(𝐼𝐼)) (7) 

• Step 7: The position of a stream that gives a better-fitted solution replaces that of the river. 

• Step 8: Likewise, the position of a river which gives a better-fitted solution replaces that of 

the sea. 



• Step 9: Given 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 as a very small value for controlling the intensification level, BU and BL 

as the upper and lower bound, respectively, the following procedure checks the conditions of 

evaporation (for unconstrained problems): 

If �𝑋𝑋𝑠𝑠𝑠𝑠𝑚𝑚 −  𝑋𝑋𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑗𝑗 � < 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 or rand < 0.1       j = 1, 2, …, 𝐾𝐾𝑠𝑠𝑠𝑠 – 1 

Rain based on Equation 9 

End if 

(8) 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛𝑠𝑠𝑛𝑛 (t + 1) = BL + rand × (BU - BL) (9) 

As for constrained problems, the WCA uses the below code for enhancing its capability: 

If �𝑋𝑋𝑠𝑠𝑠𝑠𝑚𝑚 −  𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑗𝑗 � < 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚       j = 1, 2, …, 𝑁𝑁𝑆𝑆𝑘𝑘 

Rain based on Equation 11 

End if 

(10) 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛𝑠𝑠𝑛𝑛 (t + 1) = Xsea + √𝛿𝛿 × randn(1, K) (11) 

where randn is a random number and δ signifies the variance term showing the searching 

region in the vicinity of the sea. This is worth noting that for preventing premature 

convergence in such problems, Equation 10 is only implemented for the streams which have 

direct movements toward the sea. 

• Step 10: The 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is decreased as follows: 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(t + 1) =  𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(t) - 
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)𝐼𝐼𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚  (12) 

• Step 11: The algorithm is finished if any stopping criterion is met, otherwise it repeats the 

process from step 5 [141; 142]. 

 

2.2 Benchmark optimizer 

Electromagnetic field optimization, as the name indicates, is inspired by the electromagnetic behavior 

of different poles. In this regard, electromagnets with similar/dissimilar poles repel/attract each other. 

This algorithm was suggested by Abedinpourshotorban et al. [143]. The individuals of the EFO are 

electromagnetic particles. The goodness of each particle is the basis of classifying them into three 

groups by the name positive field, negative field, and neutral field. The main idea of this technique 

for improving the solutions is generating and replacing new particles. More clearly, the generated 

particle with a better fitness magnitude replaces the worst one. For generating a new individual, one 

particle is randomly chosen from each one of the triple fields. The position and the pole of the neutral 

particle are first given to the produced individual. The positive and negative electromagnetics also 



affect it (attraction and repulsion process, respectively) [144]. More information about the EFO 

mechanism can be found in the related literature [145; 146].  

Shuffled complex evolution was designed by Duan et al. [147]. This algorithm draws on four major 

concepts including (i) synthesizing probabilistic and deterministic theories, (ii) performing systematic 

evolutions on so-called containers “complexes”, (iii) doing competitive evolutions, and (4) shuffling 

the complexes. Scattering the points is the initial step. Considering the function value of the points, 

they are then sorted in ascending order. Next, the points are partitioned into a number of complexes 

where each of them can independently evolve and search the viable space. By applying the modified 

simplex method of Nelder and Mead [148] for global enhancement, some points are chosen from each 

unit to form a sub-complex. The larger the fitness of the point is, the more the likelihood of generating 

offspring is. The worst points are replaced by the new offspring [149]. Studies like [150; 151] have 

explained the SCE in more detail. 

 

3 Data collection 

As is known, the settlement (Uy) of a footing is a function of several parameters. In this work, the 

effect of friction angle (FA), setback distance (SD), elastic modulus (EM), unit weight (UW), dilation 

angle (DA), applied stress (AS), and Poisson's ratio (PR) is incorporated for measuring the settlement 

by a series of finite element analysis executed on a two-layered soil system that bears a shallow 

footing. 

Figure 1 depicts the histogram chart of the mentioned parameters. According to the statistical 

indicators, the values of FA, SD, EM, UW, DA, AS, and PR range in [30, 42], [1, 7] m, [17500, 

65000] 
𝑘𝑘𝑘𝑘𝑚𝑚2, [19.0, 21.1] 

𝑘𝑘𝑘𝑘𝑚𝑚3, [3.4, 11.5], [0.0, 1132.6] 
𝑘𝑘𝑘𝑘𝑚𝑚 , and [0.2490, 0.3330]. Also the target 

parameter (i.e., the Uy) varies from 0 to 0.10 m. 

 

 

(a) 

 

(b) 



 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 1: Histogram diagram of the parameters of the prepared dataset. 

 

With reference to different conditions for this problem, a total of 901 Uys were recorded for the 

executed stages. The statistical indicators of mean, standard error, standard deviation, and sample 

variance are 0.0380, 0.0011, 0.0325, and 0.0011, respectively, for the obtained Uy values. After 

writing the settlements in front of the corresponding input parameters, the data were permuted 

randomly and 721 samples (around 80% of records) were selected for exploring the Uy behavior. 



 

4 Results and discussion 

This research is an effort to find an appropriate novel trainer of ANN in examining the bearing 

capacity of a shallow foundation. To achieve this, a hybrid of WCA and MLP is created and applied 

to predict the settlement of the foundation. The quality of the prediction is addressed by using three 

accuracy indicators of Pearson correlation coefficient (R), mean absolute error (MAE), and root mean 

square error (RMSE). Given 𝑈𝑈𝑦𝑦 𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
 and 𝑈𝑈𝑦𝑦 𝑟𝑟𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 as the simulated and real Uys, respectively, 

Equations 13 to 15 formulate the R, MAE, and RMSE. 
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4.1 WCA-MLP results 

The implementation of any neuro-metaheuristic model consists of several steps. The WCA-MLP is 

first created by assigning the WCA as the trainer of an MLP network with a 7 × 7 × 1 architecture. 

As explained, initializing the parameters of the algorithm is the first step. Based on a trial and error 

process, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐾𝐾𝑠𝑠𝑠𝑠 were set to be 1e-16 and 4, respectively. Also, examining the convergence 

behavior of the WCA indicated the suitability of 1000 for the maximum number of iterations. The 

population size (Npop) is another effective factor that was optimized by testing nine values. The 

convergence curves of the tested models are shown in Figure 2. In this figure, the objective function 

(on the y-axis) is the RMSE of the training data. 

 



 

Figure 2: The sensitivity of the WCA performance to the population size. 

 

This practice revealed that the best results are yielded by the WCA-MLP with Npop = 400. The 

corresponding RMSE was 0.013677. This value, as well as the MAE = 0.0094281, indicates an 

acceptable level of accuracy in understanding the Uy behavior. As for predicting this pattern, the 

RMSE and MAE were 0.015175 and 0.010515, respectively. 

As is shown in Figure 3, the correlation for both phases is around 90% which implies a good 

agreement between the expected and modeled Uys. The R indices were exactly 0.90527 and 0.89365 

for the training and testing samples. 

 



 

(a)  (b) 

Figure 3: The regression charts of the (a) training and (b) testing results for the WCA-MLP. 

 

4.2 Benchmark results 

The EFO-MLP and SCE-MLP were developed in the same way and predicted the Uy. The 

convergence curves of these models are illustrated in Figure 4. As is seen, the EFO required 5000 

iterations to reach a stable convergence during training the MLP. Note that, the Npops for the EFO and 

SCE were 25 and 10 determined by a trial and error practice.  

 

  

(a)  (b) 

Figure 4: The convergence curves of the benchmark methods. 

  

According to the training results, these methods could satisfactorily analyze the relationship between 

this parameter and related factors. The RMSEs for these two models were close (i.e., 0.014476 and 



0.014209). Likewise, the MAEs of 0.010383 and 0.010042 indicated a similar level of accuracy for 

both models in training the ANN. In the testing phase, the RMSEs of 0.015455 and 0.015484 along 

with the MAEs of 0.011104 and 0.010976 proved that the used models can present a reliable 

prediction of the intended parameter. 

Figure 5 depicts the regression charts of these models. The R values of 0.89331 and 0.89743 are 

obtained for the training data and 0.88973 and 0.89001 are obtained for the testing data of the EFO-

MLP and SCE-MLP models. These results demonstrate that the produced Uys are well correlated with 

the expected values. 

 

 

(a)  (b) 
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Figure 5: The regression charts of the training and testing results for the (a and b) EFO-MLP and (c 

and d) SCE-MLP. 

 

4.3 Comparison  

From two previous sections, it can be derived that all three metaheuristic algorithms (WCA, EFO, 

and SCE) could act as a capable trainer for the MLP neural network. In this section, the performance 

of the proposed algorithm is compared with benchmark ones. 

Figure 6 shows graphical views of the training and testing errors calculated for the outputs of the used 

models. It can be seen that the errors obtained from the WCA-optimized model are more aggregated 

near the ideal line (Error = 0).  

 

 

(a)  
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Figure 6: A graphical comparison of the (a) training and (b) testing errors for all used models. 
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Moreover, in terms of all accuracy indicators, the prediction of the WCA-MLP was more accurate 

than EFO-MLP and SCE-MLP. For example, examining the training RMSEs showed that the error 

of the EFO-MLP and SCE-MLP is 5.84 and 3.89% larger than WCA-MLP (relative to the WCA-

MLP). These values were 1.85 and 2.04% for the testing data. Considering the role of the 

metaheuristic algorithms in combination with the neural system, it is deduced that the MLP 

configuration designed by the WCA performs more reliably than the other two search strategies. 

The time taken by the used algorithms for finding the optimal responses is considered, too. While the 

WCA trained the ANN in 4807.8 seconds, the EFO and SCE needed around 48.9 and 546.5 seconds. 

Notably, the system used for executing the algorithms was a personal computer with the CPU of Intel 

core i7 with 16 gigs of RAM). Concerning the reasons for these distinctions, apart from the essence 

of searching strategies, the benchmark models were implemented with simpler configurations (i.e., 

smaller Npops). 

 

4.4 The formula of the WCA-MLP  

In this section, the explicit formula of the WCA-MLP is exhibited as a series of linear/non-linear 

relationships. Figure 7 shows the architecture of the MLP neural network used for approximating the 

Uy from FA, SD, EM, UW, DA, AS, and PR. 

 

 

Figure 7: The neural structure of the used predictive model. 

 

The Uy is calculated as follows: 



Uy = -0.023666  × HO1 + 0.901186 × HO2 - 0.643029 × HO3 + 0.945461 × HO4 - 0.716870 

× HO5 - 0.788679 × HO6 - 0.104387 × HO7 + 0.465768    
(16) 

where 

 𝐻𝐻𝐻𝐻𝑟𝑟 =  
21+ 𝑠𝑠−2×𝐶𝐶𝑅𝑅 − 1 (17) 

in which 𝐶𝐶1 = 1.084288 × FA + 0.595115 × DA + 0.291941 × UW + 1.247339 × EM + 0.391523 × 

PR - 0.138593 × SD - 0.272225 × AS - 1.848657 
(18) 𝐶𝐶2 = -0.249199 × FA - 0.755865 × DA - 0.986040 × UW - 0.972855 × EM - 0.144769 × 

PR + 0.130731 × SD + 0.909577 × AS + 1.232438 
(19) 𝐶𝐶3 = 1.023457 × FA - 0.043397 × DA + 0.855424 × UW + 0.984439 × EM + 0.515326 × 

PR - 0.177398 × SD - 0.608510 × AS - 0.616219 

(20) 

𝐶𝐶4 = -0.158531 × FA 0.271860 × DA - 1.049325 × UW - 1.325108 × EM + 0.375280 × 

PR - 0.145215 × SD - 0.547336 × AS + 0.000000 

(21) 

𝐶𝐶5 = -0.607473 × FA - 0.701226 × DA - 1.026808 × UW - 0.867166 × EM - 0.420470 × 

PR - 0.103031 × SD - 0.750380 × AS - 0.616219 

(22) 

𝐶𝐶6 = 0.773196 × FA + 0.180922 × DA - 1.280874 × UW + 0.700894 × EM - 0.298608 × 

PR + 0.712766 × SD - 0.240574 × AS + 1.232438 

(23) 

𝐶𝐶7 = -0.051134 × FA + 0.712179 × DA + 0.311052 × UW - 0.103681 × EM - 0.963517 × 

PR + 1.000864 × SD - 0.932803 × AS - 1.848657 

(24) 

The numbers used in the above equations represent the weights and biases of the MLP optimally 

found by the WCA during minimizing the learning error. Equation 16 releases the Uy by doing a 

linear computation on hidden outputs (𝐻𝐻𝐻𝐻𝑟𝑟). As Equation 17 denotes, calculating 𝐻𝐻𝐻𝐻1, 𝐻𝐻𝐻𝐻2, ..., and 𝐻𝐻𝐻𝐻7 consists in obtaining  𝐶𝐶1, 𝐶𝐶2, ..., and 𝐶𝐶7 from Equations 18 to 24, respectively. In fact, Equation 

17 represents a so-called activation function “Tansig” that is used for the neurons in the hidden layer. 

According to many previous studies, Tansig is a suitable function that can nicely deal with abrupt 

changes in the dataset [152; 153]. 

 

5 Conclusions 

The methods based on neural computing have been popularly used for bearing capacity analysis. In 

this work, the water cycle algorithm, electromagnetic field optimization, and shuffled complex 

evolution algorithms were appointed for training an MLP neural network in approximating the 

settlement of a shallow foundation. The main conclusions are as follows: 

• Implementing the models by their optimal parameters results in a higher quality of training. 



• Compared to the EFO and SCE, the WCA needs a considerably larger population for 

accomplishing the optimization (Npops of 400 vs. 25 and 10). Also, the EFO was implemented 

5000 times to reach a stable situation. 

• Based on more than 88% correlation of the outputs in all stages, the used hybrid models can 

properly capture and reproduce the Uy behavior. 

• The WCA-MLP surpassed the other two models in terms of all RMSE, MAE, and R accuracy 

indicators. In other words, the searching strategy of this algorithm could find a more 

promising solution to the given problem (i.e., setting the appropriate configuration of the 

MLP).  

• The tested WCA-ANN can be used for accurate analysis of the Uy in practice. 
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Figures

Figure 1

Histogram diagram of the parameters of the prepared dataset.



Figure 2

The sensitivity of the WCA performance to the population size.



Figure 3

The regression charts of the (a) training and (b) testing results for the WCA-MLP.

Figure 4

The convergence curves of the benchmark methods.



Figure 5

The regression charts of the training and testing results for the (a and b) EFO-MLP and (c and d) SCE-
MLP.



Figure 6

A graphical comparison of the (a) training and (b) testing errors for all used models.



Figure 7

The neural structure of the used predictive model.
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