

Lamin A upregulation reorganizes the genome during rod photoreceptor degeneration

Ivana NaďOttawa Hospital Research InstituteJosé FernandesOttawa Hospital Research Institutehttps://orcid.org/0000-0003-2995-5452Khatereh Shir-MohammadiOttawa Hospital Research InstitutePierre Mattar (≤ pmattar@ohri.ca)Ottawa Hospital Research Institutehttps://orcid.org/0000-0002-5708-6218

Article

Keywords:

Posted Date: February 8th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2518916/v1

License: (c) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: (Not answered)

Version of Record: A version of this preprint was published at Cell Death & Disease on October 25th, 2023. See the published version at https://doi.org/10.1038/s41419-023-06224-x.

1	Lamin A upregulation reorganizes the genome during rod photoreceptor degeneration
2	
3	Ivana Nađ ^{1,2} , José Alex Lourenço Fernandes ^{1,2} , Khatereh Shir-Mohammadi ^{1,2} , Pierre Mattar ^{1,2,*}
4	
5	
6	¹ Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6
7	² Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5
8	
9	* Correspondence to: pmattar@ohri.ca
10	
11	Main text: 3261 words
12	Running Title:
13	Lamin A upregulation reorganizes the rod genome

- 14 Abstract:

16	Neurodegenerative diseases are accompanied by dynamic changes in gene expression,
17	including the upregulation of hallmark stress-responsive genes. While the transcriptional
18	pathways that impart adaptive and maladaptive gene expression signatures have been the
19	focus of intense study, the role of higher order nuclear organization in this process is less clear.
20	Here, we examine the role of the nuclear lamina in genome organization during the
21	degeneration of rod photoreceptors. Two proteins had previously been shown to be necessary
22	and sufficient to tether heterochromatin at the nuclear envelope. The lamin B receptor (Lbr) is
23	expressed during development, but downregulates upon rod differentiation. A second tether is
24	the intermediate filament lamin A (LA), which is not normally expressed in murine rods. Here,
25	we show that in the <i>rd1</i> model of retinitis pigmentosa, LA ectopically upregulates in rod
26	photoreceptors at the onset of degeneration. LA upregulation correlated with increased
27	heterochromatin tethering at the nuclear periphery in <i>rd1</i> rods, suggesting that LA reorganizes
28	the nucleus. To determine how heterochromatin tethering affects the genome, we used in vivo
29	electroporation to misexpress LA or Lbr in mature rods in the absence of degeneration,
30	resulting in the restoration of conventional nuclear architecture. Using scRNA-seq, we show
31	that reorganizing the nucleus via LA/Lbr misexpression has relatively minor effects on rod gene
32	expression. Next, using ATAC-seq, we show that LA and Lbr both lead to marked increases in
33	genome accessibility. Novel ATAC-seq peaks tended to be associated with stress-responsive
34	genes. Together, our data reveal that heterochromatin tethers have a global effect on genome

- 35 accessibility, and suggest that heterochromatin tethering primes the photoreceptor genome to
- 36 respond to stress.

37 Introduction

39	Photoreceptor cells are highly susceptible to degeneration – perhaps due to their very high
40	metabolic demands ¹ . Cone photoreceptors are responsible for high-acuity color vision, whereas
41	rod photoreceptors mediate vision in low-light conditions. Indeed, rods are sensitive enough to
42	respond to individual photons ² . To achieve this feat, rods must maintain high-level expression
43	of at least 50 genes that can lead to degeneration when misregulated ^{3, 4} . Genome regulation is
44	thus essential for photoreceptor survival.
45	
46	The importance of genome organization in photoreceptors is further underscored by their
47	specialized nuclear architecture. In mice, rods undergo a process called "chromatin inversion" ^{5,}
48	^{6, 7} . Whereas most cells tether heterochromatin in 'lamina-associated domains' at the nuclear
49	periphery, rod photoreceptors localize heterochromatin centrally ^{5, 6, 7, 8} . Throughout
50	mammalian evolution, chromatin inversion is correlated with nocturnal lifestyle, as the inverted
51	configuration decreases light scattering and enhances contrast sensitivity ^{7, 9} . At the molecular
52	level, two proteins have been shown to be sufficient for heterochromatin tethering.
53	
54	1) The lamin B receptor (Lbr) is a multi-pass transmembrane receptor that contains an intra-
55	nuclear tudor domain. Murine rods naturally express Lbr during development, although Lbr
56	levels decline once rods differentiate. However, when Lbr expression in rods was artificially
57	sustained, chromatin inversion was prevented ¹⁰ .
58	

59	2) The Lmna gene encodes two splice variants – lamin A (LA) and lamin C (LC), neither of which
60	is normally expressed in murine rod photoreceptors ^{10, 11, 12, 13} . These A-type lamins are
61	intermediate filaments that form a meshwork across the surface of the inner nuclear
62	membrane. In Lmna knockout mice, heterochromatin tethering was lost in various tissues, but
63	transgenic misexpression of LC in rods had no effect on their inverted organization ¹⁰ , initially
64	suggesting that A-type lamins were <i>not</i> sufficient for heterochromatin tethering. However, we
65	recently showed that LA is sufficient to tether heterochromatin in rods ¹² , resolving this
66	conundrum.
67	
68	Interestingly, mice harboring mutations in a variety of chromatin proteins have been shown to
69	lose their inverted organization ^{10, 12, 14, 15, 16, 17, 18} . However, A-type lamins have been shown to
70	upregulate in some of these knockouts ^{10, 12, 15} , raising the possibility that heterochromatin
71	tethers might contribute to degeneration-associated nuclear reorganization.
72	
73	Here, we show that LA upregulates in the <i>rd1</i> mouse – one of the best studied models for
74	retinitis pigmentosa. Rod degeneration in the <i>rd1</i> mutant is triggered via toxic accumulation of
75	cyclic guanosine monophosphate - a chromatin-independent process. Using genomic and
76	transcriptomic approaches, we find that heterochromatin tethering may help to reconfigure the
77	genome to respond to stress.

- 79 Results
- 80

81 Lamin A upregulates during rod photoreceptor degeneration

82

83	LA is sufficient to reorganize the rod nucleus ¹² , whereas LC has no effect ¹⁰ . We and others
84	reported LA/LC upregulation in mutant rods ^{10, 12, 15} . However, our previous work did not
85	discriminate between LA and LC. Using an isoform-specific antibody (Fig. S1A), we found that in
86	wild-type mice, LA was extensively expressed within the inner retina (Fig. 1A, B), as reported
87	previously ¹³ . In photoreceptors, LA immunoreactivity was observed only in cones (Fig. 1A, B,
88	arrowheads), and was absent from rods (Fig. 1A, B). Lmna transcription was also little detected
89	in chick, human, or macaque rods as determined via the <i>Plae</i> scRNA-seq database ¹⁹ (Fig. S1B).
90	
91	Previous studies revealed nuclear disorganization and LA/LC upregulation in mice harboring
92	mutations in essential chromatin proteins (eg. Casz1, Atxn7), but whether this was a general
93	feature of degeneration remained unclear. To address this question, we examined rd1 mice – a
94	well-studied degenerative model in which rods are completely eliminated by the fourth
95	postnatal week. The <i>rd1</i> mutation disrupts the <i>Pde6b</i> gene, which is linked to retinitis
96	pigmentosa in humans ²⁰ . Examination of P16 <i>rd1</i> mice revealed extensive LA expression within
97	the degenerating photoreceptor layer (Fig. 1C). Since cone cell death is more protracted versus

99 (Fig. 1C, D; Supplemental Movie). This confirmed that LA upregulated in *bona fide* rods in the
100 *rd1* retina.

103	To corroborate these observations, we examined a recently published RNA-seq dataset made
104	from sorted <i>rd1</i> rods ²¹ . In this dataset, <i>Lmna</i> was among the most significantly upregulated
105	genes ²¹ . Moreover, <i>Lmna</i> upregulation coincided precisely with the onset of cell death at P10
106	(Fig. 1E). To determine how this upregulation related to the LA splice variant, we re-mapped
107	Jiang et al.'s RNA-seq data. Examination of Lmna exon usage revealed that alternative splicing
108	generated lesser but nonetheless significant levels of LA versus LC (Fig 1F, G). Finally, we
109	examined Lbr transcripts, but found no difference in wild-type versus rd1 mice (Fig. 1H). Thus,
110	degenerating rods upregulate LA, raising the possibility that higher order genome organization
111	might be reconfigured in these photoreceptors.
112	
113	To test this idea directly, we measured heterochromatin tethering in LA-positive versus -
114	negative rods. We found that the distance between each chromocenter and the margin of the
115	nucleus was significantly reduced in LA+ versus LA–negative rods (Fig. 2A-D). Similarly, the
116	intensity of DNA at the nuclear periphery was elevated in LA+ cells (Fig. 2E), suggesting that LA
117	reorganizes the nucleus during degeneration.
118	
119	During cell death, rod nuclei undergo pyknosis – in which chromatin compacts and the nucleus
120	shrinks markedly ²² . However, we found that pyknotic nuclei did not express LA (Fig. 2B;
121	asterisk), suggesting that the upregulation of LA/LC is an early and likely transient event during
122	the degenerative process.

124 Heterochromatin tethering by Lamin A versus Lbr

126	While LA+ rods exhibited increased heterochromatin tethering, Lbr is still expressed when LA
127	upregulates (Fig. 1G, H) raising the question of whether LA and Lbr tether heterochromatin
128	differently. To compare LA versus Lbr –dependent heterochromatin tethering, wild-type retinas
129	were electroporated at P0 with control, LA, or Lbr expression constructs cloned into the pCIG2
130	vector, which contains an IRES2-EGFP reporter cassette. Importantly, due to the exclusively
131	embryonic temporal window for cone generation, cone photoreceptors are never transfected ^{23,}
132	^{24, 25} . Transfected rods were examined at P42, when chromatin inversion is complete (Fig. 3A, B;
133	Fig. S2).
134	
135	Using morphometric measures for heterochromatin tethering (Fig. 3C, D), we found that both
136	LA and Lbr increased the intensity of DNA at the nuclear periphery equivalently in comparison
137	to control cells (Fig. 3 E-H). However, in Lbr-transfected cells, chromocenters appeared to
138	contact the lamina more directly (Fig. 3G). As a result, the distance between the chromocenter
139	centroid and nuclear lamina was significantly reduced in Lbr-transfected rods versus LA-
140	transfected rods (Fig. 3I).
141	
142	Heterochromatin tethers have subtle effects on gene expression
143	

144 To determine how tethering affects gene expression, we misexpressed LA/Lbr in rods using in 145 vivo electroporation. After 8 weeks, we flow-sorted viable EGFP+ cells. As we were only able to 146 obtain a few thousand cells per transfected retina, we opted to perform scRNA-seq using the 147 10x Genomics Chromium platform. To avoid batch effects, we multiplexed samples using the 148 Multi-seq barcoding approach. After removing low-quality cells and performing additional 149 quality controls (see Methods), we clustered individual cells using Uniform Manifold 150 Approximation and Projection (UMAP; Fig. 4A). To annotate cell types in an unsupervised manner, we used scDeepSort²⁶ trained on a previously published retinal RNA-seq atlas²⁷. As 151 152 expected, most sorted cells in the dataset were rods, but a few bipolars and Müllers were also 153 annotated (Fig. 4B).

154

155 Focusing solely on annotated rods, Control, LA, and Lbr -transfected cells clustered in an 156 overlapping fashion, suggesting little difference between their overall gene expression patterns 157 (Fig. 4D, E). Similarly, we found that both LA and Lbr misexpression had relatively modest 158 effects on the expression of individual genes (Fig. 4E, F; Table S1). Characteristic photoreceptor 159 genes were significantly elevated in LA-expressing rods (eg. Rho, Gnat1; Fig. 4E), and 160 significantly decreased in Lbr-expressing cells (eg. Guca1a, Pde6b; Fig. 4F). Nonetheless, the 161 overall magnitude of transcriptional changes in tethered rods was generally modest, with only a few genes changing more than 2-fold. Interestingly, *Hist1h1c* and *Cbx3*, which encode key 162 163 heterochromatic proteins, were significantly downregulated in Lbr-expressing rods (Fig. 4F). 164

165 *Heterochromatin tethering regulates genome accessibility*

167	Previous studies have reported that rod photoreceptors uniquely exhibit megabase-scale
168	genomic intervals with unusually reduced chromatin accessibility ¹¹ . We reasoned that this
169	unique accessibility signature might be altered by heterochromatin tethering. We therefore
170	performed ATAC-seq on rods transfected with control, LA, or Lbr constructs. To mark rods
171	specifically, we co-transfected the plasmids with a pRho2.2::DsRed reporter ²⁸ (Fig. 4A, B). After
172	8 weeks, rod photoreceptors were sorted using EGFP, DsRed, and Dapi to mark viability.
173	
174	Next, we processed the ATAC-seq datasets in order to call peaks. We first compared our
175	datasets against previously published ATAC-seq data from sorted rods ¹¹ . In general, we
176	observed that all of our datasets exhibited comparable signal at the rod-specific peak loci
177	previously identified by Hughes et al. ¹¹ (Fig. S3). We also observed a lack of signal at the
178	promoters of several marker genes for non-rod cell types, such as cones, bipolars, and Müller
179	glia (Fig. S4).
180	
181	In accordance with the hypothesis that inverted nuclear architecture restricts accessibility ¹¹ , we
182	observed an increase in the number of peaks in tethered rods (Fig. 4C). We compared LA or Lbr
183	-tethered rod ATAC-seq data versus normal rod datasets using two approaches. First, we
184	examined the overlap between peaks. We found that more than half of the rod-specific peaks
185	identified by Hughes et al. were shared by our ATAC-seq datasets (Fig. 4C). The control datasets
186	together contained less than 2000 peaks that were absent from tethered rods. By contrast, LA

and Lbr datasets exhibited 5094 and 6452 unique peaks, respectively, and shared an additional
7652 peaks – all of which were absent from the control datasets (Fig. 4C).

189

190 Secondly, we also plotted the data centered on the 35 858 LA peaks. This analysis revealed a 191 great deal of resemblance between the accessibility signatures of LA+ and Lbr+ rods. We 192 performed K-means clustering which allowed us to separate almost 10 000 peaks that had 193 markedly elevated signal in LA/Lbr tethered rods in comparison to controls (Fig. 4D; cluster C2; 194 arrows). Peak-to-gene annotation revealed that only ~10% of these novel peaks were found in 195 gene-proximal regions (Fig. S5A). Taken together, these analyses indicate that rods with 196 tethered heterochromatin gain thousands of additional peaks – mainly in distal intergenic 197 regions.

198

199 We inspected newly accessible peaks, but they did not appear to overlap with any specific 200 genomic feature. We therefore opted to perform footprinting analysis using the TOBIAS 201 algorithm²⁹. TOBIAS examines ATAC-seq peaks to identify regions occluded by proteins, and to 202 match these 'footprints' to transcription factor motifs. We selected 220 transcription factor 203 motifs from the TRANSFAC database. Using this approach, we found that Ctcf footprints were 204 the most overrepresented motifs in both LA and Lbr datasets (Fig. S5B, C). Interestingly, rod-205 specific transcription factor motifs such as Crx and Otx2 were overrepresented in the Lbr 206 dataset, but not LA-expressing rods. Focusing on novel tethering-specific cluster C2 peaks, we 207 next visualized Ctcf ChIP-seq datasets made from murine embryonic stem cells by the Bing Ren 208 lab³⁰. We found that cluster C2 loci correlated with considerable Ctcf signal. These data suggest

that many of the peaks induced by heterochromatin tethering are genuine regulatory elementsthat are normally decommissioned in rods.

212	Hughes et al. had also previously hypothesized that heterochromatin tethering might explain
213	the increased genomic accessibility of cones ¹¹ . However, we found that in terms of genome
214	accessibility, tethered rods are more similar to control rods than to cones – perhaps not
215	surprisingly (Fig. S6A). Inspection of cone-specific peaks revealed that most remained
216	inaccessible in tethered rods (Fig. S6B; see also S4), except at the <i>Lmna</i> locus itself (Fig. S6C),
217	which was previously noted to be accessible in cones but not rods ¹¹ . Some loci might therefore
218	take on cone-like accessibility signatures in response to tethering.
219	
220	Finally, to address the hypothesis that heterochromatin tethering might affect the accessibility
221	of B compartment topologically associating domains (TADs), we examined rod-specific Hi-C
222	experiments ¹⁵ . Surprisingly, we found that almost all of the novel cluster C2 peaks were present
223	in the euchromatic A compartment (Fig. S7A). We did observe a few notable exceptions, where
224	B compartment accessibility was altered, including at the Myc gene (Fig. S7B), which was
225	previously reported to be localized within a large inaccessible interval ¹¹ , as well as across a TAD
226	that contains the chemokines Ccl1, Ccl2, Ccl7, Ccl8, Ccl11, and Ccl12 (Fig. S7C). Nonetheless,
227	effects on B compartment accessibility were the exception.
228	
229	Heterochromatin tethering promotes accessibility at a subset of stress-responsive genes

231 To understand how heterochromatin tethering might relate to function, we performed GO 232 terms analysis on the tethering-specific cluster C2 peaks using Panther and ReViGO^{31, 32}. Since 233 almost 10 000 peaks were obtained in the cluster, peak-to-gene annotation would retrieve a 234 large proportion of genes in the genome. To reduce false discovery, we restricted our analysis 235 to gene-proximal peaks located from 5 kb upstream to 1 kb downstream of a given gene. This 236 reduced the overall peak count to only ~1400 peaks, corresponding to 500 genes. Significantly 237 enriched GO terms related to the stress response, including "immune response", "response to 238 wounding", and "inflammatory response" (Fig. 5A; Table S2).

239

240 To determine whether the same group of stress-responsive genes might upregulate in rd1 rods, 241 we intersected the 500 tethering-specific cluster C2 genes with the RNA-seq data generated by 242 Jiang et al²¹. Only 25 genes within cluster C2 were significantly upregulated in *rd1* rods (Fig. 6B). 243 Moreover, we found little evidence for stress-responsive transcript upregulation in our Multi-244 seq dataset (Fig. 6C, D). Nonetheless, a few cluster C2 genes exhibited notable increases in 245 accessibility, including the immediate early gene Nab2 and the putative tumor suppressor Tusc1 246 (Fig. 6E, F; arrows). We also observed novel tethering-specific peaks at the Ccl3 and Ccl4 247 chemokine genes (Fig. S8A) as well as the interferon activated gene *Ifi204* and the *Cd68* surface 248 marker (Fig. S8B, C), which were shown to become acutely accessible in a light damage model 249 of retinal degeneration³³. Taken together, these data suggest that heterochromatin tethering 250 might 'poise' regulatory elements to facilitate the stress response, but that additional steps are 251 necessary for full gene activation.

252

253 Discussion

254

255	The rod photoreceptors of nocturnal animals are perhaps the only eukaryotic cells that
256	normally function without heterochromatin tethering. However, disrupted nuclear organization
257	had been reported in a variety of mouse mutants for chromatin proteins ^{10, 12, 14, 15, 16, 17, 18} . A
258	similar reversal of nuclear organization occurs in Nr2e3 and Nrl mutants, in which rods
259	transdifferentiate into cone-like photoreceptors ^{34, 35} . Here, we report that LA upregulates in the
260	rd1 model of retinitis pigmentosa. Since Pde6b does not directly affect chromatin, we conclude
261	that <i>Lmna</i> upregulation can be a general response to degeneration.
262	
263	How does LA upregulation affect the photoreceptor genome? Previous studies suggested that
264	the absence of tethering leads to a strikingly 'closed' accessibility signature ^{11, 36} . Perhaps
265	counterintuitively, our data suggest that tethering the heterochromatic B-compartment at the
266	nuclear periphery mainly affects accessibility within the euchromatic A-compartment. Acting
267	like the fingers in a "cat's cradle", heterochromatin tethering might be important for
268	disentangling and segregating B compartment TADs away from the A compartment (Fig. 7).
269	Alternatively, tethering might provide tensile force to chromosomes that could facilitate gene
270	expression. LMNA mutations have accordingly been shown to have extensive effects on
271	genome accessibility in other contexts ³⁷ .
272	
273	Based on genome modelling, The Solovei and Mirny labs predicted that the introduction of

274 heterochromatin tethering in fully inverted rods would fail to restore conventional

275	architecture ¹⁵ . Results from SCA7 and Casz1 mutant mice, in which LA/LC upregulates in mature
276	rods agree with this prediction ^{12, 15} . By contrast, the upregulation of LA in <i>rd1</i> rods occurs prior
277	to full inversion. Nonetheless, since tethering mainly induced novel peaks within the A-
278	compartment, we predict that LA upregulation might have similar effects during the
279	degeneration of mature rods with fully inverted architecture.
280	
281	Heterochromatin tethers are permissive – but not instructive - for gene expression
282	
283	We found that LA/Lbr both increased genome accessibility similarly - mainly at distal intergenic
284	regions. Focusing on cluster C2 peaks, we found that Ctcf footprints were increased, suggesting
285	that these loci might be bona fide regulatory elements that are normally decommissioned in
286	inverted rods. Accordingly, we found that many these loci exhibited Ctcf occupancy in murine
287	ES cells. While the accessibility signatures of LA/Lbr were similar, they differed in footprint
288	enrichment profiles and differential gene expression. Moreover, morphometric analysis of
289	heterochromatin tethering revealed that Lbr had stronger effects on chromocenters. These
290	data might reflect differences in tethering mechanisms, and agree with previous research
291	indicating that LA/Lbr can have differential effects on gene expression ¹⁰ .
292	
293	One alternative possibility is that the increased accessibility observed in tethered rod datasets
294	might arise if samples were contaminated with non-rod cells. However, we disfavor this
295	interpretation. First, in our ATAC-seq experiments, we found that cell-type-specific marker
296	genes lacked accessibility, or exhibited equivalent accessibility when compared to control rod

datasets. Second, most of the observed novel peaks were distal to genes. Third, even for geneproximal peaks, GO terms were mainly associated with stress rather than cell fate, suggesting
that changes in cell composition are unlikely to account for the novel peaks.

300

301 Another alternative interpretation is that the observed accessibility signature might be a by-302 product of toxicity introduced by construct overexpression. Again, we disfavor this scenario. 303 First, while LA/LC overexpression has been associated with toxicity, these effects are often 304 linked to mitotic catastrophe or nuclear rupture, which are mitigated in non-motile post-mitotic 305 rods. We harvested rods at least 6 weeks after transfection. The expression constructs were 306 thus tolerated in these cells over the long term. Second, similar changes in accessibility were 307 observed when rods were transfected with Lbr, which has been shown to be well-tolerated in 308 transgenic mice^{9, 10}. Third, we examined transfections for cell death, but did not observe 309 pyknotic nuclei, elevated Dapi incorporation, or upregulation of stress-responsive gene 310 expression.

311

312 Lamin A reorganizes the nucleus during degeneration

313

ATAC-seq has been recently used to characterize degenerating retinas in age-related macular degeneration and murine light damage models, revealing a marked *decrease* in genome accessibility^{33, 38}. Examination of RNA-seq data from the light damage model revealed that *Lmna* was similarly upregulated by ~10-20 fold – both at 6 hours and one day post-injury, but not at 3 days³³. While the reported decrease in genomic accessibility thus conflicts with our

observations, the ATAC-seq data from the above studies were generated using whole retinas,
whereas we studied sorted rods. Moreover, we note that several genes that were reported to
become accessible upon light damage, including *Ccl4*, *Ifi204*, *and Cd68*, similarly became
accessible upon heterochromatin tethering via LA/Lbr (Fig. S8). Luu et al. also reported that
light damage increased accessibility at distal intergenic regions, in accordance with our
observations

325

326 Elsewhere in the CNS, changes in nuclear lamins have previously been linked to 327 neurodegeneration. For example, alterations in the expression and integrity of B-type lamins have been documented in tauopathies and Alzheimer's disease^{39, 40}. A potential linkage 328 329 between LA and photoreceptor degeneration nonetheless seemed unlikely, given that the 330 expression of the LA splice variant is usually suppressed in neurons⁴¹, and has been repeatedly 331 shown to be absent in rods^{10, 11, 12, 13}. However, LA was recently found to upregulate in 332 hippocampal neurons in Alzheimer's disease⁴². Indeed, *Lmna* upregulation was recently linked to tissue damage in a variety of other organs⁴³, although the responsible regulatory 333 334 mechanisms have not yet been defined. 335 336 What might be the purpose of upregulating LA in response to pathology? Tethering 337 heterochromatin via LA/Lbr transfection appears to 'poise' the regulatory elements of stress-338 responsive genes. However, the limited effect on transcription suggests that LA upregulation 339 may serve additional purposes. One possibility is that heterochromatin tethering may be

340 important for facilitating DNA repair. Indeed, previous studies have shown that DNA repair is

- 341 inefficient in inverted rod photoreceptors, and this inefficiency is ameliorated via transgenic
- 342 misexpression of Lbr^{44, 45}. Given the well-documented linkage between LA/LC and DNA repair⁴⁶,
- 343 it would be interesting to test whether LA upregulation improves the efficiency of DNA repair
- 344 even further.
- 345

346	Methods
347	
348	Animals
349	
350	Animal work was conducted according to the guidelines of the Canadian Council on Animal Care
351	and the Animal Care and Veterinary Service at uOttawa using ethical protocols OHRI-2856 and
352	OHRI-2867. CD1 mice were obtained from Charles River Laboratories (Senneville QC, Canada).
353	C57BL/6J and rd1 (C57BL/6J-Pde6b ^{rd1-2J} /J; strain# 004766) mice were obtained from Jackson
354	Laboratories (Bar Harbor ME) and maintained as homozygous stocks.
355	
356	DNA constructs
357	
358	pCIG2 and pCIG2 Lamin A were previously described ^{12, 47} . A pCIG2 Lbr plasmid was generated by
359	PCR amplifying Lbr from pMSCV-Flag-Lbr, generously provided by Peter Gaines ⁴⁸ in order to
360	remove the Flag tag. Primers were Lbr Xhol F: 5'-CACACTCGAGATGCCAAGTAGGAAGTTTGTTG-3'
361	and Lbr EcoRI R: 5'- CACAGAATTCTCAGTAAATGTAGGGGAATATG-3'. To mark rod
362	photoreceptors, we utilized pRho-DsRed generously provided by Connie Cepko (Addgene
363	#11156) ²⁸ . Stable cell lines were generated using pBABE-puro-GFP-wt-lamin A (Addgene
364	#17662) and pBABE-puro-GFP-Progerin (Addgene #17663) plasmids, generously shared by the
365	Tom Misteli lab ⁴⁹ .
366	

367 Electroporation

369	In vivo retinal electroporations were performed as described previously ^{12, 28} . Briefly, PO pups
370	were anesthetized on ice, and an incision was made into the eyelid to expose the orbit of the
371	eye. Plasmid DNA (2 μ g/ μ l) was mixed with Fast Green dye and injected subretinally, using a
372	Femtojet microinjector (Eppendorf, Mississauga ON, Canada) and pulled borosilicate needles
373	(Drummond Scientific, Broomall, PA). Pups were placed into an incubator to re-warm, and then
374	replaced into the home cage.
375	
376	Flow cytometry
377	
378	Adult retinas were dissected and placed in StemPro Accutase (Thermo Fisher Scientific, Ottawa
379	ON, Canada) for 30 minutes at 37 °C. Cells were triturated manually, incubated with Dapi as a
380	viability marker, and then sorted by the OHRI Flow Cytometry and Cell Sorting Facility using a
381	MoFlo XDP (Beckman Coulter, Mississauga ON, Canada).
382	
383	Immunohistochemistry and microscopy
384	
385	Retinas were processed for immunohistochemistry as previously described ^{12, 50} . We used the
386	following primary antibodies: Nr2e3 (PNR: R&D Systems PP-H7223-00), lamin A (Fortis A303-
387	433A), and Lamin A/C (Harald Herrmann Lab). Hoechst 33342 (Tocris NB5117) and Alexa Fluor-
388	568-conjugated peanut agglutin (Molecular Probes L32458) were applied along with the
389	primary antibodies.

391	Images were acquired using Zeiss LSM880 or LSM900 confocal microscopes with Airyscan
392	detectors. All images presented in the paper are from individual Z-planes, and all level
393	transformations were linear. Images were processed using Zen (Zeiss), Fiji (ImageJ), and Adobe
394	Photoshop (Adobe) software. 3D reconstruction and animation was performed using IMARIS
395	v9.7 (Bitplane, South Windsor CT).
396	
397	Cell culture and western Blot
398	
399	Cell culture and western blotting were performed as previously described ^{12, 50} . See above for
400	antibody information. Stable cell lines expressing pBABE-puro-GFP-wt-lamin A, pBABE-puro-
401	GFP-Progerin, or a vector control plasmids were generated by transfecting 293 cells with
402	plasmids and selecting with puromycin (Bio Basic, Markham ON, Canada).
403	
404	Nuclear morphometric analysis
405	
406	Densitometry measurements were performed using ImageJ and Fiji software ⁵¹ . Single Airyscan
407	Z planes were analyzed. The perimeter of each selected nucleus was manually traced using the
408	"Freehand Selection" tool to first acquire the mean pixel intensity of the entire nuclear area.
409	Then, perimeters were re-traced using the "Freehand Line" tool, and the mean pixel intensity at
410	the nuclear perimeter was measured. This latter perimeter measurement was divided by the
411	mean pixel intensity of the entire nucleus in order to normalize each nucleus against variation

412	in image intensity. For the chromocenter midpoint/lamina measure, the distance between the
413	centroid of each chromocenter and the nuclear periphery was measured using the "Straight
414	Line" tool.
415	
416	Statistics
417	
418	Statistical analyses for count and measurement data were performed using Microsoft Excel and
419	GraphPad Prism 8 software. n-values refer to biological replicates (independent experiments,
420	animals, or cells as indicated in the text and figure legends). All error bars are mean \pm SEM.
421	
422	ATAC-seq
423	
424	ATAC-seq data were generated following Buenrostro et al. ⁵² . Briefly, 50 000 flow-sorted cells
425	were lysed in cold lysis buffer (10 mM Tris-Cl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.1%
426	IGEPAL CA-630). Lysed nuclei were tagmented using 6.5 μ l of TDE1 transposase from the
427	Nextera DNA Flex Library kit (Illumina, Fredericton NB, Canada). Samples were purified using
428	Zymo-Spin IC columns (Zymo Research, Irvine CA), and libraries constructed according to the
429	Nextera workflow. Libraries were cleaned up using the AMPure XP kit (Beckman Coulter). PE
430	150 sequencing was performed using the NextSeq 500 platform to a read-depth of 25-35
431	million reads per sample.
432	

433 Multi-seq

435	After flow cytometric sorting, cells were barcoded with 'anchor' and 'co-anchor' lipid-modified
436	oligonucleotides generously provided by the Zev Gartner lab ⁵³ . Barcode oligonucleotides were
437	purchased from Integrated DNA Technologies (Coralville IA) as follows. Barcode 1: F: 5'-
438	CCTTGGCACCCGAGAATTCCAGGAGAAGAAAAAAAAAAA
439	2: F: 5'- CCTTGGCACCCGAGAATTCCACCACAATGAGAAAAAAAAA
440	3'; Barcode 3: F: 5'-
441	CCTTGGCACCCGAGAATTCCATGAGACCTAAAAAAAAAA
442	
443	Each replicate was incubated with barcode oligonucleotides for 10 minutes. Cells were pelleted
444	and washed 3 times with PBS. Replicates were pooled and processed in a single 10X Genomics
445	(Pleasanton CA) Chromium run. Gene expression libraries were sequenced to an average depth
446	of 369 327 reads per cell. Expression library FASTQs were processed using CellRanger (10X
447	Genomics).
448	
449	Bioinformatics – ATAC-seq
450	
451	ATAC-seq Fastq files were processed via Fastq Groomer ⁵⁴ and Trimmomatic ⁵⁵ , and then
452	mapped to the mm10 genome using Bowtie2 ⁵⁶ . Summit and narrowpeak calling was performed
453	with Macs2 ⁵⁷ , and we used GREAT ⁵⁸ for peak-to-gene annotation. GO terms analysis was
454	performed using Panther ^{31, 59} followed by ReViGO ³² . ATAC-seq histograms were generated
455	using Seqplots ⁶⁰ .

457	Sorted rod and double-sorted green cone ATAC-seq data and narrowpeak files (mm10) were
458	obtained from Hughes et al. ¹¹ (GSE83312). Ctcf ChIP-seq data (ENCSR343RKY) generated by the
459	Bing Ren lab ³⁰ were obtained from the ENCODE Consortium ^{61, 62} .
460	
461	For comparison with compartment data generated by Falk et al. ¹⁵ and Ctcf ChIP-seq data from
462	ENCODE, ATAC-seq data were re-mapped to the mm9 genome as per above, except that we
463	used Cutadapt for adapter trimming.
464	
465	Footprinting analysis was performed using TOBIAS. As per the guidelines, we merged peak files
466	together: lamin A with control; Lbr with control. Bindetect was performed using 220 motifs
467	selected from the TRANSFAC database.
467 468	selected from the TRANSFAC database.
467 468 469	selected from the TRANSFAC database. Bioinformatics – RNA-seq
467 468 469 470	selected from the TRANSFAC database. Bioinformatics – RNA-seq
467 468 469 470 471	selected from the TRANSFAC database. <i>Bioinformatics – RNA-seq</i> RNA-seq data from sorted rod photoreceptors from P10 <i>Rd1</i> mice were obtained from Jiang et
 467 468 469 470 471 472 	selected from the TRANSFAC database. <i>Bioinformatics – RNA-seq</i> RNA-seq data from sorted rod photoreceptors from P10 <i>Rd1</i> mice were obtained from Jiang et al. ²¹ (GSE183117). Figure 1 presents the bioinformatic data published in the original paper. To
 467 468 469 470 471 472 473 	selected from the TRANSFAC database. <i>Bioinformatics – RNA-seq</i> RNA-seq data from sorted rod photoreceptors from P10 <i>Rd1</i> mice were obtained from Jiang et al. ²¹ (GSE183117). Figure 1 presents the bioinformatic data published in the original paper. To visualize <i>Lmna</i> transcription and splicing, we re-mapped the data to the mm9 genome using
 467 468 469 470 471 472 473 474 	selected from the TRANSFAC database. <i>Bioinformatics – RNA-seq</i> RNA-seq data from sorted rod photoreceptors from P10 <i>Rd1</i> mice were obtained from Jiang et al. ²¹ (GSE183117). Figure 1 presents the bioinformatic data published in the original paper. To visualize <i>Lmna</i> transcription and splicing, we re-mapped the data to the mm9 genome using Galaxy ⁶³ . Fastq files were processed via Fastq Groomer ⁵⁴ and Trimmomatic ⁵⁵ , and then mapped
 467 468 469 470 471 472 473 474 475 	selected from the TRANSFAC database. <i>Bioinformatics – RNA-seq</i> RNA-seq data from sorted rod photoreceptors from P10 <i>Rd1</i> mice were obtained from Jiang et al. ²¹ (GSE183117). Figure 1 presents the bioinformatic data published in the original paper. To visualize <i>Lmna</i> transcription and splicing, we re-mapped the data to the mm9 genome using Galaxy ⁶³ . Fastq files were processed via Fastq Groomer ⁵⁴ and Trimmomatic ⁵⁵ , and then mapped to the mm9 genome using RNA Star ⁶⁴ . Genome visualization and sashimi plots were generated

477 (<u>https://software.broadinstitute.org/Morpheus</u>). We quantitated differential transcripts using
478 FeatureCounts⁶⁶ and DeSeq2⁶⁷.

480 Bioinformatics – scRNA-seq

482	Fastq files were aligned to the mm10 genome using CellRanger version 6.1.2 (Cell Ranger
483	software, 10x Genomics). Output files were filtered and analyzed using Scanpy version 1.9.1 ⁶⁸ in
484	Python (Python Core Team n.d.). Genes detected in less than 3 cells were removed from the
485	analysis. Low-quality cells (less than 200 genes detected, more than 2500 genes detected or
486	more than 18% of mitochondrial genes) were also excluded. Scrublet version 0.2.2 was used to
487	detect doublets ⁶⁹ . Replicates were demultiplexed with using the MULTI-seq workflow ⁵³ . To
488	annotate cell types, we trained a deep learning model grounded on previously published retinal
489	single cell expression data ²⁷ using scDeepSort version 1.0 ²⁶ . Mitochondrial gene regression and
490	initial gene expression analysis was performed using scVI-tools version 0.19.0 ⁷⁰ . Differential
491	gene expression analyses were performed using MAST version 1.24.0 ⁷¹ . Data integration was
492	carried out on PostgreSQL version 14.3 (PostgreSQL Core Team n.d.) and Python's library
493	Pandas version 1.5.2 (Pandas Core Team n.d.).

495	Author Contributions
496	
497	Conceptualization: I.N., A.F., P.M. Data curation: I.N., K.S., P.M. Formal analysis: all authors.
498	Investigation: I.N., K.S., P.M. Project administration, resources, supervision: P.M. Visualization:
499	A.F., I.N., P.M. Writing—original draft: P.M. Writing, review, and editing: all authors.
500	
501	Conflict of Interest:
502	
503	The authors declare no competing interests.
504	
505	Availability of Data and Materials:
506	
507	No restrictions on sharing data, reagents, or code. scRNA-seq and ATAC-seq datasets will be
508	uploaded to GEO.
509	
510	Acknowledgements
511	
512	We are grateful to Philip Ruzycki and David Picketts for comments on earlier versions of this
513	manuscript. We are indebted to Irina Solovei for previously sharing reagents and advice. We
514	thank Zev Gartner and Chris McGinnis for sharing Multi-seq reagents. We thank Harald
515	Herrmann for providing antibodies. We thank Connie Cepko, Peter Gaines, and Tom Misteli for
516	providing plasmids. We thank Caroline Vergette and Katayoun Sheikheleslamy from Stemcore,

517 and Chris Porter from the Bioinformatics OHRI core facilities for their help with NGS 518 experiments. We also thank the Animal Care and Veterinary Service, and Cell Biology and Image 519 Acquisition core facilities. We thank the laboratories of Joe Corbo, Leonid Mirny, Bing Ren, and 520 Anand Swaroop for providing genomic datasets upon which this study relied. We thank William 521 Stanford, Samuel Clémot-Dupont and Mattar lab members for their ongoing help and input. 522 Finally, we thank Lily Mattar for providing artwork for Figure 7. This project was supported by 523 the Canadian Institutes of Health Research (CIHR) Operating Grants PJT-166032 and PJT-524 166074. I.N. was supported by a CIHR Canada Graduate Scholarship. P.M. currently holds the 525 Gladys and Lorna J. Wood Chair for Research in Vision.

527 Figure Legends

529	Figure 1. Lamin A upregulates at the onset of rod degeneration in <i>rd1</i> rods. (A, B)
530	Immunohistochemistry on wild-type C57BL/6 at P16 (A) or adult (B) stages using a LA-specific
531	antibody (white). The retina was counterstained for the rod marker Nr2e3 (A; green) or the
532	cone marker peanut agglutinin (B; green), as well as the DNA dye Hoechst 33342 (blue). Boxed
533	regions indicate the areas shown in the insets. Arrowheads indicate cone photoreceptors. (C, D)
534	Immunohistochemistry for LA or LA/LC (white) and the rod-specific marker Nr2e3 (green) on
535	rd1 retinas at P16 (C) or P21 (D). Boxed regions indicate the areas shown in the insets. Arrows
536	indicate LA expression in Nr2e3+ rods. Scale bars = 10 μ m. (E-H) Transcript expression at
537	different postnatal stages as indicated - from the Anand Swaroop lab (AS) ²¹ . (F) Sashimi plot of
538	splice junctions from P10 <i>rd1</i> RNA-seq data. (G, H) Transcription at the <i>Lmna</i> (G) or <i>Lbr</i> (H) loci
539	from P10 RNA-seq samples as indicated. Data were remapped from Jiang et al. ²¹ and plotted on
540	the same scale (group autoscale).
541	
542	Figure 2. Increased heterochromatin tethering in Lamin A+ rd1 rods. (A) Airyscan confocal
543	imaging of P16 <i>rd1</i> retinas stained for LA (white), Nr2e3 (green), and Hoechst (blue). Boxed
544	regions indicate the areas shown in (B, C). Arrowheads indicate LA+ Nr2e3+ rods. Arrows
545	indicate LA-negative Nr2e3+ rods. Asterisk indicates a pyknotic nucleus. Scale bars = 10 μ m. (D)
546	Linear distance between chromocenter centroids and the nuclear margin. Nr2e3+ n=69
547	chromocenters from 30 cells; Nr2e3+ LA+ n=90 chromocenters from 30 cells; *** p < 0.001,
548	Mann-Whitney U test. (E) Mean chromatin intensity at the nuclear margin normalized against

the mean chromatin intensity of the nucleus. n=30 cells per group; **** p < 0.0001, Student's t-
test.

551

552 Figure 3. Heterochromatin tethering by lamin A versus Lbr. (A) In vivo electroporation 553 paradigm. Retinas were subretinally injected with plasmids, electroporated, and harvested after 554 6 weeks, yielding transfected rod photoreceptors. (B) Wholemount epifluorescence image of 555 EGFP expression from a transfected retina. (C) Morphometric analysis of transfected nuclei was 556 performed as indicated. (D) Densitometry values for chromatin intensity at the nuclear 557 periphery of Control (n=6) or LA -transfected cells (n=6) as indicated, obtained using the "Plot 558 profile" tool in Fiji. Each color represents a different cell. (E-G) Airyscan confocal imaging of rod 559 photoreceptors transfected with empty vector control (E), LA (F), or Lbr (G) expression 560 constructs, and harvested after 6 weeks. (H) Quantitation of chromatin intensity at the nuclear 561 margin measured using the "Freehand Line" tool in Fiji. Datapoints are the mean intensity 562 values from 3 independent transfections (30 cells each). **** p < 0.0001, ANOVA with Tukey's 563 post-hoc test. (I) Distance from the chromocenter midpoint to the nuclear periphery. n=56 untransfected; n=57 pCIG2; n=93 lamin A; n=77 Lbr. **** p < 0.0001, Kruskal-Wallace with 564 565 Dunn's post-hoc test.

566

Figure 4. Comparison of gene expression in control versus tethered rods. (A) UMAP projection
 of Multi-seq dataset. (B) Unsupervised cell-type annotation via scDeepSort trained on a
 previously published retinal scRNA-seq dataset⁷². (C) Demultiplexing of control, lamin A, and Lbr
 samples. (D, E) Overlap of Control, lamin A, or Lbr -transfected cells within the rod cluster. (F, G)

571 Volcano plots of differential gene expression in annotated rods. (F) Lamin A versus control. (G)
572 Lbr versus control.

574	Figure 5. Heterochromatin tethering promotes chromatin accessibility. (A) In vivo
575	electroporation paradigm. Retinas were subretinally injected with expression plasmids,
576	including the rod-specific pRho2.2-DsRed reporter. Electroporated retinas were harvested after
577	8 weeks, yielding DsRed+ rod photoreceptors. (B) Wholemount epifluorescence image of EGFP
578	and DsRed expression from a transfected retina. (C) Upset plot of of ATAC-seq peak
579	intersections from sorted rods transfected with control, LA, or Lbr expression constructs
580	compared against previously published data from the Joe Corbo lab $(JC)^{11}$ as indicated. (D)
581	Alignment of ATAC-seq data from sorted rods transfected with control, LA, or Lbr expression
582	constructs compared against previously published data as indicated. Plots are centered on peak
583	summits from LA transfected rods. Arrows indicate the tethering-specific cluster C2 peaks.
584	
585	Figure 6. Heterochromatin tethering promotes accessibility at stress responsive genes. (A) GO
586	terms analysis of tethering-specific cluster C2 genes (see Fig. 4D) via PantherDB and ReViGO.
587	Peak-to-gene annotation was restricted to gene proximal peaks as described in the text. (B)
588	Intersection of RNA-seq data from control versus <i>rd1</i> sorted rods intersected with annotated
589	(gene-proximal) cluster C2 genes. Heatmap values are transformed by subtracting the row
590	median and dividing by the median absolute deviation. (C, D) Expression changes for selected
591	stress-responsive genes, comparing RNA-seq data from control versus <i>rd1</i> sorted rods from the
592	Anand Swaroop lab (AS) ²¹ (C) versus scRNA-seq data from rods transfected with control, lamin

593	A, or Lbr plasmids (D). (E, F) Control vs. rd1 RNA-seq, and ATAC-seq tracks and called peaks
594	from Hughes et al. (JC) ¹¹ , compared against ATAC-seq tracks generated from control, LA, or Lbr -
595	transfected rods at the Nab2 (E) and Tusc1 (F) loci. RNA-seq and ATAC-seq tracks were
596	respectively group-autoscaled. Arrows indicate peaks present specifically in tethered rods, but
597	not control rods.
598	
599	Figure 7. Cat's cradle model for tethering-dependent effects on genome accessibility. (A)
600	During the differentiation of wild-type rods, the tethering of heterochromatin (dark blue) by Lbr
601	(purple) stretches the chromosomes, promoting accessibility in the A-compartment (cyan).
602	Over time, Lbr expression is downregulated leading to chromatin relaxation, and finally
603	chromatin inversion. As the chromatin relaxes, accessibility decreases. (B) During the
604	differentiation of <i>rd1</i> rods, lamin A (red) upregulates at the onset of tissue damage. The
605	prolongation of tethering promotes accessibility at genomic regions that would normally be

606 decommissioned. *Rd1* rods downregulate lamin A prior to cell death.

608	References	
609	1.	Wong-Riley MT. Energy metabolism of the visual system. <i>Eye and brain</i> 2010, 2: 99-116.
610		
611	2.	Reingruber J, Holcman D, Fain GL. How rods respond to single photons: Key adaptations
612		of a G-protein cascade that enable vision at the physical limit of perception. <i>Bioessays</i>
613		2015, 37 (11): 1243-1252.
614		
615	3.	Hsiau TH, Diaconu C, Myers CA, Lee J, Cepko CL, Corbo JC. The cis-regulatory logic of the
616		mammalian photoreceptor transcriptional network. <i>PloS one</i> 2007, 2 (7): e643.
617		
618	4.	Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, et al. Transcriptional code and
619		disease map for adult retinal cell types. Nature neuroscience 2012, 15(3): 487-495, S481-
620		482.
621		
622	5.	Eberhart A, Feodorova Y, Song C, Wanner G, Kiseleva E, Furukawa T, et al. Epigenetics of
623		eu- and heterochromatin in inverted and conventional nuclei from mouse retina.
624		Chromosome research : an international journal on the molecular, supramolecular and
625		evolutionary aspects of chromosome biology 2013, 21 (5): 535-554.
626		
627	6.	Kizilyaprak C, Spehner D, Devys D, Schultz P. In vivo chromatin organization of mouse
628		rod photoreceptors correlates with histone modifications. <i>PloS one</i> 2010, 5 (6): e11039.
629		

630	7.	Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, et al. Nuclear architecture
631		of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 2009, 137(2):
632		356-368.
633		
634	8.	Smith CL, Lan Y, Jain R, Epstein JA, Poleshko A. Global chromatin relabeling accompanies
635		spatial inversion of chromatin in rod photoreceptors. <i>Sci Adv</i> 2021, 7 (39): eabj3035.
636		
637	9.	Subramanian K, Weigert M, Borsch O, Petzold H, Garcia-Ulloa A, Myers EW, et al. Rod
638		nuclear architecture determines contrast transmission of the retina and behavioral
639		sensitivity in mice. <i>eLife</i> 2019, 8 .
640		
641	10.	Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, et al. LBR and lamin A/C
642		sequentially tether peripheral heterochromatin and inversely regulate differentiation.
643		<i>Cell</i> 2013, 152 (3): 584-598.
644		
645	11.	Hughes AE, Enright JM, Myers CA, Shen SQ, Corbo JC. Cell Type-Specific Epigenomic
646		Analysis Reveals a Uniquely Closed Chromatin Architecture in Mouse Rod
647		Photoreceptors. Scientific reports 2017, 7: 43184.
648		
649	12.	Mattar P, Stevanovic M, Nad I, Cayouette M. Casz1 controls higher-order nuclear
650		organization in rod photoreceptors. Proceedings of the National Academy of Sciences of
651		the United States of America 2018, 115 (34): E7987-E7996.

653	13.	Razafsky DS, Ward CL, Kolb T, Hodzic D. Developmental regulation of linkers of the
654		nucleoskeleton to the cytoskeleton during mouse postnatal retinogenesis. Nucleus
655		2013, 4 (5): 399-409.
656		
657	14.	Barabino A, Plamondon V, Abdouh M, Chatoo W, Flamier A, Hanna R, et al. Loss of Bmi1
658		causes anomalies in retinal development and degeneration of cone photoreceptors.
659		Development 2016, 143 (9): 1571-1584.
660		
661	15.	Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H, et al.
662		Heterochromatin drives compartmentalization of inverted and conventional nuclei.
663		Nature 2019, 570 (7761): 395-399.
664		
665	16.	Helmlinger D, Hardy S, Abou-Sleymane G, Eberlin A, Bowman AB, Gansmuller A, et al.
666		Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure
667		leading to photoreceptor dysfunction. <i>PLoS biology</i> 2006, 4 (3): e67.
668		
669	17.	Popova EY, Grigoryev SA, Fan Y, Skoultchi AI, Zhang SS, Barnstable CJ. Developmentally
670		regulated linker histone H1c promotes heterochromatin condensation and mediates
671		structural integrity of rod photoreceptors in mouse retina. The Journal of biological
672		chemistry 2013, 288 (24): 17895-17907.
673		

674	18.	Tran NM, Zhang A, Zhang X, Huecker JB, Hennig AK, Chen S. Mechanistically distinct
675		mouse models for CRX-associated retinopathy. PLoS genetics 2014, 10(2): e1004111.
676		
677	19.	Swamy VS, Fufa TD, Hufnagel RB, McGaughey DM. Building the mega single-cell
678		transcriptome ocular meta-atlas. Gigascience 2021, 10(10).
679		
680	20.	McLaughlin ME, Sandberg MA, Berson EL, Dryja TP. Recessive mutations in the gene
681		encoding the beta-subunit of rod phosphodiesterase in patients with retinitis
682		pigmentosa. Nature genetics 1993, 4 (2): 130-134.
683		
684	21.	Jiang K, Mondal AK, Adlakha YK, Gumerson J, Aponte A, Gieser L, et al. Multiomics
685		analyses reveal early metabolic imbalance and mitochondrial stress in neonatal
686		photoreceptors leading to cell death in Pde6brd1/rd1 mouse model of retinal
687		degeneration. Human molecular genetics 2022, 31 (13): 2137-2154.
688		
689	22.	Farinelli P, Perera A, Arango-Gonzalez B, Trifunovic D, Wagner M, Carell T, et al. DNA
690		methylation and differential gene regulation in photoreceptor cell death. Cell death &
691		<i>disease</i> 2014, 5: e1558.
692		
693	23.	de Melo J, Peng GH, Chen S, Blackshaw S. The Spalt family transcription factor Sall3
694		regulates the development of cone photoreceptors and retinal horizontal interneurons.
695		Development 2011, 138 (11): 2325-2336.

24.	Emerson MM, Surzenko N, Goetz JJ, Trimarchi J, Cepko CL. Otx2 and Onecut1 promote
	the fates of cone photoreceptors and horizontal cells and repress rod photoreceptors.
	Developmental cell 2013, 26 (1): 59-72.
25.	Javed A, Mattar P, Lu S, Kruczek K, Kloc M, Gonzalez-Cordero A, et al. Pou2f1 and Pou2f2
	cooperate to control the timing of cone photoreceptor production in the developing
	mouse retina. Development 2020, 147(18).
26.	Shao X, Yang H, Zhuang X, Liao J, Yang P, Cheng J, et al. scDeepSort: a pre-trained cell-
	type annotation method for single-cell transcriptomics using deep learning with a
	weighted graph neural network. Nucleic acids research 2021, 49(21): e122.
27.	Clark BS, Stein-O'Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, et al.
	Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating
	Mitotic Exit and Late-Born Cell Specification. Neuron 2019, 102(6): 1111-1126 e1115.
28.	Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo
	and in vitro. Proceedings of the National Academy of Sciences of the United States of
	America 2004, 101 (1): 16-22.
	24. 25. 26. 27. 28.

717	29.	Bentsen M, Goymann P, Schultheis H, Klee K, Petrova A, Wiegandt R, et al. ATAC-seq
718		footprinting unravels kinetics of transcription factor binding during zygotic genome
719		activation. Nature communications 2020, 11(1): 4267.
720		
721	30.	He Y, Hariharan M, Gorkin DU, Dickel DE, Luo C, Castanon RG, et al. Spatiotemporal DNA
722		methylome dynamics of the developing mouse fetus. <i>Nature</i> 2020, 583 (7818): 752-759.
723		
724	31.	Gene Ontology C. The Gene Ontology resource: enriching a GOld mine. Nucleic acids
725		research 2021, 49 (D1): D325-D334.
726		
727	32.	Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of
728		gene ontology terms. <i>PloS one</i> 2011, 6 (7): e21800.
729		
730	33.	Luu J, Kallestad L, Hoang T, Lewandowski D, Dong Z, Blackshaw S, et al. Epigenetic
731		hallmarks of age-related macular degeneration are recapitulated in a photosensitive
732		mouse model. Human molecular genetics 2020, 29 (15): 2611-2624.
733		
734	34.	Corbo JC, Cepko CL. A hybrid photoreceptor expressing both rod and cone genes in a
735		mouse model of enhanced S-cone syndrome. PLoS genetics 2005, 1(2): e11.
736		
737	35.	Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, et al. Nrl is required for
738		rod photoreceptor development. <i>Nature genetics</i> 2001, 29 (4): 447-452.

740	36.	Aldiri I, Xu B, Wang L, Chen X, Hiler D, Griffiths L, et al. The Dynamic Epigenetic
741		Landscape of the Retina During Development, Reprogramming, and Tumorigenesis.
742		Neuron 2017, 94 (3): 550-568 e510.
743		
744	37.	Kohler F, Bormann F, Raddatz G, Gutekunst J, Corless S, Musch T, et al. Epigenetic
745		deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome.
746		Genome medicine 2020, 12 (1): 46.
747		
748	38.	Wang J, Zibetti C, Shang P, Sripathi SR, Zhang P, Cano M, et al. ATAC-Seq analysis reveals
749		a widespread decrease of chromatin accessibility in age-related macular degeneration.
750		Nature communications 2018, 9 (1): 1364.
751		
752	39.	Frost B, Bardai FH, Feany MB. Lamin Dysfunction Mediates Neurodegeneration in
753		Tauopathies. Current biology : CB 2016, 26(1): 129-136.
754		
755	40.	Matias I, Diniz LP, Damico IV, Araujo APB, Neves LDS, Vargas G, et al. Loss of lamin-B1
756		and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in
757		the aging human hippocampus. <i>Aging cell</i> 2022, 21 (1): e13521.
758		

759	41.	Jung HJ, Coffinier C, Choe Y, Beigneux AP, Davies BS, Yang SH, et al. Regulation of
760		prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proceedings of the
761		National Academy of Sciences of the United States of America 2012, 109 (7): E423-431.
762		
763	42.	Gil L, Nino SA, Chi-Ahumada E, Rodriguez-Leyva I, Guerrero C, Rebolledo AB, et al.
764		Perinuclear Lamin A and Nucleoplasmic Lamin B2 Characterize Two Types of
765		Hippocampal Neurons through Alzheimer's Disease Progression. Int J Mol Sci 2020,
766		21 (5).
767		
768	43.	Machado L, Geara P, Camps J, Dos Santos M, Teixeira-Clerc F, Van Herck J, et al. Tissue
769		damage induces a conserved stress response that initiates quiescent muscle stem cell
770		activation. Cell stem cell 2021, 28(6): 1125-1135 e1127.
771		
772	44.	Frohns A, Frohns F, Naumann SC, Layer PG, Lobrich M. Inefficient double-strand break
773		repair in murine rod photoreceptors with inverted heterochromatin organization.
774		Current biology : CB 2014, 24 (10): 1080-1090.
775		
776	45.	Frohns F, Frohns A, Kramer J, Meurer K, Rohrer-Bley C, Solovei I, et al. Differences in the
777		Response to DNA Double-Strand Breaks between Rod Photoreceptors of Rodents, Pigs,
778		and Humans. <i>Cells</i> 2020, 9 (4).
779		

780	46.	Gonzalo S. DNA damage and lamins. Advances in experimental medicine and biology
781		2014, 773: 377-399.
782		
783	47.	Hand R, Bortone D, Mattar P, Nguyen L, Heng JI, Guerrier S, et al. Phosphorylation of
784		Neurogenin2 specifies the migration properties and the dendritic morphology of
785		pyramidal neurons in the neocortex. Neuron 2005, 48(1): 45-62.
786		
787	48.	Subramanian G, Chaudhury P, Malu K, Fowler S, Manmode R, Gotur D <i>, et al.</i> Lamin B
788		receptor regulates the growth and maturation of myeloid progenitors via its sterol
789		reductase domain: implications for cholesterol biosynthesis in regulating myelopoiesis.
790		Journal of immunology 2012, 188 (1): 85-102.
791		
792	49.	Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated
793		with accelerated ageing. Nature cell biology 2008, 10(4): 452-459.
794		
795	50.	Mattar P, Jolicoeur C, Dang T, Shah S, Clark BS, Cayouette M. A Casz1-NuRD complex
796		regulates temporal identity transitions in neural progenitors. Scientific reports 2021,
797		11 (1): 3858.
798		
799	51.	Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis.
800		Nature methods 2012, 9 (7): 671-675.
801		

802	52.	Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying
803		Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol 2015, 109: 21 29 21-21 29
804		29.
805		
806	53.	McGinnis CS, Patterson DM, Winkler J, Conrad DN, Hein MY, Srivastava V, et al. MULTI-
807		seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices.
808		Nature methods 2019, 16 (7): 619-626.
809		
810	54.	Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A, et al.
811		Manipulation of FASTQ data with Galaxy. <i>Bioinformatics</i> 2010, 26 (14): 1783-1785.
812		
813	55.	Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
814		data. <i>Bioinformatics</i> 2014, 30 (15): 2114-2120.
815		
816	56.	Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods
817		2012, 9 (4): 357-359.
818		
819	57.	Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nature
820		protocols 2012, 7 (9): 1728-1740.
821		

822	58.	McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves
823		functional interpretation of cis-regulatory regions. Nature biotechnology 2010, 28(5):
824		495-501.
825		
826	59.	Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology:
827		tool for the unification of biology. The Gene Ontology Consortium. Nature genetics
828		2000, 25 (1): 25-29.
829		
830	60.	Stempor P, Ahringer J. SeqPlots - Interactive software for exploratory data analyses,
831		pattern discovery and visualization in genomics. Wellcome Open Res 2016, 1: 14.
832		
833	61.	Consortium EP. An integrated encyclopedia of DNA elements in the human genome.
834		Nature 2012, 489 (7414): 57-74.
835		
836	62.	Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, et al. New developments on the
837		Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic acids research 2020,
838		48 (D1): D882-D889.
839		
840	63.	Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M, et al. The Galaxy
841		platform for accessible, reproducible and collaborative biomedical analyses: 2016
842		update. Nucleic acids research 2016, 44(W1): W3-W10.
843		

844	64.	Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
845		universal RNA-seq aligner. Bioinformatics 2013, 29(1): 15-21.
846		
847	65.	Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-
848		performance genomics data visualization and exploration. Briefings in bioinformatics
849		2013, 14 (2): 178-192.
850		
851	66.	Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for
852		assigning sequence reads to genomic features. <i>Bioinformatics</i> 2014, 30 (7): 923-930.
853		
854	67.	Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
855		RNA-seq data with DESeq2. Genome biology 2014, 15(12): 550.
856		
857	68.	Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data
858		analysis. Genome biology 2018, 19 (1): 15.
859		
860	69.	Wolock SL, Lopez R, Klein AM. Scrublet: Computational Identification of Cell Doublets in
861		Single-Cell Transcriptomic Data. Cell Syst 2019, 8(4): 281-291 e289.
862		
863	70.	Gayoso A, Lopez R, Xing G, Boyeau P, Valiollah Pour Amiri V, Hong J, et al. A Python
864		library for probabilistic analysis of single-cell omics data. Nature biotechnology 2022,
865		40 (2): 163-166.

867	71.	Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible
868		statistical framework for assessing transcriptional changes and characterizing
869		heterogeneity in single-cell RNA sequencing data. Genome biology 2015, 16: 278.
870		
871	72.	Clark BS, Stein-O'Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, et al.
872		Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating
873		Mitotic Exit and Late-Born Cell Specification. Neuron 2019.
874		
875		

Figures

Nađ et al. Fig. 1

Figure 1. Lamin A upregulates at the onset of rod degeneration in rdI rods. (A, B)

Immunohistochemistry on wild-type C57BL/6 at P16 (A) or adult (B) stages using a LA-specific antibody (white). The retina was counterstained for the rod marker Nr2e3 (A; green) or the cone marker peanut agglutinin (B; green), as well as the DNA dye Hoechst 33342 (blue). Boxed regions indicate the areas shown in the insets. Arrowheads indicate cone photoreceptors. (C, D) Immunohistochemistry for LA or LA/LC (white) and the rod-specific marker Nr2e3 (green) on *rd1* retinas at P16 (C) or P21 (D). Boxed regions indicate the areas shown in the insets. Arrows indicate LA expression in Nr2e3+ rods. Scale bars = 10 µm. (E-H) Transcript expression at different postnatal stages as indicated - from the Anand Swaroop lab (AS)²¹. (F) Sashimi plot of splice junctions from P10 *rd1* RNA-seq data. (G, H) Transcription at the *Lmna* (G) or *Lbr* (H) loci from P10 RNA-seq samples as indicated. Data were remapped from Jiang et al.²¹ and plotted on the same scale (group autoscale).

Figure 1

D

Figure 2. Increased heterochromatin tethering in Lamin A+*rd1***rods.** (A) Airyscan confocal imaging of P16 *rd1* retinas stained for LA (white), Nr2e3 (green), and Hoechst (blue). Boxed regions indicate the areas shown in (B, C). Arrowheads indicate LA+ Nr2e3+ rods. Arrows indicate LA-negative Nr2e3+ rods. Asterisk indicates a pyknotic nucleus. Scale bars = 10 μm. (D) Linear distance between chromocenter centroids and the nuclear margin. Nr2e3+ n=69 chromocenters from 30 cells; Nr2e3+ LA+ n=90 chromocenters from 30 cells; *** p < 0.001, Mann-Whitney U test. (E) Mean chromatin intensity at the nuclear margin normalized against the mean chromatin intensity of the nucleus. n=30 cells per group; **** p < 0.0001, Student's t-test.

Figure 2

Figure 3. Haterochromatin tethering by lamin A versus Lbr. (A) In vivo electroporation. paradigm. Retinas were subretinally injected with plasmids, electroporated, and harvested after 6 weeks, yielding transfected rod photoreceptors. (B) Wholemount epifluorescence image of EGFP expression from a transfected retina. (C) Morphometric analysis of transfected nuclei was performed as indicated. (D) Densitometry values for chromatin intensity at the nuclear periphery of Control (n=6) or LA -transfected cells (n=6) as indicated, obtained using the "Plot profile" tool in Fiji. Each color represents a different cell. (E-G) Airyscan confocal imaging of rod photoreceptors transfected with empty vector control (E), LA (F), or Lbr (G) expression constructs, and harvested after 6 weeks. (H) Quantitation of chromatin intensity at the nuclear margin measured using the "Freehand Line" tool in Fiji. Datapoints are the mean intensity values from 3 independent transfections (30 cells each). **** p < 0.0001, ANOVA with Tukey's post-hoc test. (I) Distance from the chromocenter midpoint to the nuclear periphery. n=56 untransfected; n=57 pCIG2; n=93 lamin A; n=77 Lbr. **** p < 0.0001, Kruskal-Wallace with Dum's post-hoc test.

Figure 3

Figure 4. Comparison of gene expression in control versus tethered rods. (A) UMAP projection of Multi-seq dataset. (B) Unsupervised cell-type annotation via scDeepSort trained on a previously published retinal scRNA-seq dataset⁷². (C) Demultiplexing of control, lamin A, and Lbr samples. (D, E) Overlap of Control, lamin A, or Lbr -transfected cells within the rod cluster. (F, G) Volcano plots of differential gene expression in annotated rods. (F) Lamin A versus control. (G) Lbr versus control.

Figure 4

Figure 5. Heterochromatin tethering promotes chromatin accessibility. (A) In vivo electroporation paradigm. Retinas were subretinally injected with expression plasmids, including the rod-specific pRho2.2-DsRed reporter. Electroporated retinas were harvested after 8 weeks, yielding DsRed+ rod photoreceptors. (B) Wholemount epifluorescence image of EGFP and DsRed expression from a transfected retina. (C) Upset plot of of ATAC-seq peak intersections from sorted rods transfected with control, LA, or Lbr expression constructs compared against previously published data from the Joe Corbo lab (JC)¹¹ as indicated. (D) Alignment of ATAC-seq data from sorted rods transfected with control, LA, or Lbr expression constructs compared against previously published data as indicated. Plots are centered on peak summits from LA transfected rods. Arrows indicate the tethering-specific cluster C2 peaks.

Figure 5

Nađ et al. Fig. 6

Figure 6. Heterochromatin tethering promotes accessibility at stress responsive genes. (A) GO terms analysis of tethering-specific cluster C2 genes (see Fig. 4D) via PantherDB and ReViGO. Peak-to-gene annotation was restricted to gene proximal peaks as described in the text. (B) Intersection of RNA-seq data from control versus *rd1* sorted rods intersected with annotated (gene-proximal) cluster C2 genes. Heatmap values are transformed by subtracting the row median and dividing by the median absolute deviation. (C, D) Expression changes for selected stress-responsive genes, comparing RNA-seq data from control versus *rd1* sorted rods from the Anand Swaroop lab (AS)²¹ (C) versus scRNA-seq data from rods transfected with control, lamin A, or Lbr plasmids (D). (E, F) Control vs. *rd1* RNA-seq, and ATAC-seq tracks and called peaks from Hughes et al. (JC)¹¹, compared against ATAC-seq tracks generated from control, LA, or Lbr transfected rods at the *Nab2* (E) and *Tusc1* (F) loci. RNA-seq and ATAC-seq tracks were respectively group-autoscaled. Arrows indicate peaks present specifically in tethered rods, but not control rods.

Figure 6

Figure 7. Cat's cradle model for tethering-dependent effects on genome accessibility. (A) During the differentiation of wild-type rods, the tethering of heterochromatin (dark blue) by Lbr (purple) stretches the chromosomes, promoting accessibility in the A-compartment (cyan). Over time, Lbr expression is downregulated leading to chromatin relaxation, and finally chromatin inversion. As the chromatin relaxes, accessibility decreases. (B) During the differentiation of *rd1* rods, lamin A (red) upregulates at the onset of tissue damage. The prolongation of tethering promotes accessibility at genomic regions that would normally be decommissioned. *Rd1* rods downregulate lamin A prior to cell death.

Figure 7

See image above for figure legend

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- P16Rd1nr2e3gbethyllaminArairyscanstack1.avi
- SupplementalTable1.xlsx
- Supplementaltable2.xlsx
- Supplementalsection.pdf