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Abstract
Background: Myogenesis is a complex process controlled by several coding and non-coding RNAs
(ncRNAs) such as circular RNAs (circRNAs) that well-known function as endogenous microRNAs
(miRNAs) sponges. Over the past few years, numerous circRNAs have been known and their roles in
biological processes have begun to be understood. Cerebellar Degeneration-Related protein 1 antisense
(CDR1as), the most spotlighted circRNA as miR-7 sponge that has been blooming circRNAs’ research for
a decade, and can potentially sponge several miRNAs in disease and muscle physiology. Nevertheless,
the linear-RNAs-differed character that the acute interventions for circRNAs do not affect miRNAs levels,
and has retarded the transcriptome-wide discovery of miRNAs sponged by. Therefore, the purpose of this
study was to provide the transcriptomic effect of CDR1as during muscle differentiation.

Methods: siCDR1as and siDICER1 were transfected into goat skeletal muscle satellite cells (SMSCs).
RNA-seq technology and bioinformatics tools were used to analyze genes that are deregulated by
siCDR1as and siDICER1. quantitative PCR was used to verify the expression levels of the differentially
expressed mRNAs and miRNAs.

Results: Here, to systematically identify miRNAs targeting CDR1as, we employed the critical enzyme
DICER1 that governs the biogenesis of miRNAs. The deficiency of either DICER1 or CDR1as inhibited
myogenic differentiation of SMSCs, and knockdown of DICER1 decreased the expression of CDR1as.
Moreover, we screened for the targeted messenger RNAs (mRNAs) and miRNAs in SMSCs transfected
with siDICER1 or siCDR1as respectively and found out that some well-known muscle-related pathways
such as phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, Rap1 signaling pathway, and MAPK
signaling pathway were enriched in all groups. Further, regarding the miRNAs identified in siDICER1 and
siCDR1as together with the sequence complementary information, we identified 11 miRNAs including
miR-1, miR-206, and miR-27a-5p which are more likely to be novel targets for CDR1as.

Conclusion: In summary, our study provides a perspective on the potential functions and relationship
between CDR1as and DICER1 during muscle development. 

Background
Skeletal muscle is an important component that provides structural support and energy storage, and it is
correlated with the quality and quantity of meat production. Skeletal muscle has become an essential
material for studying myogenesis in mammals [1]. Myogenesis is the process of skeletal muscle
regeneration, which starts with the activation of quiescent satellite cells after injury followed by
proliferation, differentiation, and fusion of myoblast into myotubes [2]. Muscle regeneration is controlled
by several myogenic regulatory factors such as MyoD, Myf5, myogenin, and MRF4 [3–5] as well as
myocyte enhancer factor 2 (MEF2) families including myocyte enhancer factor 2C (MEF2C) [6]. MEF2C is
a protein-coding gene that plays an important role in myogenesis of skeletal, cardiac and smooth muscle
during muscle differentiation [6–8]. Moreover, according to Alder et al. MEF2C expression is directly
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linked to fusion and myotubes formation [9]. Muscle development is controlled posttranscriptionally
through numerous RNA-binding proteins (RBPs) and also non-coding RNAs (ncRNAs) [10–12].

microRNAs (miRNAs) are a small class of non-coding RNAs with the size of about 18–24 nucleotides
length that bind to mRNAs of coding genes to repress their protein production. miRNAs are known to play
a crucial role in regulating several biological processes, such as myoblast proliferation and differentiation
through the control of the targeted mRNAs during muscle development [13]. DICER1 is a ribonuclease III
crucial for the biogenesis of mature miRNAs [14]. The deletion of DICER1 generally prevents miRNAs
processing and activities. The knockout of DICER1 in mice leads to embryonic lethality related to
pluripotent stem cells and imperfect blood vessel formation [15, 16]. In addition, mature miRNAs
produced by DICER1 are shown to be related to the development of the endocrine pancreas and the
production of insulin [17]. Moreover, DICER is indicated to modulate miRNAs during myogenic
differentiation [18].

Except for linear transcripts like miRNA, lncRNAs, and mRNAs, numerous circular RNAs (circRNAs)
responsible for skeletal muscle development have been identified through the introduction of high
throughput sequencing technology [19–21]. circRNAs are newly discovered non-coding RNA molecules
with a closed-loop structure and acting as gene regulators in most organisms [22, 23]. Although circRNAs
also work through regulating alternative splicing or transcriptional mechanism and even by coding
micropeptide during several biological processes and diseases [22, 24]. Currently, the most attractive and
extensively studied function for circRNAs are sponging miRNAs as a competing endogenous RNA
(ceRNA), that is, indirectly elevating miRNA-targeted mRNA genes through direct sponge of those miRNAs
and consequently relieve the degradation of mRNA caused by the miRNA [22]. Cerebellar Degeneration-
Related Protein 1 antisense RNA (CDR1as), is the most well-studied ceRNAs as a miR-7 sponge (also
known as a sponge for miR-7, ciRS-7). Aside from miR-7, other miRNAs such as miR-135a, miR-876-5p
and miR-1290 are also potential miRNAs targeting CDR1as in cancer-related diseases [25, 26], and
muscle-related diseases [27]. However, the linear-RNAs varied character that the acute interferences for
the circRNAs do not have an effect on miRNAs levels [28], and has declined the transcriptome-wide
discovery of miRNAs being sponged.

To date, even though some works have been done to establish the fact that CDR1as and DICER play
critical roles in muscle development separately [29–31]. The whole transcriptomic effect (including
mRNAs and miRNAs) of CDR1as in myogenic differentiation remains to be elucidated. In this study, we
knockdown the expression of CDR1as and DICER1 in skeletal muscle satellite cells (SMSCs), and
determined the relationship between CDR1as and DICER1. Further, using RNA-seq we systematically
identified differentially expressed patterns of miRNAs and mRNAs associated with the downregulation of
CDR1as and DICER1. These results will help us to fully understand the role of CDR1as in SMSCs
development and make a paradigmatic example in a systematic study of circRNAs.

Methods
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Cell culture
The SMSCs used here were successfully isolated from Longissimus dorsi (LD) muscles of newborn goats
in our laboratory [32]. SMSCs were cultured in high-glucose Dulbecco’s modified Eagle’s Medium (DMEM)
supplemented with 10% FBS (Gibco, Grand Island, USA) and 2% Penicillin & Streptomycin (Invitrogen,
Carlsbad, USA) solution (Growth medium, GM) in 5% CO2. Confluent cells were digested with 0.25%
trypsin including 10 mM EDTA, re-suspended in the corresponding medium, and seeded in 6-well plates
with a suitable density. To induce myoblast differentiation, SMSCs were changed to differential medium
(2% horse serum, 1% Penicillin & Streptomycin (Invitrogen, Carlsbad, USA) and DMEM) in nearly 100%
confluence.

Cell Transfection
For gain and loss function study, SMSCs with 80%-90% confluency in 6-well plates were transfected with
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) with siCDR1as, siDICER1 or siNC, at a concentration
of 50 nM, according to manufacturer’s instructions. Moreover, pCDNA-3 was also transfected as a
negative control for CDR1as. After 5 hr of transfection, the medium containing transfection reagent was
replaced by fresh GM (Growth medium). After culturing for an additional 48 hr, cells were used for further
experiments. The siCDR1as and siDICER1 sequence are 5’-GTCTACGATATCCAGGGTT-3’ and 5’-
GCAGTTACGATTTAGCTAA-3’ respectively.

Rna Extraction
Total RNAs were extracted from cells with liquid nitrogen by using RNAiso Plus reagent (TaKaRa Bio, Inc.,
Japan) and purified using a QIAGEN RNeasy Mini Kit (QIAGEN, Chatsworth, CA, USA) according to the
manufacturer’s instructions. RNA degradation and contamination were monitored on 1.5% agarose gels.
The purity and concentration of the RNAs were measured using NanoPhotometer® spectrophotometer
(IMPLEN, Los Angeles, CA, USA) and a Qubit RNA Assay Kit in a Qubit® 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA), respectively. All RNA samples were stored at -80℃ until further use.

Mirna Sequence
After verifying the concentration and purity, the integrity was assessed using an RNA Nano 6000 Assay
Kit in a Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). Only samples that had
RNA Integrity Number (RIN) scores > 7.5 were used for RNA sequencing. Briefly, small RNAs were reversed
transcribed and amplified by PCR. The PCR products were then purified by denaturing polyacrylamide gel
electrophoresis (PAGE). A total of 3 µg RNA per sample was used as input material for miRNA sampling
preparation. miRNA libraries were constructed and sequencing was performed on an Illumina HiSeq 2500
platform (Illumina, San Diego, CA, USA), and 125-bp long paired-end reads were generated. miRDeep2
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software was used to predict the novel miRNAs with trimmed reads. Then the reads were aligned to
merged pre-miRNA databases (known pre-miRNA from miRBase v21 plus the newly predicted pre-
miRNAs) using Novoalign software (v2.07.11) with, at most, one mismatch. We used the most abundant
isomiR, the mature miRNA annotated in miRBase and all isoforms of miRNA (5p or 3p) to calculate
miRNA expression. Fold change and p-value were used to calculate the differentially expressed miRNA
profiles between two groups. Hierarchical clustering was performed to generate an overview of the
characteristics of expression profiles based on values of a significant differentially expressed transcripts.

Mrna Sequencing Data Processing
Clean reads were obtained by removing reads containing adapters, reads containing over 10% of poly (N),
and low quality reads (> 50% of the bases had Phred quality scores ≤ 10) from the raw data. All
downstream and upstream analyses were based on high-quality clean data. Goat reference genome and
gene model annotation files were downloaded from NCBI database (CHIR_1.0, NCBI) [33]. Index of the
reference genome was built using Bowtie v2.0.6 [34, 35] and paired-end clean reads were aligned to the
reference genome using TopHat v2.0.14 [36]. The mapped reads from each library were assembled with
cufflinks v2.2.1 [37]. We used the reference annotation based transcript (RABT) assembly method in
cufflinks v2.2.1 to construct and identify mRNA transcripts from the TopHat2 alignment results.
Hierarchical clustering was performed to generate an overview of the characteristics of expression
profiles based on values of a significant differentially expressed transcripts.

Kegg Pathway Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs was performed with KOBAS
software [38] using a hypergeometric test. KEGG pathways with Q value < 0.05 were considered
significantly enriched.

Validation Of Rna-seq Data By Qpcr
Total RNA was extracted from SMSCs transfected with siCDR1as siNC using RNAiso Plus reagent
(TaKaRa Bio, Inc., Japan). For qPCR of mRNA, all PCR primers were designed at or just outside exon/exon
junctions to avoid the amplification of residual genomic DNA using the Primer-BLAST on the NCBI
website, and specificity was determined using BLASTN. 1 µg of total RNAs (1 mg) was reverse-
transcribed into cDNA by using PrimeScriptTM RT reagent Kit with gDNA Eraser (TaKaRa, Otsu, Japan).
And using these cDNA as templates, expression levels of genes were quantified by quantitative real time
PCR (RT_qPCR) in a Bio-Rad CFX96 system (Bio-Rad, Hercules, USA) with SYBR Premix Ex TaqTM II
(TaKaRa, Otsu, Japan), according to the manufacturer’s protocols. Three samples were collected for each
treatment and each sample at least triplicates. The PCR protocol was as follows: denaturation at 95 ℃
for 30 s, followed by 40 cycles of 95 ℃ for 20 s and 60 ℃ for 20 s, then 72 ℃ for 30 s. The 2−△△Ct
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procedure was used to calculate the relative expression levels of mRNAs, with GAPDH as an internal
control [39]. For qPCR of miRNA, reversed transcribed using The First-strand cDNA Synthesize (TaKaRa,
Mount view, CA, USA). For real-time PCR, all reactions were performed in triplicate with SYBR Premix Ex
TaqTM II (TaKaRa, Otsu, Japan) under the following conditions: 10 s at 95℃ for initial denaturation,
followed by 39 cycles of 95 ℃ for 5 s and 60 ℃ for 20 s, then melting curve of 65 ℃ to 95℃ for 5 s.
The expression levels of U6 were used to normalize the expression levels of the gene of interest. Primers
for the mRNAs and miRNAs were designed using Primer-BLAST
(http://www.ncbi.nlm.nih.gov/tools/primers-blast) (Table S1 a, b, c, and d).

Statistical analysis
Data are expressed as mean ± SEM. All statistical analyses will be performed using GraphPad Prism 6.01.
Unpaired student’s tests were used to performed statistical analysis used for two group comparisons.
Statistical significant difference was evaluated p < 0.05.

Results

Effect of siCDR1as and siDICER1 on SMSCs differentiation
and the relationship between CDR1as and DICER1
DICER1 is central to miRNA-mediated silencing [40] and modulates miRNAs during myogenic
differentiation [18]. Meanwhile, CDR1as plays a critical role in myogenesis by functioning as a molecular
sponge for miR-7 [29]. To identify whether CDR1as and DICER1 are associated in myoblast
differentiation, we in vitro cultured SMSCs isolated from Longissimus dorsi (LD) muscles of newborn
Jiangzhou Big-Eared goats and knocked down the expression of CDR1as and DICER1 (Fig. 1a, d) as well
as mouse myoblast C2C12 (Suppl. Figure 1, 2) by using their respective interfering RNAs. Similar to
previous results, deficiency of CDR1as or DICER1 decreased the expression of MyoD mRNA, the master
myogenic gene (Fig. 1b, e), and the formation of myotubes (Fig. 1c, h). Moreover, CDR1as was shown to
be downregulated in SMSCs transfected with siDICER1 (Fig. 1f) and co-transfection of pCDNA3 (negative
control for CDR1as) and siDICER1 (Fig. 1g), suggesting that the close relationship between DICER1 and
CDR1as could help identify miRNAs and their targeted mRNAs regulated by CDR1as.

Figure 1 The Expression of Cerebellar Degeneration-Related protein 1 antisense (CDR1as) and DICER1 on
skeletal muscle satellite cells (SMSCs) differentiation. (a and d) The expression level of CDR1as and
DICER1 in SMSCs transfected with siCDR1as or siDICER1 was validated. (b and e) qPCR analysis of
MyoD expression in SMSCs after transfection with siCDR1as or negative control (NC) and siDICER1 or
NC. (c and h) A representative of microscopic images after the knockdown of CDR1as and DICER1. (f and
g) SMSCs were transfected with NC or siDICER1, pCDNA3 + NC or pCDNA3 + siDICER1 to determine the
relationship between CDR1as and DICER1. The p values were analyzed by Student’s test; p < 0.05.
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Overview of mRNA and miRNA sequencing data associated
with DICER1 and CDR1as
In order to predict mRNAs and miRNAs associated with DICER1 and CDR1as in SMSCs, we systematically
cultured SMSCs and knocked down the expression of CDR1as and DICER1, with three biological
replicates for each treatment. Cells were harvested at 48 h after transfection and the total RNA were
extracted to construct the cDNA libraries individually for mRNA-seq and miRNA-seq using an Illumina
HiSeq 2500 platform and 125 bp paired-end reads.

After removing low-quality sequences and adapters, considering the siCDR1as results, an average of
59,821,102 and 58,552,463 mRNAs were produced from raw and clean reads respectively (Table 1). In
addition, an average of 15,350,087 raw reads and 14,614,375 clean reads miRNAs for siCDR1as were
generated respectively (Table 2). On the other hand, siDICER1 has an average of 128,604,571 and
120,968,505 mRNAs were obtained from raw and clean reads respectively (Table 3). Also, an average of
14,260,428 raw reads and 14,028,682 clean reads miRNAs for siDICER1 were acquired accordingly
(Table 4).

To explore the expression relationship of genes between samples, the Pearson’s correlation coefficient
(PCC) of mRNAs and miRNAs expression levels of siCDR1as-1, 2 and 3, as well as, siDICER1-1, 2, and 3 in
SMSCs were calculated and used to generate a correlation chart. As shown, the correlation coefficient of
the siCDR1as-1, 2, and 3 as well as, siDICER1; 1, 2, and 3 in SMSCs ranged from 0.96 to 0.99 (average of
0.98), indicating that the samples replicate very well biologically (Fig. 2a, b, c, and d).

Figure 2 siCDR1as and siDICER1 Pearson correlation chart. (a-d) The abscissa and the ordinate were the
respective samples, and the abscissa and the ordinate of each patch represented the correlation of
siCDR1as and siDICER1 samples. Importantly, two completely related genomes had a value of 1. The
closer to 1 the relative value is, the larger the Pearson correlation coefficient (PCC) for the siCDR1as and
siDICER1 samples; conversely, the closer to 0 the relative value was, the smaller the PCC between the
siCDR1as and siDICER1 samples.

To verify the RNA-sequencing data, in extension samples of SMSCs with siDICER1 or siCDR1as, five
downregulated as well as five upregulated mRNA and miRNAs identified were randomly selected and
quantified for their expression levels using qRT-PCR. As shown in (Fig. 3b; Suppl. Table 2a), (Fig. 4b;
Suppl. Table 2b), (Fig. 5b; Suppl. Table 2c) and (Fig. 6b; Suppl. Table 2d), all the differential expression
tendency were confirmed.

Differentially expressed (DE) mRNAs and their functional
enrichment in SMSCs transfected with siDICER1
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The mRNA expression profiles were detected in SMSCs transfected with siDICER1 and siNC, and
hierarchical clustering (Fig. 3a) was performed to show differential mRNA expression patterns among
samples. Considering the mRNA expression profiling data, a total of 1,113 mRNAs were differentially
expressed in SMSCs transfected with siDICER1 (p < 0.05), of which 686 mRNAs (568 known transcript)
were downregulated, and 427 mRNAs (365 known) were upregulated. Some myogenic genes including
myogenin (MyoG), myocyte enhancer factor 2D (MEF2D) [41], bone morphogenetic protein 4 BMP4 [42],
E2F transcription factor 2 (E2F2), insulin-like growth factor binding protein 5 (IGFBP5), cysteine-rich 61
(CCN1) and angiopoietin-1 (ANGPT1) were downregulated.

In addition, KEGG pathway analysis was conducted based on the differentially expressed mRNAs (Q
value < 0.05). The results showed that among the top 20 most enriched KEGG pathways of the
downregulatory genes include PI3K-AKT signaling pathway, Focal adhesion, and ECM receptor interaction
(Fig. 3c), which are all associated with muscle development. Moreover, considering the upregulatory
genes (Suppl. Figure 3), none of the 20 enriched KEGG pathways was associated with muscle
development. These data show that the DICER1 gene is involved in the formation of SMSCs.

Figure 3 Expression profile of mRNAs in siDICER1 and NC (SMSCs). (a) Microarray analysis for mRNAs
was performed with RNA extracted from siDICER1 (n = 3) and NC (n = 3) SMSCs. Hierarchical cluster
analysis of significantly differentially expressed mRNAs: bright green, under-expression; gray, no change;
bright red, over-expression. (b) Ten differentially expressed representative mRNAs were validated in
SMSCs siDICER1 and NC by qPCR (n = 10 per group). GAPDH was used as an internal control. (c) KEGG
of the downregulated mRNAs with the top 20 enrichment. Bubble color and size correspond to the Q value
and gene number enriched in the pathway. The rich factor indicates the ratio of the number of DEGs
mapped to a certain pathway to the total number of genes mapped to this pathway.

De Mirnas In Smscs Transfected With Sidicer1
A total of 542 miRNAs were detected in SMSCs samples, among which 22 miRNAs consisting of 7
downregulated and 15 upregulated miRNAs (FC > 1.25 and padj < 0.05) were significantly interfered by
Dicer1 (si-DICER1) (Fig. 4a). Notably, myomiRNAs including miR-1, miR-206, and miR-133a/b [43], were
upregulated by the deficiency of DICER1. However, miR-133 family contributes to myoblast proliferation,
but also prevents differentiation by inhibiting Serum Response Factor (SRF) [13]. miR-1290 was not
detected while the expression of miR-135a was almost undetectable in SMSCs treated with
siDICER1/siCDR1as or not. Intriguingly, except for those DE miRNAs mentioned above, miR-7 was the
most highly expressed one was insignificantly affected by siDICER1 (Table 5).

Furthermore, using TargetScan, RNAhybrid, and miRanda, a total of 7,194 targets mRNAs were predicted
as targets of those upregulated miRNA genes whilst 1,686 target mRNAs of the downregulatory miRNAs
were screened. All the mRNAs for the upregulated-miRNAs were enriched in the KEGG pathway such as,
Focal adhesion, FoxO signaling pathway, MAPK signaling pathway, PI3K-AKT signaling pathway, Rap1
signaling pathway, and mTOR signaling pathway which are related to muscle development (Fig. 4c;
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Suppl. Figure 4). Moreover, this result is consistent with the functional enrichment for DE mRNAs
mentioned before.

Figure 4 Differentially expressed miRNAs in siDICER1 and NC (SMSCs). (a) Sequencing analysis for
miRNAs was performed from siDICER1 (n = 3) and NC (n = 3) of SMSCs. Hierarchical cluster analysis of
significantly differentially expressed miRNAs: bright red, overexpression; white, no change; bright blue,
under-expression. (b) Differential expression of ten representative miRNAs was validated in siDICER1 and
NC of SMSCs by qPCR (n = 10 per group). (c) KEGG analysis of the upregulated miRNA-mRNA network.
Bubble color and size correspond to the Q value and gene number enriched in the pathway. The rich
factor indicates the ratio of the number of DEGs mapped to a certain pathway to the total number of
genes mapped to this pathway.

De Mrnas In Smscs Transfected With Sicdr1as
From mRNA expression profiling data, a total of 789 mRNAs (Fig. 5a) were differentially expressed in
SMSCs transfected with siCDR1as (p < 0.05), of which 401 mRNAs were downregulated (316 known
protein-coding genes, 85 novel transcripts), and 389 mRNAs were upregulated (277 protein-coding genes,
112 novel transcripts). Some myogenic genes including signal transducer and activator of transcription 2
(STAT2) [44], ANGPT1 [45], intercellular adhesion molecule-1 (ICAM1), E2F2 [46], CCN1 [47], fibroblast
growth factor receptor 1 (FGFR1) [48], and MEF2C [49] were downregulated according to the sequencing
data.

Further, we performed KEGG pathway analysis with KOBAS software based on the differentially
expressed mRNAs genes (Q value < 0.05). The results showed that among the top 20 most enriched
pathways of the downregulated genes in siCDR1as samples, some well-known muscle-related pathways
including PI3K-AKT signaling pathway signaling pathway, Focal adhesion, Rap1 signaling pathway, and
MAPK signaling pathway (Fig. 5c) were identified. While those genes up-regulated by siCDR1as were
mainly enriched in fatty acid biogenesis and metabolism (Suppl. Figure 5). These results indicate that
just like DICER1, the downregulated mRNAs caused by the deficit of CDR1as are closely related to muscle
development.

Figure 5 Expression profile of mRNAs in siCDR1as and NC (SMSCs). (a) Microarray analysis for mRNAs
was performed with RNA extracted from siCDR1as (n = 3) and NC (n = 3) SMSCs. Hierarchical cluster
analysis of significantly differentially expressed mRNAs: bright green, under-expression; gray, no change;
bright red, over-expression. (b) Ten differentially expressed representative mRNAs were validated in
SMSCs siCDR1as and NC by qPCR (n = 10 per group). GAPDH was used as an internal control. (c) KEGG
of the downregulated mRNAs with the top 20 enrichment. Bubble color and size correspond to the Q value
and gene number enriched in the pathway. The rich factor indicates the ratio of the number of DEGs
mapped to a certain pathway to the total number of genes mapped to this pathway.
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De Mirnas In Smscs Transfected With Sicdr1as
From mRNA expression profiling data, a total of 789 mRNAs (Fig. 5a) were differentially expressed in
SMSCs transfected with siCDR1as (p < 0.05), of which 401 mRNAs were downregulated (316 known
protein-coding genes, 85 novel transcripts), and 389 mRNAs were upregulated (277 protein-coding genes,
112 novel transcripts). Some myogenic genes including signal transducer and activator of transcription 2
(STAT2) [44], ANGPT1 [45], intercellular adhesion molecule-1 (ICAM1), E2F2 [46], CCN1 [47], fibroblast
growth factor receptor 1 (FGFR1) [48], and MEF2C [49] were downregulated according to the sequencing
data.

Further, we performed KEGG pathway analysis with KOBAS software based on the differentially
expressed mRNAs genes (Q value < 0.05). The results showed that among the top 20 most enriched
pathways of the downregulated genes in siCDR1as samples, some well-known muscle-related pathways
including PI3K-AKT signaling pathway signaling pathway, Focal adhesion, Rap1 signaling pathway, and
MAPK signaling pathway (Fig. 5c) were identified. While those genes up-regulated by siCDR1as were
mainly enriched in fatty acid biogenesis and metabolism (Suppl. Figure 5). These results indicate that
just like DICER1, the downregulated mRNAs caused by the deficit of CDR1as are closely related to muscle
development.        

Fig. 5 Expression profile of mRNAs in siCDR1as and NC (SMSCs). (a) Microarray analysis for mRNAs was
performed with RNA extracted from siCDR1as (n=3) and NC (n=3) SMSCs. Hierarchical cluster analysis
of significantly differentially expressed mRNAs: bright green, under-expression; gray, no change; bright
red, over-expression. (b) Ten differentially expressed representative mRNAs were validated in SMSCs
siCDR1as and NC by qPCR (n=10 per group). GAPDH was used as an internal control. (c) KEGG of the
downregulated mRNAs with the top 20 enrichment. Bubble color and size correspond to the Q value and
gene number enriched in the pathway. The rich factor indicates the ratio of the number of DEGs mapped
to a certain pathway to the total number of genes mapped to this pathway.

Anchoring The Novel Core Mirnas Regulated By Cdr1as
Considering the major function of DICER1 on modulating miRNAs during myogenesis, and its closely
positive effect on CDR1as as shown by expression of CDR1as as well as the enrichment results. First of
all, we investigated the critical miRNAs that mediate the function of DICER1, using online tool MSigDB
(http://www.broadinstitute.org/gsea/msigdb/index.jsp) and the DE mRNAs dataset caused by siDICER1.
We found out 100 miRNAs were potentially targeted by these DE mRNA genes altered by siDICER1 (FDR
q-value < 0.004), among which 11 miRNAs including miR-1, miR-199b-5p, miR-206, miR-27a-5p, miR-19b-
3p, miR-30b-5p, miR-129-5p, miR-128-3p, miR-30e-5p, miR-27b-5p, and miR-424-5p were overlapped with
those differentially expressed miRNAs detected by using miRNA-seq in SMSCs transfected with siDICER1.
This indicates that these miRNAs may play important roles in mediating DICER’s function in myogenic
differentiation of SMSCs.
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Furthermore, six miRNAs including miR-1, miR-206, miR-424-5p, miR-30b-5p, miR-128-3p, and miR-19b-3p
were enriched in targeting the upregulated mRNA genes caused by interfering CDR1as (siCDR1as) while
only miR-199a was enriched in downregulated genes too (Fig. 8a; Suppl. Table 3). Additionally, miR-146a,
miR-19a/b, miR-27a-5p, and miR-30e-5p were overlapped in DE miRNAs caused by si-DICER1 and si-
CDR1as, suggesting that the following 11 miRNAs including miR-1, miR-206, miR-424-5p, miR-30b-5p,
miR-128-3p, miR-19b-3p, miR-199a, miR-146a, miR-19a/b, miR-27a-5p, and miR-30e-5p, are much more
likely to be novel target for CDR1as. Further, RNAhybrid was used to predict the complementary
interactions between CDR1as and these miRNAs. The results indicate that CDR1as has potential binding
sites for these miRNAs ( Fig. 8b).

Figure 8 Prediction of CDR1as-related miRNAs binding sites. (a) Predicted target sites of CDR1as-related
miRNAs on mRNAs using Targetscan. (b) Binding sites of miRNAs found on CDR1as with the use of
RNAhybrid.

Discussion
Recent studies indicate that muscle development is associated with several coding and non-coding
genes, including mRNAs, circular RNAs, and miRNAs [22]. For instance, circFGFR4 induces myoblast
differentiation through the upregulation of Wnt3a via the downregulation of miR-107 [56]. Another
example includes the inhibition of miR-203 by circSVIL via increasing expression of MEF2C during
muscle differentiation [49]. DICER1 is known to play a significant role in vascular smooth muscle
development and function by controlling proliferation and contractile differentiation [30]. Therefore
studying the transcriptome view of CDR1as and DICER1 in muscle development as well as their
relationship during muscle development in SMSCs may contribute to the understanding of genes
involved in myogenesis. In this study, we found that CDR1as and DICER1 contribute significantly to
myogenesis through differentiation and are positively correlated.

Based on the properties of coding and non-coding RNAs, various RNAs are known to be related to
cancerous diseases [57, 58]. For instance, circRIP2 promotes bladder cancer progression through miR-
1305/Tfg-β2/smad3 pathway [59]. Also, miR-135a regulates the proliferation and chemosensitivity of
endometrial cancer cells by targeting AKT signaling pathway [60]. However, the number of miRNAs and
mRNAs associated with CDR1as and DICER1 in SMSCs remains unknown. In our studies, we knockdown
the expression of CDR1as and DICER1 in SMSCs, our interest in the results were based on the
downregulated mRNAs and the upregulated miRNAs. A total of 789 mRNAs were differentially expressed,
comprising of 401 downregulated mRNAs and 388 upregulated mRNAs. In addition, 27 miRNAs were
upregulated, with 16 miRNAs being downregulated after the knockdown of CDR1as in SMSCs. Some of
the significantly downregulated mRNAs such as MEF2C [6], ANGPT1 [45], E2F2 [46], CCN1 [47], and
FGFR1 [48], are shown to regulate muscle development. Besides, after the knockdown of DICER1, there
was a total of 1,113 differentially expressed mRNAs consisting of 686 downregulated mRNAs and 427
upregulated mRNA. Also, there were 15 upregulated miRNAs and 7 downregulated miRNAs. In addition,
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among the significantly downregulated genes such as ANGPT1 [45], MEF2D [41], IGFBP5 [61], E2F2 [46],
and CCN1 [47] are also known to be associated with muscle development.

Skeletal muscle development is a gradual process that involves proliferation, differentiation, and fusion.
Myoblast differentiation is characterized as the key stage responsible for myogenesis. Moreover,
myogenesis is controlled by various signaling regulatory networks, including PI3K-AKT signaling
pathway, Focal adhesion, Rap1 signaling pathway, MAPK signaling pathway, and FoxO signaling. For
instance, in our study, the KEGG pathway was performed to study the putative functions of DEGs. In
siCDR1as profiles, the most enriched pathways of the downregulated mRNAs were (PI3K)-AKT signaling
pathway, Focal adhesion, Rap1 signaling pathway, and MAPK signaling pathway. The downregulation of
PI3K/AKT signaling pathway by miR-106a-5p was shown to inhibit myogenic differentiation of C2C12
myoblast [62]. Also, according to Jiang et al. the knockdown of PI3-Kinase or its downstream target AKT
prevents muscle differentiation in cell culture, while activation of PI3-Kinase and Akt induces myogenic
differentiation [63, 64]. Previous studies have indicated that focal adhesion together with ECM are
signaling centers of several intracellular pathways related to cell proliferation and differentiation [65].
Also, focal adhesion plays a significant regulatory role in the biological process including muscle
differentiation and striated muscle tissue development [66]. Interestingly, Rap 1 signaling is known to be
related beta-adrenergic signaling pathway which has shown to play a crucial role in skeletal muscle
growth and development [67]. Moreover, Rap 1 is a small GTPase that regulates different processes,
including tightening of cell-cell junction [68], cell polarity, and cell adhesion [69]. MAPK signaling pathway
is indicated to regulate the regeneration and proliferation of muscle stem cells [70]. In addition, the MAPK
signaling pathway plays a significant role during myoblast differentiation [71, 72]. FoxO signaling
pathway is an essential pathway related to muscle development at different stages [66]. Aside from the
above-mentioned signaling pathways, the KEGG pathways of the upregulated miRNAs also include WNT
and Hippo signaling pathways which are also known to be among the significantly enriched pathways
(Fig. 4A). Besides, WNT signaling pathway is involved in the control of satellite cell differentiation and
regeneration [73, 74], while Hippo signaling pathway is also an essential pathway known to be involved in
myogenesis [75, 76].

Considering the knockdown of DICER1, we realized that the KEGG pathways of the downregulated
mRNAs include PI3K-AKT signaling pathway [62], Focal adhesion [66], and ECM receptor interaction [66],
which are also recognized to be associated with muscle development. Moreover, FoxO signaling pathway
[66], MAPK signaling pathway [70], Rap1 signaling pathway [68, 69], and mTOR signaling pathway [77]
were also known to be associated with the upregulated miRNAs. Moreover, all these pathways are related
to muscle development.

According to Xie et al. six elevated miRNAs including miR-1a-3p, miR-133a-3p, miR-133b-3p, miR-206-3p,
miR-128-3p, and miR-351-5p were being classified as myogenesis-associated miRNAs (mamiRs),
negatively regulated the JNK/MAPK pathway by inhibiting several factors related to the phosphorylation
of the JNK/MAPK pathway in skeletal muscle differentiation [78]. miR-146a-5p has been demonstrated to
significantly induced VSMC proliferation [55], however, lack of miR-146a did not increase muscular
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dystrophy in mdx mice but was highly expressed in dystrophic muscle [79]. Decreased in the expression
of miR-199b-5p induces differentiation of Bone-Marrow Mesenchymal Stem Cells (BMSCs) toward
Cardiomyocyte-Like Cells [51]. The Knockdown of miR-199a-3p inhibits slow-to-fast muscle fiber type
change in mice and C2C12 Cells [80]. Overexpression of miR-19b-3p prevents VSMC proliferation by
targeting CTGF expression [81]. miR-30 family is shown to increase myoblast differentiation in vitro and
provide negative feedback on the miRNA pathway [82]. However, according to Zhang et al. miR-30-5p has
a negative effect on the differentiation of C2C12 cells by targeting MBNL [50]. Overexpression of
miR3405p is known to reduce the expression of Nrf2 protein in the postexercise skeletal muscle of mice
[83]. miR-424 and miR-542-3p are among the most abundant miRNAs in goat muscles [20]. Meanwhile,
Garros et al. stated that miR-542 overexpression caused muscle wasting in mice, and reduced
mitochondrial function [84]. The knockdown of miR-7 is shown to induce myoblast differentiation [29].
Also, miR-7 is downregulated in skeletal muscle of master athletes [85]. An increase in the expression of
miR-7 levels has been recognized as a therapeutic target for opposing muscle dysfunction in DM1 [86].
miR-20a-5p and miR-20b-5p are involved in myoblast differentiation by downregulating the expression of
E2F1 [87]. miR-17-5p, miR-378b, miR-199a-5p, and miR-7 may have key roles to play in muscle aging [88],
and upregulation of miR-17-5p has been demonstrated to contributes to hypoxia-induced proliferation in
human pulmonary artery smooth muscle cells through modulation of p21 and PTEN [52]. Huang et al.
stated that miR-374a-5p was shown to negatively regulate MAPK6 expression, and miR-374a-5p may
have protective effects against cardiac I/R injury in vivo, and H9C2 H/R injury in vitro [89]. Also, miR-129-
5p blocks proliferation of vascular smooth muscle cells (VSMC) by decreasing the expression of Wnt5a
[90] and cyclin-dependent kinase 6 (CDK6) cardiac myocytes [91]. Decreased in the expression of miR-
27a/b resulted in a reduced myoblast proliferation through an increase in myostatin [92]. Overexpression
of miR-296 acts as ceRNA for LncRNA CAREL and significantly further inhibits Trp53inp1 and ltm2a to
induce proliferation of cardiomyocytes [93]. Overexpression of miR-423-3p in C2C12 myogenic
differentiation lead to decreased expression of its target gene Cox6a2 as well as decreased in cellular
ATP level [94]. miR-99b-3p is closely related to cancer cell proliferation [95,96]. LncRNA UCA1 promotes
the progression of cardiac hypertrophy by competitively binding with miR-184 to enhance the expression
of HOXA9 [97]. miR-296-3p enhances cardiac differentiation of embryonic stem cells [98]. Moreover, miR-
128-3p that promotes differentiation of chicken SMSCs [99], was significantly downregulated after the
knockdown of DICER1. Based on the reports from different works with regards to the functions of these
miRNAs, we can deduce that downregulation of DICER1 increases proliferation but rather decreases
differentiation.

In this study, we have made a significant contribution regarding the function of CDR1as and DICER1 in
myogenesis. According to the sequencing results, there is a positive correlation between CDR1as and
DICER1 differentially expressed miRNAs and mRNAs. Moreover, all the results stated indicates that the
knockdown of CDR1as and DICER1 are related to the downregulation of myoblast differentiation. Also,
we identified 11 putative miRNAs that can be sponged by CDR1as in SMSCs.

Conclusion
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In summary, we report that CDR1as and DICER1 gene can induce myogenesis in SMSCs through
differentiation. Moreover, the knockdown of CDR1as can also decrease the expression levels of DICER1 in
SMSCs via vice versa. In future studies, we plan to investigate the functional regulatory pathways of
some miRNAs and mRNAs associated with CDR1as and DICER1.
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Tables
Table 1 Summary of reads from raw data and clean read for mRNAs (siCDR1as)

         Sample                    Raw Reads                    Clean Reads                  Clean Reads (%)      

         siCDR1as_1           51865796                       51084670                      98.49%

         siCDR1as_2           64928768                       63448702                      97.72%

         siCDR1as_3           62668742                       61124018                      97.53%

         siNC_1                   71050762                        69247162                      97.46%

         siNC_2                     60328494                       58720344                      97.33%

         siNC_3                    73310062                       70808056                      96.59%

 

Table 2 Summary of reads from raw data and clean read for miRNAs (siCDR1as)

            Sample                     Raw Reads                 Clean Reads                  Clean Reads (%)       

            siCDR1as_1           15249256                      14876516                      97.56%

            siCDR1as_2           15109243                      14776717                      97.80%

            siCDR1as_3           16302005                      16044248                       98.42%

            siNC_1                   17583292                     17101617                      97.26%

            siNC_2                   15392007                     15172466                      98.57%

             siNC_3                   16631937                      16245764                       97.68%

 

Table 3 Summary of reads from raw data and clean read for mRNAs (siDICER1)

            Sample                     Raw Reads                   Clean Reads                   Clean Reads (%)       
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            siDICER1_1           114799120                      107162908                      93.35%

            siDICER1_2           116729108                      109896996                      94.15%

            siDICER1_3           154284884                      145845612                      94.53%

            siNC_1                    112293404                      105431736                     93.89%

            siNC_2                    115938944                      106717500                     92.05%

             siNC_3                    146546000                      139174744                     94.97%

 

Table 4 Summary of reads from raw data and clean read for miRNAs (siDICER1)

            Sample                     Raw Reads                   Clean Reads                   Clean Reads (%)       

            siDICER1_1           13243248                       12950668                        97.79%

            siDICER1_2           16224384                       15945782                        98.28%

            siDICER1_3           13313653                       13189595                        99.07%

            siNC_1                    15131051                      14880303                       98.34%

            siNC_2                    15827821                       15533815                        98.14%

             siNC_3                    12748120                      12389599                       97.19%

 

Table 5 29 miRNAs that are critical for muscle cells after inhibition of DICER1 

miRNAs               siDICER1_readcount  siNC_readcount  Log2│FoldChange│    pval                 padj
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miR-340-5p 4170.709921 1334.718775 1.6442 7.77E-17 2.25E-14

miR-1 2399.157854 795.3784952 1.5927 4.68E-13 6.79E-11
 

miR-199b-5p 4978.537584 2343.874937 1.0859 1.66E-08 1.61E-06
 

miR-206 10463.34296 4339.513679 1.2698 6.98E-08 4.05E-06
 

miR-3431-3p 747.5581005 349.0385672 1.0997 1.93E-05 0.00093151
 

miR-133b 127.0395034 39.85125436 1.6797 7.46E-05 0.0027679
 

miR-542-3p 1382.692995 870.6786347 0.66819 7.64E-05 0.0027679
 

miR-133a-3p 291.1553908 103.0553655 1.5004 9.86E-05 0.0030471
 

miR-19b-3p 1869.320577 1147.853935 0.70245 0.00019374 0.004682
 

miR-30b-5p 1626.351315 1086.047394 0.58234 0.0005161 0.010691
 

miR-146a 123.3477915 62.44958905 0.97531 0.0014387 0.026076
 

miR-335-5p 475.628044 306.2321444 0.63337 0.0017979 0.030671
 

miR-30e-5p 3605.104766 2553.345384 0.49672 0.0022368 0.032433
 

miR-424-5p 228.9440715 124.8912472 0.87721 0.0036705 0.048384
 

miR-215-5p 30.91083813 125.6754952 -2.0179 5.24E-08 3.80E-06
 

miR-27a-5p 581.7830669 1064.597836 -0.87221 0.00010507 0.0030471
 

miR-1307-3p 1532.225721 2164.944693 -0.49752 0.00043459 0.0096947
 

miR-129-5p 1281.977708 1956.16048 -0.60988 0.001126 0.02177
 

miR-128-3p 3499.573083 5393.484712 -0.62359 0.0021869 0.032433
 

miR-296-3p 130.4572684 220.0652404 -0.74886 0.0020456 0.032433
 

miR-27b-5p 251.479739 358.1369536 -0.50923 0.0024619 0.033998
 

miR-7-5p 25521.84767 17040.0976 0.58269 0.013929 0.1122
 

miR-20a-5p 6449.065249 4617.367179 0.48193 0.023613 0.16304
 

miR-30a-5p 4233.470356 2966.995856 0.51206 0.0059082 0.063458
 

miR-17-5p 3972.513323 2800.868924 0.50418 0.037555 0.21782
 

miR-374a-5p 2063.02369 1275.097278 0.69402 0.007115 0.068542
 

miR-423-3p 5150.221875 6904.915616 -0.42311 0.0057131 0.063458
 

miR-99b-3p 285.7822278 410.4920085 -0.52437 0.011012 0.096768
 

miR-184 127.8900981 194.9299834 -0.60921 0.0045266 0.029837
 

 

Table 6 43 miRNAs that are critical for muscle cells after inhibition of CDR1as

miRNAs                 siCDR1as_readcount   siNC_readcount   Log2│FoldChange│    pval              padj
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chi-miR-17-5p 3001.248 1810.237 0.72912 2.60E-08 3.12E-06
chi-miR-20a-5p       7199.622 4354.877 0.72503 2.78E-07 2.23E-05
novel_52       1128.806 613.921 0.87711 4.69E-07 2.82E-05
chi-miR-140-5p       2204.859 1439.661 0.61501 5.54E-06 0.000133
chi-miR-222-3p 9959.478 6640.695 0.58454 3.94E-06 0.000133
chi-let-7i-3p 367.0999 223.6484 0.71562 9.32E-06 0.000186
chi-miR-26a-5p 84563.05 57668.11 0.55225 8.88E-06 0.000186
chi-miR-19a       348.086 134.4014 1.3685 1.24E-05 0.000229
chi-miR-191-5p 6879.281 4573.587 0.58895 3.03E-05 0.000519
chi-miR-362-5p 764.6337 449.3501 0.76461 3.87E-05 0.000619
chi-miR-18a-5p 246.8867 144.2109 0.77112 0.000187 0.002495
chi-miR-15a-5p 359.2752 210.8023 0.76674 0.00126 0.014397
chi-miR-125a-5p 5395.456 3275.853 0.71978 0.001574 0.015266
chi-miR-125b-5p 62585.56 44942.4 0.47776 0.001648 0.015266
chi-miR-29a-3p 24037.27 18357.92 0.38886 0.001478 0.015266
novel_78 296.5034 198.6685 0.57919 0.001681 0.015266
chi-miR-374b-5p 5091.916 3688.704 0.46489 0.001843 0.015304
novel_31       1233.08 848.6147 0.54022 0.002001 0.016005
chi-miR-93-5p 8689.138 6836.243 0.3461 0.002745 0.021251
chi-miR-30e-5p 12620.17 9152.339 0.46333 0.002941 0.022061
chi-miR-199a-5p 68943.3 50479.2 0.44975 0.003504 0.025483
chi-miR-365-3p 1554.539 994.1919 0.64332 0.003964 0.027983
chi-miR-181b-5p 639.2447 480.2985 0.41174 0.004109 0.028179
chi-miR-874-3p 65.97939 35.72098 0.8767 0.005404 0.033985
chi-miR-146a 1106.627 862.9648 0.3581 0.005852 0.035113
chi-miR-30f-5p 235.0536 167.7368 0.49004 0.007716 0.044094
chi-miR-107-3p 1138.959 855.4164 0.4132 0.008342 0.04656
chi-miR-151-3p 19688.77 37772.71 -0.93987 3.45E-10 8.29E-08
chi-miR-140-3p 11045.99 15935.61 -0.52868 2.44E-06 9.75E-05
chi-miR-379-5p 2243.846 3453.597 -0.6214 2.20E-06 9.75E-05
chi-miR-143-3p 1027419 1649770 -0.68324 5.35E-06 0.000133
chi-miR-411a-5p 2529.26 4076.524 -0.68856 5.14E-06 0.000133
chi-miR-148a-3p 224034.2 369598 -0.72223 9.33E-05 0.0014
chi-miR-493-3p 273.7732 430.8949 -0.64994 0.000111 0.00156
novel_48 685.3696 1041.922 -0.60186 0.000232 0.002927
chi-miR-1388-5p 397.6739 564.416 -0.50206 0.000924 0.011083
chi-miR-218 563.6718 863.5813 -0.6145 0.001718 0.015266
chi-miR-27a-5p       434.6935 594.9322 -0.4532 0.001509 0.015266
chi-miR-99b-3p 251.3425 374.3879 -0.56933 0.001849 0.015304
chi-miR-184 127.8901 194.93 -0.60921 0.004527 0.029837
chi-miR-708-3p 446.1509 612.6852 -0.45456 0.0046 0.029837
chi-miR-24-3p 59250.53 76802.59 -0.37432 0.005523 0.033985
chi-miR-106b-3p 1026.171 1415.912 -0.46227 0.006238 0.036516
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Supplemetal Figure  1 and 2: The expression level of CDR1as and DICER1 in C2C12 transfected with
siCDR1as or siDICER1 was validated by qPCR.

Supplemetal Figure 3: KEGG of the Upregulated mRNAs with the top 20 enrichment. Bubble color and size
correspond to the Q value and gene number enriched in the pathway. The rich factor indicates the ratio of
the number of DEGs mapped to a certain pathway to the total number of genes mapped to this pathway.

Supplemetal Figure 4: KEGG analysis of the downregulated miRNA-mRNA network. Bubble color and size
correspond to the Q value and gene number enriched in the pathway. The rich factor indicates the ratio of
the number of DEGs mapped to a certain pathway to the total number of genes mapped to this pathway.

Supplemetal Figure 5: KEGG of the upregulated mRNAs with the top 20 enrichment. Bubble color and size
correspond to the Q value and gene number enriched in the pathway. The rich factor indicates the ratio of
the number of DEGs mapped to a certain pathway to the total number of genes mapped to this pathway.

Supplemetal Figure 6: KEGG analysis of downregulated miRNAs targets mRNAs. Bubble color and size
correspond to the Q value and gene number enriched in the pathway. The rich factor indicates the ratio of
the number of DEGs mapped to a certain pathway to the total number of genes mapped to this pathway.

Supplemetal Figure 7: KEGG analysis of overlapped upregulated mRNAs. Bubble color and size
correspond to the Q value and gene number enriched in the pathway. The rich factor indicates the ratio of
the number of DEGs mapped to a certain pathway to the total number of genes mapped to this pathway.

Figures
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Figure 1

The Expression of Cerebellar Degeneration-Related protein 1 antisense (CDR1as) and DICER1 on skeletal
muscle satellite cells (SMSCs) differentiation. (a and d) The expression level of CDR1as and DICER1 in
SMSCs transfected with siCDR1as or siDICER1 was validated. (b and e) qPCR analysis of MyoD
expression in SMSCs after transfection with siCDR1as or negative control (NC) and siDICER1 or NC. (c
and h) A representative of microscopic images after the knockdown of CDR1as and DICER1. (f and g)
SMSCs were transfected with NC or siDICER1, pCDNA3+NC or pCDNA3+siDICER1 to determine the
relationship between CDR1as and DICER1. The p values were analyzed by Student’s test; p < 0.05.

Figure 2
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siCDR1as and siDICER1 Pearson correlation chart. (a-d) The abscissa and the ordinate were the
respective samples, and the abscissa and the ordinate of each patch represented the correlation of
siCDR1as and siDICER1 samples. Importantly, two completely related genomes had a value of 1. The
closer to 1 the relative value is, the larger the Pearson correlation coefficient (PCC) for the siCDR1as and
siDICER1 samples; conversely, the closer to 0 the relative value was, the smaller the PCC between the
siCDR1as and siDICER1 samples.

Figure 3
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Expression profile of mRNAs in siDICER1 and NC (SMSCs). (a) Microarray analysis for mRNAs was
performed with RNA extracted from siDICER1 (n=3) and NC (n=3) SMSCs. Hierarchical cluster analysis of
significantly differentially expressed mRNAs: bright green, under-expression; gray, no change; bright red,
over-expression. (b) Ten differentially expressed representative mRNAs were validated in SMSCs
siDICER1 and NC by qPCR (n=10 per group). GAPDH was used as an internal control. (c) KEGG of the
downregulated mRNAs with the top 20 enrichment. Bubble color and size correspond to the Q value and
gene number enriched in the pathway. The rich factor indicates the ratio of the number of DEGs mapped
to a certain pathway to the total number of genes mapped to this pathway.
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Figure 4

Differentially expressed miRNAs in siDICER1 and NC (SMSCs). (a) Sequencing analysis for miRNAs was
performed from siDICER1 (n=3) and NC (n=3) of SMSCs. Hierarchical cluster analysis of significantly
differentially expressed miRNAs: bright red, overexpression; white, no change; bright blue, under-
expression. (b) Differential expression of ten representative miRNAs was validated in siDICER1 and NC of
SMSCs by qPCR (n=10 per group). (c) KEGG analysis of the upregulated miRNA-mRNA network. Bubble
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color and size correspond to the Q value and gene number enriched in the pathway. The rich factor
indicates the ratio of the number of DEGs mapped to a certain pathway to the total number of genes
mapped to this pathway.

Figure 5

Expression profile of mRNAs in siCDR1as and NC (SMSCs). (a) Microarray analysis for mRNAs was
performed with RNA extracted from siCDR1as (n=3) and NC (n=3) SMSCs. Hierarchical cluster analysis
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of significantly differentially expressed mRNAs: bright green, under-expression; gray, no change; bright
red, over-expression. (b) Ten differentially expressed representative mRNAs were validated in SMSCs
siCDR1as and NC by qPCR (n=10 per group). GAPDH was used as an internal control. (c) KEGG of the
downregulated mRNAs with the top 20 enrichment. Bubble color and size correspond to the Q value and
gene number enriched in the pathway. The rich factor indicates the ratio of the number of DEGs mapped
to a certain pathway to the total number of genes mapped to this pathway.

Figure 6

Differentially expressed miRNAs in siCDR1as and NC (SMSCs). (a) Sequencing analysis for miRNAs was
performed from siCDR1as (n=3) and NC (n=3) of SMSCs. Hierarchical cluster analysis of significantly
differentially expressed miRNAs: bright red, overexpression; white, no change; bright blue, under-
expression. (b) Differential expression of ten representative miRNAs was validated in siCDR1as and NC
of SMSCs by qPCR (n=10 per group). (c) Validation of CDR1as-sponged miRNAs in SMSCs using qPCR
analysis after the transfection of siCDR1as.
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Figure 7

KEGG analysis of the miRNA-mRNA network. (a and b) KEGG pathway enrichment analysis of
downregulated. (a) Upregulated miRNAs targets mRNAs, and downregulated (b) overlapped mRNAs.
Bubble color and size correspond to the Q value and gene number enriched in the pathway. The rich
factor indicates the ratio of the number of DEGs mapped to a certain pathway to the total number of
genes mapped to this pathway.
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Figure 8

Prediction of CDR1as-related miRNAs binding sites. (a) Predicted target sites of CDR1as-related miRNAs
on mRNAs using Targetscan. (b) Binding sites of miRNAs found on CDR1as with the use of RNAhybrid.
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