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Abstract
Given the heterogeneity and possible disease progression in schizophrenia, identifying the
neurobiological subtypes and progression patterns in each patient may lead to the development of
clinically useful biomarkers. In this cross-sectional study, we adopted data-driven machine-learning
techniques to classify and stage the progression patterns of brain morphological changes in
schizophrenia and investigate the association with treatment resistance. We included 177 patients with
schizophrenia, characterized by treatment response or resistance, with 3D T1-weighted magnetic
resonance imaging from 3 institutions. Cortical thickness and subcortical volumes calculated by
FreeSurfer were converted into Z-scores using 73 healthy controls data. The Subtype and Stage Inference
(SuStaIn) algorithm was used for unsupervised machine-learning classi�cation and staging. As a result,
SuStaIn identi�ed three different subtypes: 1) subcortical volume reduction (SC) type (73 patients,
47.4%), in which volume reduction of subcortical structures occurs �rst and moderate cortical thinning
follows, 2) globus pallidus hypertrophy and cortical thinning (GP-CX) type (42 patients, 27.3%), in which
globus pallidus hypertrophy initially occurs followed by progressive cortical thinning, 3) cortical thinning
(pure CX) type (39 patients, 25.3%), in which thinning of the insular and lateral temporal lobe cortices
primarily happens. The remaining 23 patients were assigned to baseline stage of progression (no
change). SuStaIn also found 84 stages of progression, and treatment-resistant schizophrenia showed
signi�cantly more progressed stages of progression than treatment-responsive cases (p=0.001). The GP-
CX type presented in earlier stages than the pure CX type (p=0.009). In conclusion, the brain
morphological progressions in schizophrenia can be classi�ed into three subtypes by SuStaIn algorithm.
Treatment resistance was associated with more progressed stages of the disease, which may suggest a
novel biomarker for schizophrenia.

Introduction
Schizophrenia is a common psychiatric disorder presenting with psychotic symptoms as well as negative
and cognitive symptoms 1. Despite longstanding and continuous efforts, we have not identi�ed any
distinct pathophysiology or established objective biomarkers in schizophrenia. While the diagnosis of
schizophrenia is still based on psychiatric symptoms, patients with schizophrenia often show
heterogeneous symptoms and treatment response2, 3, calling into question whether it represents a single
disease, particularly in terms of neurotransmitter systems4. In addition to symptom heterogeneity,
treatment response is also diverse. For example, treatment-resistant schizophrenia (TRS) de�nes a
distinct subpopulation showing poor response to conventional pharmacological treatment5 and, as a
result, a form of the illness associated with serious social and economic burden6. The neurobiological
basis of TRS remains to be elucidated, despite numerous strategies including neuroimaging studies7–9.

To address this disease heterogeneity, studies have proposed schizophrenia subtypes based on
symptoms10, 11 as well as brain structures12. In the latter, for example, each individual’s brain structural
abnormality is categorized into two distinct subtypes by machine learning; however, to date such brain
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morphological subtypes have shown little relationship with clinical symptoms12. In employing such a
strategy, it is important to acknowledge that such brain morphological abnormalities may be progressive
and involve cortical thinning in the temporal or frontal lobes13, 14. TRS has been associated with longer
duration of untreated psychosis15, 16, raising the possibility that TRS may be caused by more disease
progression.

In light of the above, categorization that incorporates staging may prove valuable in our understanding of
treatment resistance in schizophrenia. In this regard, machine learning analysis has been increasingly
applied to uncovering patterns in clinical parameters that may translate to personalized, more reliable
biomarkers17, 18. Subtype and Stage Inference (SuStaIn) is an unsupervised machine learning algorithm
to uncover data-driven disease phenotypes with temporal progression patterns, and it has been widely
utilized to identify disease subtypes and stages19–22.

Here, we applied the SuStaIn algorithm to classify disease progression patterns and staging of brain
morphology in schizophrenia, with the goal of identifying distinct biological subtypes in the context of
illness progression and associations with clinical measures. We hypothesized that TRS may be
associated with more progressed disease staging; in addition, we investigated the consistency of
anatomical subtype categorizations with previously published data12 as well as relationship with other
clinical characteristics.

Materials And Methods

Participants
We analyzed international. multi-center cross-sectional neuroimaging data comprising 177 patients with
schizophrenia and 73 healthy controls (HCs): 54 patients with schizophrenia (24 TRS, 30 non-TRS) and
28 HCs from Komagino hospital23, Tokyo, Japan, 70 patients with schizophrenia (49 TRS, 21 non-TRS)
from the Centre for Addiction and Mental Health (CAMH)24, Toronto, Canada, and 53 patients with
schizophrenia (23 TRS, 30 non-TRS) from Shimofusa Psychiatric Medical Center, Chiba, Japan (Table 1).
In each cohort, there were no signi�cant differences in age and sex between the schizophrenia and HC
groups.
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Table 1
Demographics and subtype/staging of participants from the three institutes.

  Cohort 1 (Komagino) Cohort 2 (Toronto) Cohort 3 (Shimofusa)

HC N = 28 N = 21 N = 24

Age (yrs) 46.0 (18) † 36.0 (23) † 41.5 (18) †

Sex (M:F) 12:16 ‡ 15:6 ‡ 14:10 ‡

Schizophrenia N = 54 N = 70 N = 53

Age (yrs) 43.5 (17) † 46.5 (22) † 39.0 (17) †

Sex (M:F) 24:30 ‡ 53:17 ‡ 29:24 ‡

TRS (N) 24 49 23

Onset (yrs) 25.0 (11) 23.0 (9) 20.0 (10)

Duration (yrs) 14.0 (15.5) 20.0 (20.3) * 15.0 (17.5)

Education
(yrs)

12.0 (3) 12.5 (2) * 12.0 (3)

Antipsychotics
(CP)

600 (500) 493.75 (300) * 450 (570)

PANSS-P 14.5 (17) 13.0 (10) * 17.0 (10)

PANSS-N 22.0 (17) 17.5 (5) * 18.0 (8)

PANSS-G 30.5 (29) 32.5 (11) * 36.0 (16)

PANSS-T 67.5 (65) 65.0 (24) * 70.0 (26)

Subtypes SC = 15, GP-CX = 19, pure
CX = 8, stage-0 = 12

SC = 31, GP-CX = 13, pure
CX = 20, stage-0 = 6

SC = 27, GP-CX = 10, pure
CX = 11, stage-0 = 5

Staging 5.0 (9) 7.0 (11) 6.0 (10)

Continuous variables are shown as median (IQR).

* missing in 4 patients.

† No signi�cant differences between HC and Schizophrenia in each cohort (p = 0.395, 0.072, 0.656,
respectively, Mann-Whitney U tests).

‡ No signi�cant differences between HC and Schizophrenia in each cohort (p = 0.891, 0.692, 0.767,
respectively, χ2 tests).

Participants partly overlapped with previous studies in which the same inclusion/exclusion criteria and
clinical evaluations were used9, 23–27. Patients were diagnosed with schizophrenia based on the
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Diagnostic and Statistical Manual of Mental Disorders 4th Ed (DSM-IV)28. The Positive and Negative
Syndrome Scale (PANSS)29 and the Clinical Global Impression Severity Scale (CGI-S)30 were used for
assessment of clinical symptoms. TRS was determined by the modi�ed Treatment Response and
Resistance in Psychosis (TRRIP) Working Group Consensus criteria31. Treatment response was de�ned
by (i) CGI-S score ≤ 3, (ii) PANSS positive symptom item scores ≤ 3, and (iii) no symptomatic relapse in
the previous 3 months. In contrast, inadequate treatment response was de�ned by (i) CGI-S score ≥ 4, and
(ii) ≥ 4 on at least 2 PANSS positive symptom items after adequate antipsychotic trials. Response to past
antipsychotic trials was determined based on medical records. We also con�rmed no history of
psychiatric illness in HCs by using the Mini-International Neuropsychiatric Interview (MINI)32. The
following exclusion criteria were applied to all participants: (i) substance abuse or dependance within the
past six months; (ii) positive urine drug screen at inclusion or before the MRI scan; (iii) history of head
trauma resulting in unconsciousness for > 30min; or (iv) an unstable physical illness or neurological
disorder.

All participants provided written informed consent, and the study protocol was approved by the Ethics
committees at each institute.

MRI acquisition and preprocessing
Participants underwent 3D T1-weighted structural MRI scans on the following protocols: (i) at the
Komagino Hospital, 3 T Signa HDxt scanner (GE Healthcare) with an eight-channel head coil (BRAVO,
echo time [TE] = 2.8 ms, repetition time [TR] = 6.4 ms, inversion time [TI] = 650 ms, �ip angle = 8◦, �eld of
view [FOV] = 230 mm, matrix size = 256 × 256, slice thickness = 0.9 mm), (ii) at the Centre for Addiction
and Mental Health, a 3 T GE Discovery R750 scanner (GE Healthcare) with an eight-channel head coil
(BRAVO, TE = 3 ms, TR = 6.74 ms, TI = 650 ms, �ip angle = 8◦, FOV = 230 mm, matrix size = 256 × 256, slice
thickness = 0.9 mm), (iii) at the Shimofusa Psychiatric Medical Center, a 1.5 T Signa Explorer (GE
Healthcare) with a 12-channel head coil (FSPGR, TE = 5.1ms, TR = 12.2ms, TI = 913ms, �ip angle = 25◦,
FOV = 256mm, matrix size = 256x256, slice thickness = 1.0mm).

We used FreeSurfer software (v.6.0, https://surfer.nmr.mgh.harvard.edu) to calculate cortical thickness
(CT) and subcortical gray matter (GM) volumes of the whole cerebrum as well as the intracranial volumes
(ICV) based on the 3D T1-weighted images of all the participants. Image processing included the removal
of non-brain tissues with a hybrid watershed/surface deformation procedure, automated Talairach
transformation, and segmentation of the subcortical structure and cortex based on the Desikan-Killiany
Atlas. We con�rmed segmentation accuracy in all subjects with visual inspection.

Subtype and Stage Inference (SuStaIn) analysis
Firstly, the subcortical GM volumes were corrected for individual’s ICV, and then all CT and subcortical GM
volumes were corrected for age and sex. As SuStaIn uses Z-scores for the machine learning analysis19,
we calculated Z-scores for each cohort. In other words, Z-score calculations were performed using each
HC cohort with the same scanner and protocol at each institute.
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It is also necessary to select the relevant regions of interest (ROIs) for obtaining reliable results by
machine learning; we chose all ROIs with signi�cant changes in the multi-center mega analysis by
ENIGMA consortium33, 34, one of the most reliable strategies in evaluating brain morphological alteration
in schizophrenia. The detailed list of 28 identi�ed ROIs is shown in Supplementary Table S1. Since
globus pallidus (GP) may show increased volumes33, we converted the Z-score of GP by multiplying (-1)
to re�ect hypertrophy, while the Z-score of the other ROIs represented cortical thinning or GM volume loss.

Finally, the Z-scores of the 28 ROIs for the 177 patients with schizophrenia were entered into the SuStaIn
algorithm (https://github.com/ucl-pond/SuStaInMatlab). As SuStaIn represents an unsupervised
machine learning strategy, any other information than the Z-scores, e.g., the anatomy of each ROI or
clinical data, were not taken into account. The linear Z-score model and mathematical model underlying
the SuStaIn algorithm are described in the previous study19; steps included model-�tting, convergence,
uncertainty estimation, cross-validation, and similarity between subtypes. As described previously19, 21, 22,
SuStaIn categorized individuals into subtypes and estimated the most likely sequence in which selected
ROIs reach different progression stages over time.

Statistical analysis
Statistical analyses were performed by SPSS (IBM Corp. Version 25.0. Armonk, NY: IBM Corp). Parametric
or non-parametric distributions of variables were examined by Shapiro-Wilk test, and the null hypothesis
of normal distribution was rejected in all the clinical variables in this study. On the other hand, the
corrected CT and subcortical GM volumes in HCs were normally distributed, which should justify the
conversion process to Z-score for SuStaIn.

As a primary analysis, we investigated the relationships of TRS with disease subtypes or staging derived
from the SuStaIn analysis. The categorical relationship, i.e., TRS/non-TRS vs. disease subtypes, was
analyzed by χ2 test, and the estimated stages between TRS and non-TRS were compared by Mann-
Whitney U test. For more exploratory analyses, we examined the association of the subtypes and staging
with other clinical characteristics, including onset age, disease duration, medication dose, or PANSS
scores. Among the subtypes, continuous variables were compared by Kruskal-Wallis tests, while χ2 tests
were used for categorical variables. Regarding the staging, Spearman’s rank correlation tests were used to
reveal relationships with other variables. A p < 0.05 was considered as statistically signi�cant.

Validation for reproducibility
To con�rm the reproducibility of the subtype and staging categorization, we repeated the SuStaIn
analysis in each cohort separately. The subtypes and staging results from each additional analysis were
compared with the main original results from all the patients, using χ2 test and Spearman’s rank
correlation test.

Results
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Estimated subtypes, stages, and treatment-resistance
SuStaIn identi�ed three different subtypes of brain morphological changes in schizophrenia (Fig. 1) i.e., i)
subcortical volume reduction (SC) type (73 patients), ii) globus pallidus hypertrophy and cortical thinning
(GP-CX) type (42 patients), iii) cortical thinning (pure CX) type (39 patients). In the SC type, subcortical
volume loss, particularly the hippocampi and thalami, initially occurs and cortical thinning follows (left in
Fig. 1). In the GP-CX type, the globus pallidus hypertrophy initially happens, followed by cortical thinning
with no severe atrophy of other subcortical structures (middle in Fig. 1). In the pure CX type, cortical
thinning, particularly in the lateral temporal and insular cortices, mainly occurs and subcortical volumes
are not severely affected (right in Fig. 1). The remaining 23 patients were assigned to baseline stage of
progression (no change) and not categorized into any subtypes.

SuStaIn also found 84 stages of progression (Fig. 1). The histograms of disease stages of each
participant in the TRS and non-TRS groups are presented in Fig. 2. The TRS group showed signi�cantly
more progressed disease stages than non-TRS (p = 0.001, Mann-Whitney U test). With regard to subtype
results, GP-CX type showed signi�cantly less progressed stages than pure CX type (p = 0.009), and a
similar trend was found in comparison to SC type (Table 2) although there was no direct association of
subtypes with TRS.
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Table 2
Clinical features among the three subtypes derived from SuStaIn analysis.

  SC type

(N = 73)

GP-CX type

(N = 42)

pure CX type

(N = 39)

p-val.

Age (yrs) 44.0 (22) 40.0 (20) 44.0 (14) 0.870†

Sex (M:F) 48:25 24:18 21:18 0.415††

TRS (N) 41 23 22 0.986††

Onset (yrs) 21.0 (13) * 24.0 (8) ** 23.0 (8) 0.950†

Duration (yrs) 15.0 (20) * 19.0 (15.5) ** 19.0 (18) 0.673†

Education (yrs) 12.0 (2) * 12.0 (4) ** 12.0 (2) 0.480†

Antipsychotics (CP) 474 (430.5) * 581.25 (467) ** 450 (375) 0.419†

PANSS-P 15.0 (11) * 14.0 (16) ** 14.0 (14) 0.862†

PANSS-N 18.5 (9) * 19.0 (13) ** 18.0 (12) 0.852†

PANSS-G 35.0 (15) * 32.0 (20) ** 32.0 (18) 0.662†

PANSS-T 69.0 (28) * 67.0 (48) ** 68.0 (43) 0.755†

Staging 8.0 (14) 6.0 (7) ††† 10.0 (11) 0.010†

Continuous variables are shown as median (IQR).

* Missing in 2 patients

** Missing in 1 patient

† Kruskal-Wallis test

†† χ2 test

††† Signi�cantly lower than pure CX type (p = 0.009, post-hoc Dunn test with Bonferroni correction)
and a trend toward lower than SC type (p = 0.076). No signi�cance between pure CX and SC types (p 
= 0.766).

Associations with other clinical characteristics
As shown in Table 2, there were no signi�cant relationships between the three subtypes and other clinical
characteristics. The proportion of TRS also did not signi�cantly differ across the three subtypes (Table 2).
Of 23 patients in the baseline stage, 10 subjects (43%) were TRS. In addition, the estimated stages were
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not correlated with most of other clinical variables except for the PANSS positive and total scores
(uncorrected p < 0.05, Table 3).

Table 3
Correlation analysis with the estimated stage

of disease progression.

  Spearman's rs p-val.

Age 0.010 0.900

Sex (M = 1, F = 2) -0.024 0.749

Onset 0.084 0.270

Duration 0.009 0.905

Education -0.056 0.455

Antipsychotics 0.116 0.124

PANSS-P 0.175 0.021

PANSS-N 0.105 0.171

PANSS-G 0.129 0.091

PANSS-T 0.154 0.043

Bold font denotes uncorrected p < 0.05.

Reproducibility analysis
The results of the reproducibility analysis are shown in Fig. 3. Although the subtype patterns were
generally consistent with the main analysis, SuStaIn did not identify a pure CX type in cohort 2 (Fig. 3-A).
Therefore, 18 of 20 patients in cohort 2 with pure CX type in the main analysis were classi�ed into GP-CX
type (Fig. 3-B). Otherwise, patients were categorized into the same subtype groups (p < 10− 43, χ2 test).
The stage of disease progression was well reproduced (Spearman’s rs = 0.985, p < 10− 134, Fig. 3-C).

Discussion
The current study applied the unsupervised machine learning model to data of brain morphology in
patients with schizophrenia and identi�ed three subtypes with the following progression patterns: SC
type, in which subcortical volume loss is more dominant; GP-CX type, in which GP increase initially occurs
and cortical thinning follows; and, pure CX type, in which cortical thinning mainly occurs. Furthermore,
more patients with TRS were at the progressed disease stages compared to those with non-TRS.
Additionally, GP-CX type was associated with less progressive stages. These brain morphological
subtypes and staging may, in turn, lead to the development of clinically useful individualized biomarkers.
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There have been various attempts to identify subtypes and staging in neurodegenerative diseases by
SuStaIn. In frontotemporal dementia, four distinct subtypes with progression patterns were detected
using structural MRI, which were consistent with genetic variance19. Another study applied SuStaIn to
tau-PET images of Alzheimer’s disease and identi�ed four distinct spatiotemporal trajectories of
progression21. In the present study, we applied SuStaIn to schizophrenia and found three subtypes with
distinct features in terms of anatomical patterns. SuStaIn represents an unsupervised algorithm, and the
neuroanatomical information of each ROI and other clinical data were not incorporated into the analysis.
Nevertheless, the three subtypes were anatomically consistent; cortical and subcortical patterns could be
separated and the left/right sides generally changed simultaneously (Fig. 1). Such anatomical
consistency would support the validity of the SuStaIn classi�cation.

In a previous study by machine learning and structural MRI in schizophrenia, two distinct patterns were
reported: i.e., (1) widespread GM volume loss in the frontotemporal and insular cortices, thalamus, and
nucleas accumbens, and (2) increased subcortical GM volumes with no distinct cortical GM loss12. These
�ndings may partly align with our results in terms of classi�cation into cortical and subcortical patterns.
However, given the possible progression of schizophrenia, incorporating disease staging may be
desirable. Our results also advance the �eld incorporating subpopulation data (i.e. TRS and non-TRS)
that seems linked to different neurobiological dysfunction4, 35. Among the identi�ed three subtypes, the
SC type showed initial subcortical GM loss and subsequent cortical thinning, whereas both the GP-CX
and the pure CX types presented earlier and with more distinct cortical thinning and less evident
subcortical GM decrease than the SC type (Fig. 1). The clear difference between the GP-CX and pure CX
types was the initial GP volume increase. GP increase in patients with schizophrenia has been
consistently reported by multi-center studies at a group-level comparison with HCs33, 36. Although no
direct associations with TRS were found, the GP-CX type showed less disease progression than the pure
CX type. On the other hand, in the reproducibility analysis, it was di�cult to distinguish between GP-CX
and pure CX in a smaller cohort (cohort 2, Fig. 3); accordingly, more careful interpretation may be needed.
At any rate, the pathological meaning of GP increase in schizophrenia is not well understood, and further
investigation is needed to interpret our current model.

Several studies have investigated the neurobiological mechanism of TRS, including involvement of
glutamate and GABA systems23, 24, 27, 37, 38 as well as cortical abnormality patterns9, 25. In the current
study, stage progression was associated with TRS but not with disease duration (Table 3). Thus, it does
not appear that the disease simply progresses as time progresses. To this point, longer duration of
untreated psychosis and treatment non-adherence have been identi�ed as associated factors with TRS16.
The point has also been made that TRS is associated with central oxidative stress and increased
variability of glutathione39. Together with our �ndings, such unfavorable factors may advance the
disease stages and pathological changes in TRS. These different in�uences may, in fact, contribute to the
variable outcomes associated with TRS e.g., clozapine response.
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The strengths of this study include a novel data-driven approach for individualized subtyping and
staging, �ndings of a signi�cant association between progressed staging and treatment-resistance, and
the reproducibility of multi-site data. On the other hand, this study has several limitations. First, it is
di�cult to demonstrate the validity of current results in the absence of a well-established gold standard.
One possible solution is to longitudinally follow these cohorts to con�rm whether established subtypes
follow speci�c trajectories. Selection of ROIs may also raise some controversy although we adopted the
most reliable evidence from the international mega-analyses33, 34. In addition, we did not �nd any
relationships between subtypes and clinical characteristics; however, this issue is consistent with the
previous study12. We speculate that this re�ects the limitations of diagnoses based solely on symptoms
and the assessment of disease status only by scoring. Much more knowledge related to neurobiological
mechanisms may serve to address this limitation. Other limitations include sample size, cross-sectional
design, and potential effects of medications and previous unreported use of other drugs.

In conclusion, we identi�ed three distinct subtypes based on progression patterns of brain morphology.
More progressed disease stages were found in TRS. The GP-CX type re�ected an earlier stage of disease,
but otherwise the subtypes did not show any relationship with clinical characteristics. Current �ndings
provide new knowledge that may be relevant to the neural basis of TRS and, in so doing, lead to clinically
useful personalized biomarkers.
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Figures

Figure 1

Estimated three patterns of brain morphological disease progression in schizophrenia, namely 1)
subcortical volume reduction (SC) type, in which volume reduction of subcortical structures occurs �rst
and moderate cortical thinning follows, 2) globus pallidus hypertrophy and cortical thinning (GP-CX) type,
in which globus pallidus hypertrophy initially occurs followed by progressive cortical thinning, and 3)
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cortical thinning (pure CX) type, in which thinning of the insular and lateral temporal lobe cortices
primarily happens.

Figure 2

Histogram of stage progressions between non-TRS and TRS.
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Figure 3

Reproducibility analysis by analyzing each cohort separately. (A) Subtype and staging results of each
cohort. (B) Subtype classi�cation between main original analysis and reproducibility analysis. (C)
Correlation of stage progressions between main original analysis and reproducibility analysis.
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