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Abstract

The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic

communication complexity in the worst case. While it has been shown that the bound is tight in syn-

chronous environments, it is still unknown whether a consensus protocol with quadratic communication

complexity can be obtained in partial synchrony. Until now, the most efficient known solutions for Byzantine

consensus in partially synchronous settings had cubic communication complexity (e.g., HotStuff, binary DBFT).

This paper closes the existing gap by introducing SQuad, a partially synchronous Byzantine consensus pro-

tocol with quadratic worst-case communication complexity. In addition, SQuad is optimally-resilient and

achieves linear worst-case latency complexity. The key technical contribution underlying SQuad lies in the

way we solve view synchronization, the problem of bringing all correct processes to the same view with a

correct leader for sufficiently long. Concretely, we present RareSync, a view synchronization protocol with

quadratic communication complexity and linear latency complexity, which we utilize in order to obtain SQuad.

Keywords: Optimal Byzantine consensus, Communication complexity, Latency complexity

1 Introduction

Byzantine consensus [1] is a fundamental distributed
computing problem. In recent years, it has become
the target of widespread attention due to the advent
of blockchain [2–4] and decentralized cloud comput-
ing [5], where it acts as a key primitive. The demand

of these contexts for high performance has given a
new impetus to research towards Byzantine consen-
sus with optimal communication guarantees.

Intuitively, Byzantine consensus enables pro-
cesses to agree on a common value despite Byzantine
failures. Formally, each process is either correct or
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faulty; correct processes follow a prescribed protocol,
whereas faulty processes (up to f > 0) can arbitrarily
deviate from it. Each correct process proposes a value,
and should eventually decide a value. The following
properties are guaranteed:

• Validity: If all correct processes propose the
same value, then only that value can be decided
by a correct process.

• Agreement: No two correct processes decide dif-
ferent values.

• Termination: All correct processes eventually
decide.

The celebrated Dolev-Reischuk bound [6] says
that any deterministic solution of the Byzantine
consensus problem requires correct processes to
exchange (at least) a quadratic number of bits of
information. It has been shown that the bound is
tight in synchronous environments [7, 8]. However,
for the partially synchronous environments [9] in
which the network becomes synchronous only after
some unknown Global Stabilization Time (GST ), no
Byzantine consensus protocol achieving quadratic
communication complexity is known.1 Therefore, the
question remains whether a partially synchronous
Byzantine consensus with quadratic communication
complexity exists [11]. Until now, the most efficient
known solutions in partially synchronous environ-
ments had cubic communication complexity (e.g.,
HotStuff [12], binary DBFT [2]).

We close the gap by introducing SQuad, a par-
tially synchronous Byzantine consensus protocol
with quadratic worst-case communication complex-
ity, matching the Dolev-Reischuk [6] bound. In addi-
tion, SQuad is optimally-resilient and achieves opti-
mal linear worst-case latency.

Partially synchronous łleader-based” Byzantine
consensus. Partially synchronous łleader-based”
consensus protocols [12–15] operate in views, each
with a designated leader whose responsibility is to
drive the system towards a decision. If a process does
not decide in a view, the process moves to the next
view with a different leader and tries again. Once all
correct processes overlap in the same viewwith a cor-
rect leader for sufficiently long, a decision is reached.
Sadly, ensuring such an overlap is non-trivial; for
example, processes can start executing the proto-
col at different times or their local clocks may drift

1No deterministic protocol solves Byzantine consensus in a completely
asynchronous environment [10].

before GST , thus placing them in views which are
arbitrarily far apart.

Typically, these protocols contain two indepen-
dent modules:
1. View core: The core of the protocol, responsible

for executing the protocol logic of each view.
2. View synchronizer: Auxiliary to the view core,

responsible for łmoving” processes to new
views with the goal of ensuring a sufficiently
long overlap to allow the view core to decide.

Immediately afterGST , the view synchronizer brings
all correct processes together to the view of the most
advanced correct process and keeps them in that view
for sufficiently long. At this point, if the leader of
the view is correct, the processes decide. Otherwise,
they łsynchronously” transit to the next view with
a different leader and try again. In summary, the
communication complexity of such protocols can be
approximated by n · C + S, where:

• C denotes the maximum number of bits a cor-
rect process sends while executing its view core
during [GST , td], where td is the first time by
which all correct processes have decided, and

• S denotes the communication complexity of the
view synchronizer during [GST , td].

Since the adversary can corrupt up to f processes,
correct processes must transit through at least f + 1
views after GST , in the worst case, before reaching
a correct leader. In fact, PBFT [14] and HotStuff [12]
show that passing through f+1 views is sufficient to
reach a correct leader. Furthermore, HotStuff employs
the łleader-to-all, all-to-leader” communication pat-
tern in each view. As (1) each process is the leader
of at most one view during [GST , td], and (2) a pro-
cess sends O(n) bits in a view if it is the leader of
the view, and O(1) bits otherwise, HotStuff achieves
C = 1 · O(n) + f · O(1) = O(n). Unfortunately,
S = (f + 1) · O(n2) = O(n3) in HotStuff due to
łall-to-all” communication exploited by its view syn-
chronizer in every view.2 Thus, S = O(n3) dominates
the communication complexity of HotStuff, prevent-
ing it from matching the Dolev-Reischuk bound. If
we could design a consensus algorithm for which
S = O(n2) while preserving C = O(n), we would
obtain a Byzantine consensus protocol with opti-
mal communication complexity. The question is if a

2While HotStuff [12] does not explicitly state how the view synchroniza-
tion is achieved, we have that S = O(n3) in Diem BFT [13], which is a
mature implementation of the HotStuff protocol.
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view synchronizer achieving S = O(n2) in partial
synchrony exists.

Warm-up: View synchronization in complete
synchrony. Solving the synchronization problem in
a completely synchronous environment is not hard.
As all processes start executing the protocol at the
same time and their local clocks do not drift, the
desired overlap can be achieved without any commu-
nication: processes stay in each view for the fixed,
overlap-required time. However, this simple method
cannot be used in a partially synchronous setting
as it is neither guaranteed that all processes start
at the same time nor that their local clocks do not
drift (before GST ). Still, the observation that, if the
system is completely synchronous, processes are not
required to communicate in order to synchronize
plays a crucial role in developing our view syn-
chronizer which achieves quadratic communication
complexity in partially synchronous environments.

RareSync. The main technical contribution of this
work is RareSync, a partially synchronous view syn-
chronizer that achieves synchronization withinO(f)
time after GST , and has O(n2) worst-case commu-
nication complexity. In a nutshell, RareSync adapts
the łno-communication” technique of synchronous
view synchronizers to partially synchronous environ-
ments.

Namely, RareSync groups views into epochs;
each epoch contains f + 1 sequential views. Instead
of performing łall-to-all” communication in each
view (like the łtraditional” view synchronizers [13]),
RareSync performs a single łall-to-all” communica-
tion step per epoch. Specifically, only at the end of
each epoch do all correct processes communicate to
enable further progress. Once a process has entered
an epoch, the process relies solely on its local clock
(without any communication) to move forward to the
next view within the epoch.

Let us give a (rough) explanation of how
RareSync ensures synchronization. Let E be the
smallest epoch entered by all correct processes at or
after GST ; let the first correct process enter E at
time tE ≥ GST . Due to (1) the łall-to-all” commu-
nication step performed at the end of the previous
epoch E − 1, and (2) the fact that message delays are
bounded by a known constant δ after GST , all cor-
rect processes enter E by time tE + δ. Hence, from
the epoch E onward, processes do not need to com-
municate in order to synchronize: it is sufficient for
processes to stay in each view for δ + ∆ time to

achieve∆-time overlap. In brief, RareSync uses com-
munication to synchronize processes, while relying
on local timeouts (and not communication!) to keep
them synchronized.

SQuad. The second contribution of our work is
SQuad, an optimally-resilient partially synchronous
Byzantine consensus protocol with (1) O(n2) worst-
case communication complexity, and (2) O(f) worst-
case latency complexity. The view core module of
SQuad is the same as that of HotStuff; as its view syn-
chronizer, SQuad uses RareSync. The combination
of the HotStuff’s view core and RareSync ensures
that C = O(n) and S = O(n2). By the afore-
mentioned complexity formula, SQuad achieves n ·
O(n) + O(n2) = O(n2) communication complex-
ity. SQuad’s linear latency is a direct consequence of
RareSync’s ability to synchronize processes within
O(f) time after GST .

Roadmap. We discuss related work in §2. In §3, we
define the system model. We introduce RareSync in
§4. In §5, we present SQuad. We conclude the paper
in §6. Detailed proofs of the most basic properties of
RareSync are delegated to Appendix A.

2 Related Work

In this section, we discuss existing results in two
related contexts: synchronous networks and random-
ized algorithms. In addition, we discuss some precur-
sor (and concurrent) results to our own.

Synchronous networks. The first natural question
is whether we can achieve synchronous Byzantine
agreement with optimal latency and optimal commu-
nication complexity. Momose and Ren answer that
question in the affirmative, giving a synchronous
Byzantine agreement protocol with optimal n/2
resiliency, optimal O(n2) worst-case communication
complexity and optimal O(f) worst-case latency [8].
Optimality follows from two lower bounds: Dolev
and Reischuk show that any Byzantine consensus
protocol has an execution with quadratic communi-
cation complexity [6]; Dolev and Strong show that
any synchronous Byzantine consensus protocol has
an execution with f + 1 rounds [16]. Various other
works have tackled the problem of minimizing the
latency of Byzantine consensus [17–19].

Randomization. A classical approach to circum-
vent the FLP impossibility [10] is using randomiza-
tion [20], where termination is not ensured deter-
ministically. Exciting recent results by Abraham et



al. [21] and Lu et al. [22] give fully asynchronous
randomized Byzantine consensus with optimal n/3
resiliency, optimal O(n2) expected communication
complexity and optimal O(1) expected latency com-
plexity. Spiegelman [23] took a neat hybrid approach
that achieved optimal results for both synchrony and
randomized asynchrony simultaneously: if the net-
work is synchronous, his algorithm yields optimal
(deterministic) synchronous complexity; if the net-
work is asynchronous, it falls back on a randomized
algorithm and achieves optimal expected complexity.

Recently, it has been shown that even randomized
Byzantine agreement requires Ω(n2) expected com-
munication complexity, at least for achieving guar-
anteed safety against an adaptive adversary in an
asynchronous setting or against a strongly rushing

adaptive adversary in a synchronous setting [24, 25].
(See the papers for details.) Amazingly, it is possible
to break the O(n2) barrier by accepting a non-zero
(but o(1)) probability of disagreement [26–28].

Authentication. Most of the results above are
authenticated: they assume a trusted setup phase3

wherein devices establish and exchange crypto-
graphic keys; this allows for messages to be signed
in a way that proves who sent them. Recently, many
of the communication-efficient agreement protocols
(such as [21, 22]) rely on threshold signatures (such
as [29]). The Dolev-Reischuk [6] lower bound shows
that quadratic communication is needed even in such
a case (as it looks at the message complexity of
authenticated agreement).

Among deterministic, non-authenticated Byzan-
tine agreement protocols, DBFT [2] achieves O(n3)
communication complexity. For randomized non-
authenticated Byzantine agreement protocols, Moste-
faoui et al. [30] achieve O(n2) communication
complexity—but they assume a perfect common coin,
for which efficient implementations may also require
signatures.

We note that it is possible to (1) work towards an
authenticated setting from a non-authenticated one
by rolling out a public key infrastructure (PKI) [31–
33], (2) set up a threshold scheme [34] without a
trusted dealer, and (3) asynchronously emulate a per-
fect common coin [35] used by randomized Byzantine
consensus protocols [21, 22, 30, 36].

3A trusted setup phase is notably different from randomized algorithms
where randomization is used throughout.

Other related work. In this paper, we focus on the
partially synchronous setting [9], where the question
of optimal communication complexity of Byzantine
agreement has remained open. The question can be
addressed precisely with the help of rigorous frame-
works [37–39] that were developed to express par-
tially synchronous protocols using a round-based
paradigm. More specifically, state-of-the-art partially
synchronous BFT protocols [12, 13, 15, 40] have been
developedwithin a view-based paradigmwith a rotat-
ing leader, e.g., the seminal PBFT protocol [14]. While
many approaches improve the complexity for some
optimistic scenarios [41–45], none of them were able
to reach the quadratic worst-case Dolev-Reischuk
bound.

The problem of view synchronization was defined
in [46]. An existing implementation of this abstrac-
tion [40] was based on Bracha’s double-echo reliable
broadcast at each view, inducing a cubic communi-
cation complexity in total. This communication com-
plexity has been reduced for some optimistic scenar-
ios [46] and in terms of expected complexity [47]. The
problem has been formalizedmore precisely in [48] to
facilitate formal verification of PBFT-like protocols.

It might be worthwhile highlighting some con-
nections between the view synchronization abstrac-
tion and the leader election abstraction Ω [49, 50],
capturing the weakest failure detection information
needed to solve consensus (and extended to the
Byzantine context in [51]). Leaderless partially syn-
chronous Byzantine consensus protocols have also
been proposed [52], somehow indicating that the
notion of a leader is not necessary in the mechanisms
of a consensus protocol, even if Ω is the weakest
failure detector needed to solve the problem. Clock
synchronization [53, 54] and view synchronization
are orthogonal problems.

Concurrent research. We have recently discov-
ered concurrent and independent research by Lewis-
Pye [55]. Lewis-Pye appears to have discovered a sim-
ilar approach to the one that we present in this paper,
giving an algorithm for state machine replication in
a partially synchronous model with quadratic mes-
sage complexity. As in this paper, Lewis-Pye makes
the key observation that we do not need to synchro-
nize in every view; views can be grouped together,
with synchronization occurring only once every fixed
number of views. This yields essentially the same
algorithmic approach. Lewis-Pye focuses on state
machine replication, instead of Byzantine agreement
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(though state machine replication is implemented
via repeated Byzantine agreement). The other useful
property of his algorithm is optimistic responsiveness,
which applies to the multi-shot case and ensures that,
in good portions of the executions, decisions happen
as quickly as possible. We encourage the reader to
look at [55] for a different presentation of a similar
approach.

Moreover, the similar approach to ours and Lewis-
Pye’s has been proposed in the first version of
HotStuff [56]: processes synchronize once per level,
where each level consists of n views. The authors
mention that this approach guarantees the quadratic
communication complexity; however, this claim was
not formally proven in their work. The claim was
dropped in later versions of HotStuff (including the
published version). We hope readers of our paper will
find an increased appreciation of the ideas introduced
by HotStuff.

3 System Model

Processes. We consider a static set {P1, P2, ..., Pn}
of n = 3f + 1 processes out of which at most f can
be Byzantine, i.e., can behave arbitrarily. If a process
is Byzantine, the process is faulty; otherwise, the pro-
cess is correct. Processes communicate by exchanging
messages over an authenticated point-to-point net-
work. The communication network is reliable: if a
correct process sends a message to a correct process,
the message is eventually received. We assume that
processes have local hardware clocks. Furthermore,
we assume that local steps of processes take zero time,
as the time needed for local computation is negligi-
ble compared to message delays. Finally, we assume
that no process can take infinitelymany steps in finite
time.

Partial synchrony. We consider the partially syn-
chronous model introduced in [9]. For every execu-
tion, there exists a Global Stabilization Time (GST )
and a positive duration δ such that message delays are
bounded by δ after GST . Furthermore, GST is not
known to processes, whereas δ is known to processes.
We assume that all correct processes start executing
their protocol by GST . The hardware clocks of pro-
cesses may drift arbitrarily before GST , but do not
drift thereafter.

Cryptographic primitives. We assume a (k, n)-
threshold signature scheme [29], where k = 2f +
1 = n − f . In this scheme, each process holds

a distinct private key and there is a single pub-
lic key. Each process Pi can use its private key to
produce a partial signature of a messagem by invok-
ing ShareSigni(m). A partial signature tsignature

of a message m produced by a process Pi can be
verified by ShareVerify i(m, tsignature). Finally, set
S = {tsignaturei} of partial signatures, where S =
k and, for each tsignaturei ∈ S, tsignaturei =
ShareSigni(m), can be combined into a single

(threshold) signature by invoking Combine(S);
a combined signature tcombined of message m
can be verified by CombinedVerify(m, tcombined).
Where appropriate, invocations of ShareVerify(·)
and CombinedVerify(·) are implicit in our descrip-
tions of protocols. P Signature and T Signature

denote a partial signature and a (combined) threshold
signature, respectively.

Complexity of Byzantine consensus. Let
Consensus be a partially synchronous Byzantine
consensus protocol and let E(Consensus) denote the
set of all possible executions. Let α ∈ E(Consensus)
be an execution and td(α) be the first time by which
all correct processes have decided in α.

A word contains a constant number of signatures
and values. Each message contains at least a single
word. We define the communication complexity of α
as the number of words sent in messages by all cor-
rect processes during the time period [GST , td(α)];
ifGST > td(α), the communication complexity of α
is 0. The latency complexity of α is max(0, td(α) −
GST ).

The communication complexity of Consensus is
defined as

max
α∈E(Consensus)

{

communication complexity of α

}

.

Similarly, the latency complexity of Consensus is
defined as

max
α∈E(Consensus)

{

latency complexity of α

}

.

We underline that the number of words sent by
correct processes before GST is unbounded in any
partially synchronous Byzantine consensus proto-
col [23]. Moreover, not a single correct process is
guaranteed to decide before GST in any partially
synchronous Byzantine consensus protocol [10]; that
is why the latency complexity of such protocols is
measured from GST .



4 RareSync

This section presents RareSync, a partially syn-
chronous view synchronizer that achieves synchro-
nization within O(f) time after GST , and has
O(n2) worst-case communication complexity. First,
we define the problem of view synchronization (§4.1).
Then, we describe RareSync, and present its pseu-
docode (§4.2). Finally, we reason about RareSync’s
correctness and complexity (§4.3) before presenting a
formal proof (§4.4).

4.1 Problem Definition

View synchronization is defined as the problem of
bringing all correct processes to the same view with a
correct leader for sufficiently long [46–48]. More pre-
cisely, let View = {1, 2, ...} denote the set of views.
For each view v ∈ View, we define leader(v) to be
a process that is the leader of view v. The view syn-
chronization problem is associated with a predefined
time ∆ > 0, which denotes the desired duration
during which processes must be in the same view
with a correct leader in order to synchronize. View
synchronization provides the following interface:

• Indication advance(View v): The process
advances to a view v.

We say that a correct process enters a view v at time t
if and only if the advance(v) indication occurs at time
t. Moreover, a correct process is in view v between
the time t (including t) at which the advance(v) indi-
cation occurs and the time t′ (excluding t′) at which
the next advance(v′ ̸= v) indication occurs. If an
advance(v′ ̸= v) indication never occurs, the process
remains in the view v from time t onward.

Next, we define a synchronization time as a time at
which all correct processes are in the same view with
a correct leader for (at least) ∆ time.

Definition 1 (Synchronization time) Time ts is a synchro-

nization time if (1) all correct processes are in the same view

v from time ts to (at least) time ts +∆, and (2) leader(v) is
correct.

View synchronization ensures the eventual syn-

chronization property which states that there exists a
synchronization time at or after GST .

Complexity of view synchronization. Let
Synchronizer be a partially synchronous view syn-
chronizer and let E(Synchronizer) denote the set of
all possible executions. Let α ∈ E(Synchronizer) be

an execution and ts(α) be the first synchronization
time at or after GST in α (ts(α) ≥ GST ). We define
the communication complexity of α as the number of
words sent in messages by all correct processes dur-
ing the time period [GST , ts(α) + ∆]. The latency
complexity of α is ts(α) + ∆−GST .

The communication complexity of Synchronizer is
defined as

max
α∈E(Synchronizer)

{

communication complexity of α

}

.

Similarly, the latency complexity of Synchronizer
is defined as

max
α∈E(Synchronizer)

{

latency complexity of α

}

.

4.2 Protocol

This subsection details RareSync (Algorithm 2). In
essence, RareSync achieves O(n2) communication
complexity and O(f) latency complexity by exploit-
ing łall-to-all” communication only once per f + 1
views instead of once per view.

Intuition. We group views into epochs, where each
epoch contains f + 1 sequential views; Epoch =
{1, 2, ...} denotes the set of epochs. Processes move
through an epoch solely by means of local timeouts
(without any communication). However, at the end of
each epoch, processes engage in an łall-to-all” com-
munication step to obtain permission to move onto
the next epoch: (1) Once a correct process has com-
pleted an epoch, it broadcasts a message informing
other processes of its completion; (2) Upon receiving
2f +1 of such messages, a correct process enters the
future epoch. Note that (2) applies to all processes,
including those in arbitrarily łold” epochs. Overall,
this łall-to-all” communication step is the only com-
munication processes perform within a single epoch,
implying that per-process communication complex-
ity in each epoch isO(n). Figure 1 illustrates themain
idea behind RareSync.

Roughly speaking, after GST , all correct pro-
cesses simultaneously enter the same epoch within
O(f) time. After entering the same epoch, processes
are guaranteed to synchronize in that epoch, which
takes (at most) an additional O(f) time. Thus, the
latency complexity of RareSync is O(f). The com-
munication complexity of RareSync is O(n2) as
every correct process executes at most a constant
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Fig. 1: Intuition behind RareSync: Processes communicate only in the last view of an epoch; before the last view, they rely

solely on local timeouts.

number of epochs, each with O(n) per-process com-
munication, after GST .

Protocol description. We now explain how
RareSync works. The pseudocode of RareSync is
given inAlgorithm 2, whereas all variables, constants,
and functions are presented in Algorithm 1.

We explain RareSync’s pseudocode (Algo-
rithm 2) from the perspective of a correct process
Pi. Process Pi utilizes two timers: view timer i and
dissemination timer i. A timer has two methods:
1. measure(Time x): After exactly x time as mea-

sured by the local clock, an expiration event is
received by the host. Note that, as local clocks
can drift before GST , x time as measured by
the local clock may not amount to x real time
(before GST ).

2. cancel(): This method cancels all previously
invoked measure(·) methods on that timer, i.e.,
all pending expiration events (pertaining to that
timer) are removed from the event queue.

In RareSync, leader(·) is a round-robin function
(line 10 of Algorithm 1).

Once Pi starts executing RareSync (line 1), it
instructs view timer i to measure the duration of the
first view (line 2) and it enters the first view (line 3).

Once view timer i expires (line 4), Pi checks
whether the current view is the last view of the
current epoch, epochi (line 5). If that is not the
case, the process advances to the next view of
epochi (line 9). Otherwise, the process broadcasts an
epoch-completed message (line 12) signaling that
it has completed epochi. At this point in time, the
process does not enter any view.

If, at any point in time, Pi receives either (1)
2f + 1 epoch-completed messages for some epoch
e ≥ epochi (line 13), or (2) an enter-epoch message
for some epoch e′ > epochi (line 19), the process
obtains a proof that a new epoch E > epochi can be
entered. However, before entering E and propagat-
ing the information that E can be entered, Pi waits δ
time (either line 18 or line 24). This δ-waiting step is
introduced to limit the number of epochsPi can enter

within any δ time period afterGST and is crucial for
keeping the communication complexity of RareSync
quadratic. For example, suppose that processes are
allowed to enter epochs and propagate enter-epoch
messages without waiting. Due to an accumulation
(from beforeGST ) of enter-epochmessages for dif-
ferent epochs, a process might end up disseminating
an arbitrary number of these messages by receiv-
ing them all at (roughly) the same time. To curb this
behavior, given that message delays are bounded by δ
after GST , we force a process to wait δ time, during
which it receives all accumulated messages, before
entering the largest known epoch.

Finally, after δ time has elapsed (line 25), Pi dis-
seminates the information that the epoch E can be
entered (line 26) and it enters the first view of E
(line 30).

4.3 Proof Overview

This subsection presents an overview of the proof of
the correctness, latency complexity, and communica-
tion complexity of RareSync.

In order to prove the correctness of RareSync, we
must show that the eventual synchronization prop-
erty is ensured, i.e., there is a synchronization time
ts ≥ GST . For the latency complexity, it suffices to
bound ts +∆−GST by O(f). This is done by prov-
ing that synchronization happens within (at most) 2
epochs after GST . As for the communication com-
plexity, we prove that any correct process enters a
constant number of epochs during the time period
[GST , ts + ∆]. Since every correct process sends
O(n) words per epoch, the communication complex-
ity of RareSync is O(1) · O(n) · n = O(n2). We
work towards these conclusions by introducing some
key concepts and presenting a series of intermediate
results.

A correct process enters an epoch e at time t if and
only if the process enters the first view of e at time t
(either line 3 or line 30). We denote by te the first time
a correct process enters epoch e.



Algorithm 1 RareSync: Variables (for process Pi), constants, and functions

1: Variables:
2: Epoch epochi ← 1 ▷ current epoch
3: View view i ← 1 ▷ current view within the current epoch; view i ∈ [1, f + 1]
4: Timer view timer i ▷ measures the duration of the current view
5: Timer dissemination timer i ▷ measures the duration between two communication steps
6: T Signature epoch sigi ← ⊥ ▷ proof that epochi can be entered

7: Constants:
8: Time view duration = ∆+ 2δ ▷ duration of each view

9: Functions:
10: leader(View v) ≡ P(v mod n)+1 ▷ a round-robin function

Algorithm 2 RareSync: Pseudocode (for process Pi)

1: upon init: ▷ start of the protocol
2: view timer i.measure(view duration) ▷ measure the duration of the first view
3: trigger advance(1) ▷ enter the first view

4: upon view timer i expires:
5: if view i < f + 1: ▷ check if the current view is not the last view of the current epoch
6: view i ← view i + 1
7: View view to advance ← (epochi − 1) · (f + 1) + view i
8: view timer i.measure(view duration) ▷ measure the duration of the view
9: trigger advance(view to advance) ▷ enter the next view
10: else:
11: ▷ inform other processes that the epoch is completed
12: broadcast ⟨epoch-completed, epochi,ShareSigni(epochi)⟩

13: upon exists Epoch e such that e ≥ epochi and ⟨epoch-completed, e,P Signature sig⟩ is received from 2f + 1
processes:

14: epoch sigi ← Combine
(

{sig | sig is received in an epoch-completed message}
)

15: epochi ← e+ 1
16: view timer i.cancel()
17: dissemination timer i.cancel()
18: dissemination timer i.measure(δ) ▷ wait δ time before broadcasting enter-epoch

19: upon reception of ⟨enter-epoch,Epoch e,T Signature sig⟩ such that e > epochi:
20: epoch sigi ← sig ▷ sig is a threshold signature of epoch e− 1
21: epochi ← e
22: view timer i.cancel()
23: dissemination timer i.cancel()
24: dissemination timer i.measure(δ) ▷ wait δ time before broadcasting enter-epoch

25: upon dissemination timer i expires:
26: broadcast ⟨enter-epoch, epochi, epoch sigi⟩
27: view i ← 1 ▷ reset the current view to 1
28: View view to advance ← (epochi − 1) · (f + 1) + view i
29: view timer i.measure(view duration) ▷ measure the duration of the view
30: trigger advance(view to advance) ▷ enter the first view of the new epoch

Result 1: If a correct process enters an epoch e > 1,
then (at least) f + 1 correct processes have previously

entered epoch e− 1.

The goal of the communication step at the end of each
epoch is to prevent correct processes from arbitrar-
ily entering future epochs. In order for a new epoch
e > 1 to be entered, at least f + 1 correct processes
must have entered and łgone through” each view of
the previous epoch, e − 1. This is indeed the case: in
order for a correct process to enter e, the processmust

either (1) collect 2f + 1 epoch-completed messages
for e−1 (line 13), or (2) receive an enter-epochmes-
sage for e, which contains a threshold signature of
e−1 (line 19). In either case, at least f+1 correct pro-
cesses must have broadcast epoch-completed mes-
sages for epoch e − 1 (line 12), which requires them
to go through epoch e − 1. Furthermore, te−1 ≤ te;
recall that local clocks can drift before GST .

Result 2: Every epoch is eventually entered by a cor-

rect process.
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By contradiction, consider the greatest epoch ever
entered by a correct process, e∗. In brief, every cor-
rect process will eventually (1) receive the enter-

epoch message for e∗ (line 19), (2) enter e∗ after its
dissemination timer expires (lines 25 and 30), (3)
send an epoch-completed message for e∗ (line 12),
(4) collect 2f + 1 epoch-completed messages for e∗

(line 13), and, finally, (5) enter e∗ + 1 (lines 15, 18, 25
and 30), resulting in a contradiction. Note that, if
e∗ = 1, no enter-epoch message is sent: all cor-
rect processes enter e∗ = 1 once they start executing
RareSync (line 3).

We now define two epochs: emax and efinal =
emax + 1. These two epochs are the main protago-
nists in the proof of correctness and complexity of
RareSync.

Definition of emax : Epoch emax is the greatest epoch

entered by a correct process before GST ; if no such

epoch exists, emax = 0.4

Definition of efinal : Epoch efinal is the smallest epoch

first entered by a correct process at or after GST . Note

that GST ≤ tefinal . Moreover, efinal = emax + 1 (by

Result 1).

Result 3: For any epoch e ≥ efinal , no correct

process broadcasts an epoch-completed message for

e (line 12) before time te + epoch duration , where

epoch duration = (f + 1) · view duration .

This statement is a direct consequence of the fact that,
afterGST , it takes exactly epoch duration time for a
process to go through f + 1 views of an epoch; local
clocks do not drift afterGST . Specifically, the earliest
a correct process can broadcast an epoch-completed
message for e (line 12) is at time te+epoch duration ,
where te denotes the first time a correct process
enters epoch e.

Result 4: Every correct process enters epoch efinal by
time tefinal + 2δ.

Recall that the first correct process enters efinal at
time tefinal . If efinal = 1, all correct processes enter
efinal at tefinal . Otherwise, by time tefinal +δ, all correct
processes will have received an enter-epoch mes-
sage for efinal and started the dissemination timer i
with epochi = efinal (either lines 15, 18 or 21, 24). By
results 1 and 3, no correct process sends an epoch-

completed message for an epoch ≥ efinal (line 12)
before time tefinal + epoch duration , which implies

4Epoch 0 is considered as a special epoch. Note that 0 /∈ Epoch, where
Epoch denotes the set of epochs (see §4.2).

that the dissemination timer will not be cancelled.
Hence, the dissemination timer will expire by time
tefinal +2δ, causing all correct processes to enter efinal
by time tefinal + 2δ.

Result 5: In every view of efinal , processes overlap for

(at least)∆ time. In other words, there exists a synchro-

nization time ts ≤ tefinal + epoch duration −∆.

By Result 3, no future epoch can be entered before
time tefinal +epoch duration . This is precisely enough
time for the first correct process (the one to enter
efinal at tefinal ) to go through all f + 1 views of efinal ,
spending view duration time in each view. Since
clocks do not drift after GST and processes spend
the same amount of time in each view, the maximum
delay of 2δ between processes (Result 4) applies to
every view in efinal . Thus, all correct processes over-
lap with each other for (at least) view duration −
2δ = ∆ time in every view of efinal . As the leader(·)
function is round-robin, at least one of the f + 1
views must have a correct leader. Therefore, synchro-
nization must happen within epoch efinal , i.e., there
is a synchronization time ts such that tefinal + ∆ ≤
ts +∆ ≤ tefinal + epoch duration .

Result 6: tefinal ≤ GST + epoch duration + 4δ.

If efinal = 1, all correct processes started execut-
ing RareSync at time GST . Hence, tefinal = GST .
Therefore, the result trivially holds in this case.

Let efinal > 1; recall that efinal = emax +
1. (1) By time GST + δ, every correct process
receives an enter-epoch message for emax (line 19)
as the first correct process to enter emax has broad-
cast this message before GST (line 26). Hence, (2)
by time GST + 2δ, every correct process enters
emax .

5 Then, (3) every correct process broadcasts an
epoch-completed message for emax at time GST +
epoch duration + 2δ (line 12), at latest. (4) By time
GST + epoch duration + 3δ, every correct pro-
cess receives 2f + 1 epoch-completed messages for
emax (line 13), and triggers the measure(δ) method
of dissemination timer (line 18). Therefore, (5) by
timeGST + epoch duration+4δ, every correct pro-
cess enters emax + 1 = efinal . Figure 2 depicts this
scenario.

Note that for the previous sequence of events
not to unfold would imply an even lower bound on
tefinal : a correct process would have to receive 2f + 1
epoch-completed messages for emax or an enter-

epoch message for emax + 1 = efinal before step (4)

5If emax = 1, every correct process enters emax by timeGST .



(i.e., before time GST + epoch duration + 3δ), thus
showing that tefinal < GST + epoch duration + 4δ.

Latency: Latency complexity of RareSync is O(f).

By Result 5, ts ≤ tefinal + epoch duration − ∆.
By Result 6, tefinal ≤ GST + epoch duration + 4δ.
Therefore, ts ≤ GST + epoch duration + 4δ +
epoch duration − ∆ = GST + 2epoch duration +
4δ−∆. Hence, ts+∆−GST ≤ 2epoch duration+
4δ = O(f).

Communication: Communication complexity of

RareSync is O(n2).

Roughly speaking, every correct process will have
entered emax (or potentially efinal = emax + 1) by
timeGST+2δ (as seen in the proof of Result 6). From
then on, it will enter at most one other epoch (efinal )
before synchronizing (which is completed by time
ts + ∆). As for the time interval [GST ,GST + 2δ),
due to dissemination timer ’s interval of δ, a correct
process can enter (at most) two other epochs during
this period. Therefore, a correct process can enter
(and sendmessages for) at mostO(1) epochs between
GST and ts+∆. The individual communication cost
of a correct process is bounded by O(n) words per
epoch: O(n) epoch-completed messages (each with
a single word), and O(n) enter-epoch messages
(each with a single word, as a threshold signature
counts as a single word). Thus, the communication
complexity of RareSync is O(1) ·O(n) · n = O(n2).

4.4 Formal Proof

This section formally proves the correctness and
establishes the complexity of RareSync (Algo-
rithm 2). We start by defining the concept of a pro-
cess’ behavior and timer history.

Behaviors & timer histories. A behavior of a pro-
cess Pi is a sequence of (1) message-sending events
performed by Pi, (2) message-reception events per-
formed by Pi, and (3) internal events performed by
Pi (e.g., invocations of the measure(·) and cancel()
methods on the local timers). If an event e belongs to
a behavior βi, we write e ∈ βi; otherwise, we write
e /∈ βi. If an event e1 precedes an event e2 in a behav-

ior βi, we write e1
βi

≺ e2. Note that, if e1
βi

≺ e2 and e1
occurs at some time t1 and e2 occurs at some time t2,
t1 ≤ t2.

A timer history of a process Pi is a sequence of
(1) invocations of the measure(·) and cancel() meth-
ods on view timer i and dissemination timer i, and
(2) processed expiration events of view timer i and

dissemination timer i. Observe that a timer history
of a process is a subsequence of the behavior of the
process. We further denote by hi |view the great-
est subsequence of hi associated with view timer i,
where hi is a timer history of a process Pi. If an
expiration event Exp of a timer is associated with
an invocation Inv of the measure(·) method on the
timer, we say that Inv produces Exp. Note that a sin-
gle invocation of themeasure(·)method can produce
at most one expiration event.

Given an execution, we denote by βi and hi the
behavior and the timer history of the process Pi,
respectively.

Proof of correctness. In order to prove the correct-
ness of RareSync, we need to prove that RareSync
ensures the eventual synchronization property (§4.1).

We start by establishing some basic properties of
Algorithm 2. These are encapsulated by several lem-
mas (specifically, lemmas 1-8) which can be verified
by simple visual code inspection. As such, we sum-
marize them here but delegate their formal proofs to
Appendix A.

First, notice that the value of view i variable at a
correct process Pi is never smaller than 1 or greater
than f + 1.

Lemma 1 Let Pi be a correct process. Then, 1 ≤ view i ≤
f + 1 throughout the entire execution.

It is also ensured that, if an invocation of the
measure(·) method on dissemination timer i pro-
duces an expiration event, the expiration event imme-
diately follows the invocation in the timer history hi

of a correct process Pi.

Lemma 2 Let Pi be a correct process. Let Expd be any expi-

ration event of dissemination timer i that belongs to hi
and let Invd be the invocation of the measure(·) method

(on dissemination timer i) that has produced Expd. Then,

Expd immediately follows Invd in hi.

The next lemma shows that views entered by
a correct process are monotonically increasing, as
intended.

Lemma3 (Monotonically increasing views) LetPi be a cor-

rect process. Let e1 = advance(v), e2 = advance(v′) and

e1
βi

≺ e2. Then, v′ > v.
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Fig. 2: Worst-case latency of RareSync: ts +∆−GST ≤ 2epoch duration + 4δ.

The next lemma shows that an invocation of
the measure(·) method cannot be immediately fol-
lowed by another invocation of the same method in
a timer history (of a correct process) associated with
view timer i.

Lemma 4 Let Pi be a correct process. Let Invv be any

invocation of the measure(·) method on view timer i that

belongs to hi. Invocation Invv is not immediately fol-

lowed by another invocation of the measure(·) method on

view timer i in hi |view .

As a direct consequence of Lemma 4, an expi-
ration event of view timer i immediately follows (in
a timer history associated with view timer i) the
measure(·) invocation that has produced it.

Lemma 5 Let Pi be a correct process. Let Expv be any expi-

ration event that belongs to hi |view and let Invv be the

invocation of the measure(·) method (on view timer i) that

has producedExpv . Then,Expv immediately follows Invv in

hi |view .

Consequently, the statement of Lemma 2 also
holds for view timer i:

Lemma 6 Let Pi be a correct process. Let Expv be any expi-

ration event of view timer i that belongs to hi and let Invv
be the invocation of themeasure(·)method (on view timer i)

that has produced Expv . Then, Expv immediately follows

Invv in hi.

Next, we show that the values of the epochi and
view i variables of a correct process Pi do not change
between an invocation of the measure(·) method on
view timer i and the processing of the expiration
event the invocation produces.

Lemma 7 Let Pi be a correct process. Let Invv denote an

invocation of the measure(·) method on view timer i which

produces an expiration event, and let Expv denote the expira-

tion event produced by Invv . Let epochi = e and view i = v

whenPi invokes Invv . Then, whenPi processesExpv (line 4),

epochi = e and view i = v.

Finally, we show that correct processes cannot
łjump” into an epoch, i.e., they must go into an epoch
by going into its first view.

Lemma 8 Let Pi be a correct process. Let advance(v) ∈ βi,

where v is the j-th view of an epoch e and j > 1. Then,

advance(v − 1)
βi

≺ advance(v).

With the previous lemmas in place, the basic
intended properties of Algorithm 2 are ensured.
We now focus on the overarching properties of
RareSync, such as the concept of entering an epoch.

We say that a correct process enters an epoch e at
time t if and only if the process enters the first view
of e (i.e., the view (e− 1) · (f +1)+1) at time t. Fur-
thermore, a correct process is in epoch e between the
time t (including t) at which it enters e and the time
t′ (excluding t′) at which it enters (for the first time
after entering e) another epoch e′. If another epoch
is never entered, the process is in epoch e from time
t onward. Recall that, by Lemma 3, a correct process
enters each view at most once, which means that a
correct process enters each epoch at most once.

The following lemma shows that, if a correct pro-
cess broadcasts an epoch-completed message for
an epoch (line 12), then the process has previously
entered that epoch.

Lemma 9 Let a correct process Pi send an epoch-

completed message for an epoch e (line 12); let this sending

event be denoted by esend . Then, advance(v)
βi

≺ esend ,

where v is the first view of the epoch e.

Proof At the moment of sending the message (line 12), the

following holds: (1) epochi = e, and (2) view i = f + 1 (by



the check at line 5 and Lemma 1). We denote by Invv the

invocation of the measure(·) method on view timer i pro-

ducing the expiration event Expv leading to Pi broadcast-

ing the epoch-completed message for e. Note that Invv
precedes the sending of the epoch-completed message in

βi.

When processing Expv (line 4), the following was the

state of Pi: epochi = e and view i = f + 1. By Lemma 7,

when Pi invokes Invv , epochi = e and view i = f + 1 >

1. Therefore, Invv must have been invoked at line 8: Invv
could not have invoked neither at line 2 nor at line 29 since

view i = f + 1 ̸= 1 at that moment. Immediately after

invoking Invv , Pi enters the (f + 1)-st view of e (line 9),

which implies thatPi enters the (f+1)-st view of e before it

sends the epoch-completedmessage.Therefore, the lemma

follows from Lemma 8. □

The next lemma shows that, if a correct process
Pi updates its epochi variable to e > 1, then (at least)
f+1 correct processes have previously entered epoch
e− 1.

Lemma 10 Let a correct process Pi update its epochi vari-

able to e > 1 at some time t. Then, at least f + 1 correct

processes have entered e− 1 by time t.

Proof Since Pi updates epochi to e > 1 at time t, it does so

at either:
• line 15: In this case, Pi has received 2f + 1 epoch-

completed messages for epoch e− 1 (line 13), out of

which (at least) f + 1 were sent by correct processes.
• line 21: In this case, Pi has received a threshold sig-

nature of epoch e − 1 (line 19) built out of 2f + 1
partial signatures, out of which (at least) f + 1 must

have come from correct processes. Such a partial sig-

nature from a correct process can only be obtained

by receiving an epoch-completedmessage for epoch

e− 1 from that process.

In both cases, f + 1 correct processes have sent epoch-

completed messages (line 12) for epoch e − 1 by time t.

By Lemma 9, all these correct processes have entered epoch

e− 1 by time t. □

Note that a correct process Pi does not enter an
epoch immediately upon updating its epochi variable,
but only upon triggering the advance(·) indication for
the first view of that epoch (line 3 or line 30). We now
prove that, if an epoch e > 1 is entered by a correct
process at some time t, then epoch e−1 is entered by
a (potentially different) correct process by time t.

Lemma 11 Let a correct process Pi enter an epoch e > 1 at

time t. Then, epoch e− 1 was entered by a correct process by

time t.

Proof Since Pi enters e > 1 at time t (line 30), epochi =
e at time t. Hence, Pi has updated its epochi variable to

e > 1 by time t. Therefore, the lemma follows directly from

Lemma 10. □

The next lemma shows that all epochs are even-
tually entered by some correct processes. In other
words, correct processes keep transiting to new
epochs forever.

Lemma 12 Every epoch is eventually entered by a correct

process.

Proof Epoch 1 is entered by a correct process since every

correct process initially triggers the advance(1) indication
(line 3). Therefore, it is left to prove that all epochs greater

than 1 are entered by a correct process. By contradiction, let
e+1 be the smallest epoch not entered by a correct process,

where e ≥ 1.

Part 1. No correct process Pi ever sets epochi to an epoch

greater than e.

Since e + 1 is the smallest epoch not entered by a correct

process, no correct process ever enters any epoch greater

than e (by Lemma 11). Furthermore, Lemma 10 shows that

no correct process Pi ever updates its epochi variable to an

epoch greater than e+ 1.
Finally, Pi never sets epochi to e + 1 either. By con-

tradiction, suppose that it does. In this case, Pi invokes

the measure(δ) method on dissemination timer i (either

line 18 or line 24). Since Pi does not update epochi to

an epoch greater than e + 1 (as shown in the previous

paragraph), the previously invoked measure(δ) method

will never be canceled (neither at line 17 nor at line 23).

This implies that dissemination timer i eventually expires

(line 25), and Pi enters epoch e+ 1 (line 30). Hence, a con-

tradiction with the fact that epoch e+1 is never entered by
a correct process.

Part 2. Every correct process eventually enters epoch e.

If e = 1, every correct process enters e as every correct

process eventually executes line 3.

Let e > 1. Since e > 1 is entered by a correct pro-

cess (line 30), the process has disseminated an enter-epoch

message for e (line 26). This message is eventually received

by every correct process since the network is reliable. If a

correct process Pi has not previously set its epochi variable

to e, it does so upon the reception of the enter-epochmes-

sage (line 21). Hence, Pi eventually sets its epochi variable

to e.
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Immediately after updating its epochi variable to

e (line 15 or line 21), Pi invokes measure(δ) on

dissemination timer i (line 18 or line 24). Because Pi

never updates epochi to an epoch greater than e (by Part

1), dissemination timer i expires while epochi = e. When

this happens (line 25), Pi enters epoch e (line 30). Thus, all

correct processes eventually enter epoch e.

Epilogue. By Part 2, a correct process Pi eventually enters

epoch e (line 3 or line 30); when Pi enters e, epochi = e

and view i = 1. Moreover, just before entering e,Pi invokes

the measure(·) method on view timer i (line 2 or line 29);

let this invocation be denoted by Inv1v . As Pi never updates

its epochi variable to an epoch greater than e (by Part 1),

Inv1v eventually expires. When Pi processes the expiration

of Inv1v (line 4), epochi = e and view i = 1 < f + 1 (by

Lemma 7). Hence, Pi then invokes the measure(·) method

on view timer i (line 8); when this occurs, epochi = e and

view i = 2 (by line 6). Following the same argument as for

Inv1v , view timer i expires for each view of epoch e.

Therefore, every correct process Pi eventually broad-

casts an epoch-completed message for epoch e (line 12)

when view timer i expires for the last view of epoch e.

Thus, a correct processPj eventually receives 2f+1 epoch-
completed messages for epoch e (line 13), and updates

epochj to e + 1 (line 15). This contradicts Part 1, which

implies that the lemma holds. □

We now introduce efinal , the first new epoch
entered at or after GST .

Definition 2 We denote by efinal the smallest epoch such

that the first correct process to enter efinal does so at time

tefinal ≥ GST .

Note that efinal exists due to Lemma 12; recall
that, by GST , an execution must be finite as no pro-
cess is able to perform infinitely many steps in finite
time. It is stated in Algorithm 1 that view duration =
∆ + 2δ (line 8). However, technically speaking,
view duration must be greater than∆+ 2δ in order
to not waste the łvery last” moment of a∆+2δ time
period, i.e., we set view duration = ∆ + 2δ + ϵ,
where ϵ is any positive constant. Therefore, in the
rest of the section, we assume that view duration =
∆+ 2δ + ϵ > ∆+ 2δ.

We now show that, if a correct process enters an
epoch e at time te ≥ GST and sends an epoch-

completed message for e, the epoch-completed

message is sent at time te + epoch duration , where
epoch duration = (f + 1) · view duration .

Lemma 13 Let a correct process Pi enter an epoch e at time

te ≥ GST and let Pi send an epoch-completed message

for epoch e (line 12). The epoch-completed message is sent

at time te + epoch duration .

Proof We prove the lemma by backwards induction. Let t∗

denote the time at which the epoch-completed message

for epoch e is sent (line 12).

Base step: The (f + 1)-st view of the epoch e is entered by

Pi at time tf+1 such that t∗ − tf+1 = 1 · view duration .

When sending the epoch-completed message (line 12),

the following holds: epochi = e and view i = f + 1
(due to the check at line 5 and Lemma 1). Let Expf+1

v
denote the expiration event of view timer i processed just

before broadcasting the message (line 4). When process-

ing Expf+1
v , we have that epochi = e and view i =

f +1. When Pi has invoked Inv
f+1
v , where Inv

f+1
v is the

invocation of the measure(·) method which has produced

Expf+1
v , we have that epochi = e and view i = f + 1 (by

Lemma 7). As f + 1 ̸= 1, Invf+1
v is invoked at line 8 at

some time tf+1 ≤ t∗. Finally, Pi enters the (f +1)-st view
of the epoch e at line 9 at time tf+1. By Lemma 8, we have

that tf+1 ≥ te ≥ GST . As local clocks do not drift after

GST , we have that t∗ − tf+1 = view duration (due to

line 8), which concludes the base step.

Induction step: Let j ∈ [1, f ]. The j-th view of the epoch e

is entered by Pi at time tj such that t∗ − tj = (f + 2− j) ·
view duration .

Induction hypothesis: For every k ∈ [j + 1, f + 1], the k-
th view of the epoch e is entered by Pi at time tk such that

t∗ − tk = (f + 2− k) · view duration .

Let us consider the (j + 1)-st view of the epoch e; note

that j + 1 ̸= 1. Hence, the (j + 1)-st view of the epoch

e is entered by Pi at some time tj+1 at line 9, where

t∗ − tj+1 = (f + 2− j − 1) · view duration = (f + 1−
j) ·view duration (by the induction hypothesis). Let Expjv
denote the expiration event of view timer i processed at

time tj+1 (line 4). When processing Expjv , we have that

epochi = e and view i = j (due to line 6). When Pi has

invoked Inv
j
v at some time tj , where Inv

j
v is the invoca-

tion of the measure(·) method which has produced Expjv ,

we have that epochi = e and view i = j (by Lemma 7).

Inv
j
v could have been invoked either at line 2, or at line 8,

or at line 29:
• line 2: In this case, Pi enters the j-th view of the

epoch e at time tj at line 3, where j = 1 (by line 3).

Moreover, we have that tj ≥ GST as tj = te (by

definition). As local clocks do not drift afterGST , we

have that tj+1− tj = view duration , which implies

that t∗−tj = t∗−tj+1+view duration = (f+1−
j+1) ·view duration = (f+2−j) ·view duration .

Hence, in this case, the induction step is concluded.



• line 8: Pi enters the j-th view of the epoch e at line 9

at time tj , where j > 1 (by Lemma 1 and line 6).

By lemmas 3 and 8, we have that tj ≥ te ≥ GST .

As local clocks do not drift after GST , we have that

tj+1− tj = view duration , which implies that t∗−
tj = (f+2−j)·view duration . Hence, the induction

step is concluded even in this case.
• line 29: In this case, Pi enters the j-th view of the

epoch e at time tj at line 30, where j = 1 as view i =
1 (by line 27). Moreover, tj = te ≥ GST (by defini-

tion). As local clocks do not drift after GST , we have

that tj+1 − tj = view duration , which implies that

t∗−tj = t∗−tj+1+view duration = (f+1−j+1)·
view duration = (f+2−j)·view duration . Hence,

even in this case, the induction step is concluded.

As the induction step is concluded in all possible scenarios,

the backwards induction holds.Therefore,Pi enters the first

view of the epoch e (and, thus, the epoch e) at time te (recall

that the first view of any epoch is entered at most once by

Lemma 3) such that t∗ − te = (f + 1) · view duration =
epoch duration , which concludes the proof. □

The following lemma shows that no correct pro-
cess broadcasts an epoch-completedmessage for an
epoch ≥ efinal before time tefinal + epoch duration .

Lemma 14 No correct process broadcasts an epoch-

completed message for an epoch e′ ≥ efinal (line 12) before

time tefinal + epoch duration .

Proof Let t∗ be the first time a correct process, denoted by

Pi, sends an epoch-completed message for an epoch e′ ≥
efinal (line 12); if t

∗ is not defined, the lemma trivially holds.

By Lemma 9,Pi has entered epoch e
′ at some time te′ ≤ t∗.

If e′ = efinal , then te′ ≥ tefinal ≥ GST . If e′ > efinal ,

by Lemma 11, te′ ≥ tefinal ≥ GST . Therefore, t∗ = te′ +
epoch duration (by Lemma 13), which means that t∗ ≥
tefinal + epoch duration . □

Next, we show during which periods a correct
process is in which view of the epoch efinal .

Lemma 15 Consider a correct process Pi.
• For any j ∈ [1, f ], Pi enters the j-th view of the epoch

efinal at some time tj , where tj ∈
[

tefinal + (j − 1) ·
view duration, tefinal + (j − 1) · view duration +

2δ
]

, and stays in the view until (at least) time tj +

view duration (excluding time tj + view duration).
• For j = f + 1, Pi enters the j-th view of the

epoch efinal at some time tj , where tj ∈
[

tefinal +
f · view duration, tefinal + f · view duration +
2δ

]

, and stays in the view until (at least) time

tefinal + epoch duration (excluding time tefinal +
epoch duration).

Proof Note that no correct process broadcasts an epoch-

completed message for an epoch ≥ efinal (line 12) before

time tefinal + epoch duration (by Lemma 14). We prove the

lemma by induction.

Base step:The statement of the lemma holds for j = 1.

If efinal > 1, every correct process receives an enter-

epoch message (line 19) for epoch efinal by time tefinal + δ

(since tefinal ≥ GST ). As no correct process broadcasts an

epoch-completed message for an epoch ≥ efinal before

time tefinal +epoch duration > tefinal +δ,Pi sets its epochi
variable to efinal (line 21) and invokes the measure(δ)
method on dissemination timer i (line 24) by time tefinal +
δ. Because of the same reason, the dissemination timer i
expires by time tefinal + 2δ (line 25); at this point in time,

epochi = efinal . Hence, Pi enters the first view of efinal
by time tefinal + 2δ (line 30). Observe that, if efinal = 1,
Pi enters efinal at time tefinal (as every correct process

starts executing Algorithm 2 at GST = tefinal ). Thus, t1 ∈
[tefinal , tefinal + 2δ].

Prior to entering the first view of efinal , Pi invokes the

measure(view duration) method on view timer i (line 2

or line 29); we denote this invocation by Invv . By

Lemma 14, Invv cannot be canceled (line 16 or line 22) as

tefinal + epoch duration > tefinal + 2δ + view duration .

Therefore, Invv produces an expiration event Expv which

is processed by Pi at time t1 + view duration (since t1 ≥
GST and local clocks do not drift after GST ).

Let us investigate the first time Pi enters another view

after entering the first view of efinal . This could happen at

the following places of Algorithm 2:
• line 9: By Lemma 6, we conclude that this occurs at

time t∗ ≥ t1+view duration . Therefore, in this case,

Pi is in the first view of efinal during the time period

[t1, t1 + view duration). The base step is proven in

this case.
• line 30: By contradiction, suppose that this

happens before time t1 + view duration .

Hence, the measure(·) method was invoked on

dissemination timer i (line 18 or line 24) before

time t1 + view duration and after the invocation of

Invv (by Lemma 2). Thus, Invv is canceled (line 16 or

line 22), which is impossible (as previously proven).

Hence, Pi is in the first view of efinal during (at

least) the time period [t1, t1+view duration), which
implies that the base step is proven even in this case.

Induction step: The statement of the lemma holds for j,

where 1 < j ≤ f + 1.
Induction hypothesis: The statement of the lemma holds for

every k ∈ [1, j − 1].

Consider the (j − 1)-st view of efinal denoted by vj−1.
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Recall that tj−1 denotes the time at which Pi enters vj−1.

Just prior to entering vj−1 (line 3 or line 9 or line 30),

Pi has invoked the measure(view duration) method on

view timer i (line 2 or line 8 or line 29); let this invo-

cation be denoted by Invv . When Pi invokes Invv , we

have that epochi = efinal and view i = j − 1. As in

the base step, Lemma 14 shows that Invv cannot be can-

celed (line 16 or line 22) as tefinal + epoch duration >

tj−1 + view duration since tj−1 ≤ tefinal + (j − 2) ·
view duration + 2δ (by the induction hypothesis). We

denote by Expv the expiration event produced by Invv . By

Lemma 7, when Pi processes Expv (line 4), we have that

epochi = efinal and view i = j − 1 < f + 1. Hence,

Pi enters the j-th view of efinal at time tj = tj−1 +

view duration (line 9), whichmeans that tj ∈
[

tefinal+(j−
1) · view duration, tefinal +(j− 1) · view duration+2δ

]

.

We now separate two cases:
• Let j < f + 1. Just prior to entering the

j-th view of efinal (line 9), Pi invokes the

measure(view duration) method on view timer i
(line 8); we denote this invocation by Inv ′v . By

Lemma 14, Inv ′v cannot be canceled (line 16

or line 22) as tefinal + epoch duration >

tefinal +(j−1)·view duration+2δ+view duration .

Therefore, Inv ′v produces an expiration event Exp′v
which is processed by Pi at time tj + view duration

(since tj ≥ GST and local clocks do not drift after

GST ).

Let us investigate the first time Pi enters another

view after entering the j-th view of efinal . This could

happen at the following places of Algorithm 2:

– line 9: By Lemma 6, we conclude that this occurs

at time ≥ tj + view duration . Therefore, in

this case, Pi is in the j-th view of efinal dur-

ing the time period [tj , tj+view duration).The

induction step is proven in this case.

– line 30: By contradiction, suppose that this

happens before time tj + view duration .

Hence, the measure(·) method was invoked on

dissemination timer i (line 18 or line 24) before

time tj + view duration and after the invoca-

tion of Inv ′v (by Lemma 2). Thus, Inv ′v is can-

celed (line 16 or line 22), which is impossible (as

previously proven).

Hence, Pi is in the j-th view of efinal

during (at least) the time period [tj , tj +
view duration), which concludes the induction

step even in this case.
• Let j = f + 1. Just prior to entering the

j-th view of efinal (line 9), Pi invokes the

measure(view duration) method on view timer i
(line 8); we denote this invocation by Inv ′v .

When Inv ′v was invoked, epochi = efinal and

view i = f + 1. By Lemma 14, we know that the

earliest time Inv ′v can be canceled (line 16 or line 22)

is tefinal + epoch duration .

Let us investigate the first time Pi enters another

view after entering the j-th view of efinal . This could

happen at the following places of Algorithm 2:

– line 9: This means that, when processing the

expiration event of view timer i (denoted by

Exp∗v) at line 4 (before executing the check at

line 5), view i < f + 1. Hence, Exp∗v is not

produced by Inv ′v (by Lemma 7).

By contradiction, suppose that Exp∗v is pro-

cessed before time tefinal + epoch duration .

In this case, Exp∗v is processed before the

expiration event produced by Inv ′v would

(potentially) be processed (which is tefinal +
epoch duration at the earliest). Thus, Inv ′v
must be immediately followed by an invoca-

tion of the cancel() method on view timer i in

hi |view (by lemmas 4 and 5). As previously

shown, the earliest time Inv ′v can be canceled

is tefinal + epoch duration , which implies that

Exp∗v cannot be processed before time tefinal +
epoch duration .Therefore,Exp∗v is processed at

tefinal + epoch duration (at the earliest), which

concludes the induction step for this case.

– line 30: Suppose that, by contradiction, this

happens before time tefinal + epoch duration .

Hence, the measure(·) method was invoked on

dissemination timer i (line 18 or line 24) before

time tefinal + epoch duration (by Lemma 2) and

after Pi has entered the j-th view of efinal ,

which implies that Inv ′v is canceled before time

tefinal+epoch duration (line 16 or line 22). How-

ever, this is impossible as the earliest time for

Inv ′v to be canceled is tefinal + epoch duration .

Hence, Pi enters another view at time tefinal +
epoch duration (at the earliest), which con-

cludes the induction step in this case.

The conclusion of the induction step concludes the proof of

the lemma. □

Finally, we prove that RareSync ensures the
eventual synchronization property.

Theorem 1 (Eventual synchronization) RareSync ensures

eventual synchronization. Moreover, the first synchroniza-

tion time at or after GST occurs by time tefinal + f ·
view duration + 2δ.

Proof Lemma 15 proves that all correct processes overlap

in each view of efinal for (at least) ∆ time. As the leader

of one view of efinal must be correct (since leader(·) is a
round-robin function), the eventual synchronization is sat-

isfied by RareSync: correct processes synchronize in (at



least) one of the views of efinal . Finally, as the last view

of efinal is entered by every correct process by time t∗ =
tefinal + f · view duration + 2δ (by Lemma 15), the first

synchronization time at or after GST must occur by time

t∗. □

Proof of complexity.We start by showing that, if a
correct process sends an epoch-completed message
for an epoch e, then the łmost recent” epoch entered
by the process is e.

Lemma 16 Let Pi be a correct process and let Pi send an

epoch-completedmessage for an epoch e (line 12). Then, e is

the last epoch entered by Pi in βi before sending the epoch-

completed message.

Proof By Lemma 9, Pi enters e before sending the epoch-

completed message for e. By contradiction, suppose that

Pi enters some other epoch e∗ after entering e and before

sending the epoch-completedmessage for e. By Lemma 3,

e∗ > e.

When Pi enters e
∗ (line 30), epochi = e∗. As the value

of the epochi variable only increases throughout the execu-

tion, Pi does not send the epoch-completedmessage for e

after entering e∗ > e. Thus, we reach a contradiction, and

the lemma holds. □

Next, we show that, if a correct process sends an
enter-epoch message for an epoch e at time t, the
process enters e at time t.

Lemma 17 Let a correct process Pi send an enter-epoch

message (line 26) for an epoch e at time t. Then, Pi enters e

at time t.

Proof When Pi sends the enter-epoch message, we have

that epochi = e. Hence, Pi enters e at time t (line 30).

□

Next, we show that a correct process sends (at
most) O(n) epoch-completed messages for a spe-
cific epoch e.

Lemma 18 For any epoch e and any correct process Pi,

Pi sends at most O(n) epoch-completed messages for e

(line 12).

Proof Let Expv denote the first expiration event of

view timer i which Pi processes (line 4) in order to broad-

cast the epoch-completed message for e (line 12); if Expv
does not exist, the lemma trivially holds. Hence, let Expv
exist.

When Expv was processed, epochi = e. Let Inv ′v
denote the first invocation of the measure(·) method on

view timer i after the processing of Expv . If Inv
′
v does

not exist, there does not exist an expiration event of

view timer i processed after Expv (by Lemma 6), which

implies that the lemma trivially holds.

Let us investigate where Inv ′v could have been invoked:
• line 8: By Lemma 6, we conclude that the processing of

Expv leads to Inv
′
v . However, this is impossible as the

processing of Expv leads to the broadcasting of the

epoch-completed messages (see the check at line 5).
• line 29: In this case, Pi processes an expiration

event Expd of dissemination timer i (line 25). By

Lemma 2, the invocation Invd of the measure(·)
method on dissemination timer i immediately pre-

cedes Expd in hi. Hence, Invd follows Expv in hi
and Invd could have been invoked either at line 18 or

at line 24. Just before invoking Invd, Pi changes its

epochi variable to a value greater than e (line 15 or

line 21; the value of epochi only increases throughout

the execution).

Therefore, when Inv ′v is invoked, epochi > e. As the value

of the epochi variable only increases throughout the execu-

tion, Pi broadcasts the epoch-completedmessages for e at

most once (by Lemma 6), which concludes the proof. □

The following lemma shows that a correct pro-
cess sends (at most)O(n) enter-epochmessages for
a specific epoch e.

Lemma 19 For any epoch e and any correct process Pi, Pi

sends at most O(n) enter-epoch messages for e (line 26).

Proof Let Expd denote the first expiration event of

dissemination timer i which Pi processes (line 25) in

order to broadcast the enter-epoch message for e

(line 26); if Expd does not exist, the lemma trivially

holds. When Expd was processed, epochi = e. Let Inv ′d
denote the first invocation of the measure(·) method on

dissemination timer i after the processing of Expd. If

Inv ′d does not exist, there does not exist an expiration

event of dissemination timer i processed after Expd (by

Lemma 2), which implies that the lemma trivially holds.

Inv ′d could have been invoked either at line 18 or

at line 24. However, before that (still after the process-

ing of Expd), Pi changes its epochi variable to a value

greater than e (line 15 or line 21). Therefore, when Inv ′d is

invoked, epochi > e. As the value of the epochi variable
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only increases throughout the execution, Pi broadcasts the

enter-epoch messages for e at most once (by Lemma 2),

which concludes the proof. □

Next, we show that, after GST , two łepoch-
entering” events are separated by at least δ time.

Lemma 20 Let Pi be a correct process. Let Pi trigger

advance(v) at time t ≥ GST and letPi trigger advance(v
′)

at time t′ such that (1) advance(v)
βi

≺ advance(v′), and (2)

v (resp., v′) is the first view of an epoch e (resp., e′). Then,

t′ ≥ t+ δ.

Proof Let advance(v∗), where v∗ is the first view of an

epoch e∗, be the first łepoch-entering” event following

advance(v) in βi (i.e., advance(v)
βi

≺ advance(v∗)); let
advance(v∗) be triggered at time t∗. In order to prove the

lemma, it suffices to show that t∗ ≥ t+ δ.

The advance(v∗) upcall is triggered at line 30.

Let Expd denote the processed expiration event of

dissemination timer i (line 25) which leads Pi to trig-

ger advance(v∗). Let Invd denote the invocation of the

measure(δ) on dissemination timer i that has produces

Expd. By Lemma 2, Invd immediately precedesExpd in the

timer history hi of Pi. Note that Invd was invoked after

Pi has entered e (this follows from Lemma 2 and the fact

thatPi enters e after invokingmeasure(·) on view timer i),

which means that Invd was invoked at some time ≥ t ≥
GST . As local clocks do not drift after GST , Expd is pro-

cessed at some time ≥ t+ δ, which concludes the proof.

□

Next, we define ts as the first synchronization
time at or after GST .

Definition 3 We denote by ts the first synchronization

time at or after GST (i.e., ts ≥ GST ).

The next lemma shows that no correct process
enters any epoch greater than efinal by ts + ∆.
This lemma is the consequence of Lemma 14 and
Theorem 1.

Lemma 21 No correct process enters an epoch greater than

efinal by time ts +∆.

Proof By Lemma 14, no correct process enters an epoch >

efinal before time tefinal + epoch duration . By Theorem 1,

we have that ts < tefinal + epoch duration − ∆, which

implies that tefinal + epoch duration > ts+∆. Hence, the

lemma. □

Next, we define emax as the greatest epoch
entered by a correct process before time GST . Note
that emax is properly defined in any execution as only
finite executions are possible until GST .

Definition 4 We denote by emax the greatest epoch

entered by a correct process before GST . If no such epoch

exists, emax = 0.

The next lemma shows that efinal (Definition 2) is
emax + 1.

Lemma 22 efinal = emax + 1.

Proof If emax = 0, then efinal = 1. Hence, let emax > 0
in the rest of the proof.

By the definitions of efinal (Definition 2) and emax

(Definition 4) and by Lemma 11, efinal ≥ emax + 1.
Therefore, we need to prove that efinal ≤ emax + 1.

By contradiction, suppose that efinal > emax + 1. By
Lemma 11, epoch efinal −1was entered by the first correct
process at some time tprev ≤ tefinal . Note that efinal −
1 ≥ emax + 1. Moreover, tprev ≥ GST ; otherwise, we

would contradict the definition of emax . Thus, the first new

epoch to be entered by a correct process at or after GST is

not efinal , i.e., we contradict Definition 2. Hence, the lemma

holds. □

Next, we show that every correct process enters
epoch emax by time GST + 2δ or epoch efinal =
emax + 1 by time GST + 3δ.

Lemma 23 Every correct process (1) enters epoch emax by

GST + 2δ, or (2) enters epoch emax + 1 by GST + 3δ.

Proof Lemma 22 shows that efinal is emax + 1. Recall that
tefinal ≥ GST . Consider a correct process Pi. If emax = 1
(resp., efinal = 1), then Pi enters emax (resp., efinal ) by

timeGST , which concludes the lemma. Hence, let emax >

1; thus, efinal > 1 by Lemma 22.

Lemma 14 proves that no correct process broadcasts an

epoch-completedmessage for an epoch≥ emax+1 before
time tefinal + epoch duration ≥ GST + epoch duration .

By time GST + δ, every correct process Pi receives

an enter-epoch message for epoch emax > 1 (line 19)

sent by the correct process which has entered emax before

GST (the message is sent at line 26). Therefore, by time



GST + δ, epochi is either emax or emax + 1; note that

epochi cannot take a value greater than emax + 1 before

time GST + epoch duration > GST + δ since no cor-

rect process broadcasts an epoch-completed message for

an epoch ≥ emax + 1 before this time.

Let us consider both scenarios:
• Let epochi = emax +1 by timeGST+δ. In this case,

dissemination timer i expires in δ time (line 25), and

Pi enters emax + 1 by time GST + 2δ (line 30) as

GST + epoch duration > GST + 2δ. Hence, the
statement of the lemma is satisfied in this case.

• Let epochi = emax by timeGST+δ. If, within δ time

from updating epochi to emax , Pi does not cancel

its dissemination timer i, dissemination timer i
expires (line 4), andPi enters emax by timeGST+2δ.
Otherwise, epochi = emax + 1 by time GST +
2δ as dissemination timer i was canceled; epochi
cannot take any other value as epoch-completed

messages are not broadcast before time GST +
epoch duration > GST + 2δ. As in the previ-

ous case, dissemination timer i expires in δ time

(line 25), and Pi enters emax + 1 by time GST + 3δ
(line 30) as GST + epoch duration > GST + 3δ.
Hence, the statement of the lemma holds in this case,

as well.

Since the lemma is satisfied in both possible scenarios, the

proof is concluded. □

The direct consequence of Lemma 22 is that
tefinal ≤ GST + epoch duration + 4δ.

Lemma 24 tefinal ≤ GST + epoch duration + 4δ.

Proof By contradiction, let tefinal > GST +
epoch duration + 4δ. Lemma 23 proves that

every correct process enters epoch emax by time

GST + 2δ or epoch efinal = emax + 1 by time

GST + 3δ. Additionally, Lemma 14 proves that no

correct process broadcasts an epoch-completed mes-

sage for an epoch ≥ efinal (line 12) before time

tefinal +epoch duration > GST+2·epoch duration+4δ.
If any correct process enters emax +1 by timeGST +

3δ, we reach a contradiction with the fact that tefinal >

GST + epoch duration +4δ since efinal = emax +1 (by
Lemma 22). Therefore, all correct processes enter emax by

time GST + 2δ.
Since tefinal > GST + epoch duration + 4δ, no cor-

rect process Pi updates its epochi variable to emax + 1
(at line 15 or line 21) by time GST + epoch duration +
3δ (otherwise, Pi would have entered emax + 1 by

time GST + epoch duration + 4δ, which contradicts

tefinal > GST + epoch duration + 4δ). By time GST +
epoch duration + 2δ, all correct processes broadcast an

epoch-completed message for emax (line 12). By time

GST + epoch duration + 3δ, every correct process Pi

receives 2f + 1 epoch-completed messages for emax

(line 13), and updates its epochi variable to emax + 1
(line 15). This represents a contradiction with the fact that

Pi does not update its epochi variable to emax +1 by time

GST + epoch duration + 3δ, which concludes the proof.

□

The final lemma shows that no correct process
enters more thanO(1) epochs during the time period
[GST , ts +∆].

Lemma 25 No correct process enters more thanO(1) epochs
in the time period [GST , ts +∆].

Proof Consider a correct process Pi. Process Pi enters

epoch emax by timeGST+2δ orPi enters epoch emax+1
by time GST + 3δ (by Lemma 23). Lemma 22 shows that

efinal = emax + 1. Finally, no correct process enters an

epoch greater than efinal = emax + 1 by time ts +∆ (by

Lemma 21).

Let us consider two scenarios according to Lemma 23:

1. By timeGST+2δ, Pi enters emax ; let Pi enter emax

at time t∗ ≤ GST + 2δ. By Lemma 3 , during the

time period [t∗, ts+∆], Pi enters (at most) 2 = O(1)
epochs (epochs emax and emax + 1). Finally, during
the time period [GST , t∗), Lemma 20 shows that Pi

enters (at most) 2 = O(1) epochs (as t∗ ≤ GST +
2δ). Hence, in this case, Pi enters (at most) 4 = O(1)
epochs during the time period [GST , ts +∆].

2. By time GST + 3δ, Pi enters emax + 1; let Pi enter

emax + 1 at time t∗ ≤ GST + 3δ. By Lemma 3,

during the time period [t∗, ts+∆],Pi enters (at most)

1 = O(1) epoch (epoch emax + 1). Finally, during
the time period [GST , t∗), Lemma 20 shows that Pi

enters (at most) 3 = O(1) epochs (as t∗ ≤ GST +
3δ). Hence, in this case, Pi enters (at most) 4 = O(1)
epochs during the time period [GST , ts +∆].

Hence, during the time period [GST , ts +∆], Pi enters (at

most) 4 = O(1) epochs. □

Finally, we prove that RareSync achieves O(n2)
communication and O(f) latency.

Theorem 2 (Complexity) RareSync achieves O(n2) com-

munication complexity and O(f) latency complexity.

Proof Fix a correct process Pi. For every epoch e, Pi sends

(at most) O(n) epoch-completed and enter-epoch mes-

sages for e (by lemmas 18 and 19). Moreover, if Pi sends an

epoch-completedmessage for an epoch e at time t, then e
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is the last epoch entered by Pi prior to sending the message

(by Lemma 16). □

5 SQuad

This section introduces SQuad, a partially syn-
chronous Byzantine consensus protocol with opti-
mal resilience [9]. SQuad simultaneously achieves
(1) O(n2) communication complexity, matching the
Dolev-Reischuk bound [6], and (2)O(f) latency com-
plexity, matching the Dolev-Strong bound [16].

First, we present Quad, a partially synchronous
Byzantine consensus protocol ensuring weak valid-
ity (§5.1). Quad achieves quadratic communication
complexity and linear latency complexity.We provide
a short overview of the proof of Quad’s correct-
ness and complexity, followed by the complete formal
proof (§5.2). Then, we construct SQuad by adding a
simple preprocessing phase toQuad (§5.3), which we
then formally prove (§5.4).

5.1 Quad

Quad is a partially synchronous Byzantine consensus
protocol satisfying the weak validity property:

• Weak validity: If all processes are correct, then a
value decided by a process was proposed.

Quad achieves (1) quadratic communication com-
plexity, and (2) linear latency complexity. Interest-
ingly, the Dolev-Reischuk lower bound [6] does not
apply to Byzantine protocols satisfyingweak validity;
hence, we do not know whether Quad has optimal
communication complexity. As explained in §5.3, we
accompanyQuad by a preprocessing phase to obtain
SQuad.

Quad (Algorithm 3) uses the same view coremod-
ule as HotStuff [12], i.e., the view logic of Quad is
identical to that of HotStuff. Moreover, Quad uses
RareSync as its view synchronizer, achieving syn-
chronization withO(n2) communication.The combi-
nation of HotStuff’s view core and RareSync ensures
that each correct process sends O(n) words after
GST (and before the decision), i.e., C = O(n) in
Quad. Following the formula introduced in §1,Quad

indeed achieves n · C + S = n · O(n) + O(n2) =
O(n2) communication complexity. Due to the lin-
ear latency of RareSync, Quad also achieves O(f)
latency complexity.

View core. We now give a brief description of the
view core module of Quad.The complete pseudocode
of this module can be found in §5.2 (and in [12]).

Each correct process keeps track of two critical
variables: (1) the prepare quorum certificate (QC), and
(2) the locked QC. Each of these represents a process’
estimation of the value that will be decided, although
with a different degree of certainty. For example, if
a correct process decides a value v, it is guaranteed
that (at least) f + 1 correct processes have v in their
locked QC. Moreover, it is ensured that no correct
process updates (from this point onward) its prepare
or locked QC to any other value, thus ensuring agree-
ment. Lastly, a QC is a (constant-sized) threshold
signature.

The structure of a view follows the łall-to-leader,
leader-to-all” communication pattern. Specifically,
each view is comprised of the following four phases:
1. Prepare: A process sends to the leader a view-

change message containing its prepare QC.
Once the leader receives 2f + 1 view-change

messages, it selects the prepare QC from the
łlatest” view. The leader sends this QC to all
processes via a prepare message.
Once a process receives the preparemessage

from the leader, it supports the received pre-
pare QC if (1) the received QC is consistent with
its locked QC, or (2) the received QC is łmore
recent” than its locked QC. If the process sup-
ports the received QC, it acknowledges this by
sending a prepare-vote message to the leader.

2. Precommit: Once the leader receives 2f + 1
prepare-vote messages, it combines them into
a cryptographic proof σ that łenough” processes
have supported its łprepare-phase” value; σ is a
threshold signature. Then, it disseminates σ to
all processes via a precommit message. Once a
process receives the precommit message carry-
ing σ, it updates its prepare QC to σ and sends
back to the leader a precommit-vote message.

3. Commit: Once the leader receives 2f + 1
precommit-vote messages, it combines them
into a cryptographic proof σ′ that łenough”
processes have adopted its łprecommit-phase”
value (by updating their prepare QC); σ′ is a
threshold signature. Then, it disseminates σ′ to
all processes via a commitmessage. Once a pro-
cess receives the commit message carrying σ′,
it updates its locked QC to σ′ and sends back to
the leader a commit-vote message.

4. Decide:Once the leader receives 2f+1 commit-
vote messages, it combines them into a thresh-
old signature σ′′, and relays σ′′ to all processes



via a decide message. When a process receives
the decide message carrying σ′′, it decides the
value associated with σ′′.

As a consequence of the łall-to-leader, leader-to-all”
communication pattern and the constant size of mes-
sages, the leader of a view sendsO(n) words, while a
non-leader process sends O(1) words.

The view core module provides the following
interface:

• Request start executing(View v): The view
core starts executing the logic of view v and
abandons the previous view. Concretely, it stops
accepting and sending messages for the previ-
ous view, and it starts accepting, sending, and
replying to messages for view v. The state of the
view core is kept across views (e.g., the prepare
and locked QCs).

• Indication decide(Value decision): The view
core decides value decision (this indication is
triggered at most once).

Protocol description. The protocol (Algorithm 3)
amounts to a composition of RareSync and the afore-
mentioned view core. Since the view core requires 8
communication steps in order for correct processes to
decide, a synchronous overlap of 8δ is sufficient.Thus,
we parameterize RareSync with ∆ = 8δ (line 3).
In short, the view core is subservient to RareSync,
i.e., when RareSync triggers the advance(v) event
(line 7), the view core starts executing the logic of
view v (line 8). Once the view core decides (line 9),
Quad decides (line 10).

Algorithm 3 Quad: Pseudocode (for process Pi)

1: Modules:
2: View Core core
3: View Synchronizer sync ← RareSync(∆ = 8δ)

4: upon init(Value proposal): ▷ propose proposal
5: core.init(proposal) ▷ initialize the view core
6: sync.init ▷ start RareSync

7: upon synchronizer .advance(View v):
8: core.start executing(v)

9: upon core.decide(Value decision):
10: trigger decide(decision) ▷ decide decision

Proof overview. The agreement and weak validity
properties of Quad are ensured by the view core’s
implementation. As for the termination property, the
view core, and therefore Quad, is guaranteed to
decide as soon as processes have synchronized in the
same view with a correct leader for ∆ = 8δ time at

or after GST . Since RareSync ensures the eventual
synchronization property, this eventually happens,
which implies that Quad satisfies termination. As
processes synchronize within O(f) time after GST ,
the latency complexity of Quad is O(f).

As for the total communication complexity, it
is the sum of the communication complexity of (1)
RareSync, which is O(n2), and (2) the view core,
which is also O(n2). The view core’s complexity is a
consequence of the fact that:

• each process executes O(1) epochs between
GST and the time by which every process
decides,

• each epoch has f + 1 views,
• a process can be the leader in only one view of
any epoch, and

• a process sends O(n) words in a view if it is
the leader, and O(1) words otherwise, for an
average of O(1) words per view in any epoch.

Thus, the view core’s communication complexity is
O(n2) = O(1) · (f + 1) · O(1) · n. Therefore, Quad

indeed achieves O(n2) communication complexity.
In summary:

Theorem: Quad is a Byzantine consensus protocol

ensuring weak validity with (1) O(n2) communication

complexity, and (2) O(f) latency complexity.

5.2 Quad: Formal Proof

In this section, we give the complete pseudocode of
Quad’s view core module (algorithms 4 and 5), and
we formally prove that Quad solves consensus (with
weak validity) with O(n2) communication complex-
ity and O(f) latency complexity.

Proof of correctness. In this paragraph, we show
that Quad ensures weak validity, termination and
agreement. Recall that the main body of Quad is
given in Algorithm 3, whereas its view synchronizer
RareSync is presented in Algorithm 2 and its view
core in Algorithm 5. We underline that the proofs
concerned with the view core of Quad can be found
in [12], asQuad uses the same view core as HotStuff.

We start by proving that Quad ensures weak
validity.

Theorem 3 (Weak validity) Quad ensures weak validity.

Proof Suppose that all processes are correct. Whenever a

correct process updates its prepareQC variable (line 25 of
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Algorithm 4 Quad: View core’s utilities (for process Pi)

1: function msg(String type,Value value,Quorum Certificate qc,View view):
2: m.type ← type ; m.value ← value ;m.qc ← qc; m.view ← view
3: returnm

4: function vote msg(String type,Value value,Quorum Certificate qc,View view):
5: m← msg(type, value, qc, view)
6: m.partial sig ← ShareSigni([m.type,m.value,m.view ])
7: returnm

8: ▷ All the messages inM have the same type, value and view
9: function qc(Set(Vote Message) M):
10: qc.type ← m.type , where m ∈M
11: qc.value ← m.value , where m ∈M
12: qc.view ← m.view , wherem ∈M

13: qc.sig ← Combine
(

{partial sig | partial sig is in a message that belongs toM}
)

14: return qc

15: function matching msg(Message m, String type,View view):
16: returnm.type = type and m.view = view

17: function matching qc(Quorum Certificate qc, String type,View view):
18: return qc.type = type and qc.view = view

Algorithm 5), it updates it to a quorum certificate vouch-

ing for a proposed value. Therefore, leaders always propose

a proposed value since the proposed value is łformed” out

of prepareQC s of processes (line 9 of Algorithm 5). Given

that a correct process executes line 43 of Algorithm 5 for a

value proposed by the leader of the current view, which is

proposed by a process (recall that all processes are correct),

the weak validity property is ensured. □

Next, we prove agreement.

Theorem 4 (Agreement) Quad ensures agreement.

Proof Two conflicting quorum certificates associated with

the same view cannot be obtained in the view core of Quad

(Algorithm 5); otherwise, a correct process would vote for

both certificates, which is not possible according to Algo-

rithm 5. Therefore, two correct processes cannot decide

different values from the view core of Quad in the same

view. Hence, we need to show that, if a correct process

decides v in some view view in the view core (line 43 of

Algorithm 5), then no conflicting quorum certificate can be

obtained in the future views.

Since a correct process decides v in view view in the

view core, the following holds at f + 1 correct processes:

lockedQC .value = v and lockedQC .view = view (line 34

of Algorithm 5). In order for another correct process to

decide a different value in some future view, a prepare quo-

rum certificate for a value different than v must be obtained

in a view greater than view . However, this is impossible as

f + 1 correct processes whose lockedQC .value = v and

lockedQC .view = view will not support such a prepare

quorum certificate (i.e., the check at line 16 of Algorithm 5

will return false). Thus, it is impossible for correct processes

to disagree in the view core even across multiple views. The

agreement property is ensured byQuad. □

Finally, we prove termination.

Theorem 5 (Termination) Quad ensures termination.

Proof RareSync ensures that, eventually, all correct pro-

cesses remain in the same view view with a correct leader

for (at least) ∆ = 8δ time after GST . When this happens,

all correct processes decide in the view core.

Indeed, the leader of view learns the highest obtained

locked quorum certificate through the view-change mes-

sages (line 9 of Algorithm 5). Therefore, every correct

process supports the proposal of the leader (line 17 of Algo-

rithm 5) as the check at line 16 of Algorithm 5 returns

true. After the leader obtains a prepare quorum certificate

in view , all correct processes vote in the following phases

of the same view. Thus, all correct processes decide from

the view core (line 43 of Algorithm 5), which concludes the

proof. □

Thus, Quad indeed solves the Byzantine consen-
sus problem with weak validity.

Corollary 1 Quad is a partially synchronous Byzantine

consensus protocol ensuring weak validity.

Proof of complexity. Next, we show that Quad

achievesO(n2) communication complexity andO(f)
latency complexity. Before we start the proof, we
clarify one point about Algorithm 3: as soon as



Algorithm 5 Quad: View core (for process Pi)

1: upon init(Value proposal):
2: proposal i ← proposal ▷ Pi’s proposal

3: upon start executing(View view):
4: ▷ Prepare phase
5: send msg(view-change,⊥, prepareQC , view) to leader(view)

6: as leader(view):
7: wait for 2f + 1 view-change messages:
8: M ← {m | matching msg(m, view-change, view)}
9: Quorum Certificate highQC ← qc with the highest qc.view inM
10: Value proposal ← highQC .value
11: if proposal = ⊥:
12: proposal ← proposal i ▷ proposal i denotes the proposal of Pi

13: broadcast msg(prepare, proposal , highQC , view)

14: as a process: ▷ every process executes this part of the pseudocode
15: wait for messagem: matching msg(m, prepare, view) from leader(view)
16: if m.qc.value = m.value and (lockedQC .value = m.value orm.qc.view > lockedQC .view ):
17: send vote msg(prepare,m.value,⊥, view) to leader(view)

18: ▷ Precommit phase
19: as leader(view):
20: wait for 2f + 1 votes: V ← {vote | matching msg(vote, prepare, view)}
21: Quorum Certificate qc ← qc(V )
22: broadcast msg(precommit,⊥, qc, view)

23: as a process: ▷ every process executes this part of the pseudocode
24: wait for messagem: matching qc(m.qc, prepare, view) from leader(view)
25: prepareQC ← m.qc
26: send vote msg(precommit,m.qc.value,⊥, view) to leader(view)

27: ▷ Commit phase
28: as leader(view):
29: wait for 2f + 1 votes: V ← {vote | matching msg(vote, precommit, view)}
30: Quorum Certificate qc ← qc(V )
31: broadcast msg(commit,⊥, qc, view)

32: as a process: ▷ every process executes this part of the pseudocode
33: wait for messagem: matching qc(m.qc, precommit, view) from leader(view)
34: lockedQC ← m.qc
35: send vote msg(commit,m.qc.value,⊥, view) to leader(view)

36: ▷ Decide phase
37: as leader(view):
38: wait for 2f + 1 votes: V ← {vote | matching msg(vote, commit, view)}
39: Quorum Certificate qc ← qc(V )
40: broadcast msg(decide,⊥, qc, view)

41: as a process: ▷ every process executes this part of the pseudocode
42: wait for messagem: matching qc(m.qc, commit, view) from leader(view)
43: trigger decide(m.qc.value)

advance(v) is triggered (line 7), for some view v,
the process immediately stops accepting and send-
ing messages for the previous view. In other words,
it is as if the łstop accepting and sending messages
for the previous view” action immediately follows the
advance(·) upcall in Algorithm 2.6

We begin by proving that, if a correct process
sends a message of the view core associated with a
view v which belongs to an epoch e, then the last

6Note that this additional action does not disrupt RareSync (nor its proof
of correctness and complexity).

entered epoch prior to sending the message (in the
behavior of the process) is e (this result is similar
to the one of Lemma 16). A message is a view-core

message if it is of the view-change, prepare, pre-
commit, commit or decide type.

Lemma 26 LetPi be a correct process and letPi send a view-

core message associated with a view v, where v belongs to an

epoch e. Then, e is the last epoch entered by Pi in βi before

sending the message.
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Proof ProcessPi enters the view v before sending the view-

core message (since start executing(v) is invoked upon Pi

entering v; line 8 of Algorithm 3). By Lemma 8,Pi enters the

first view of the epoch e (and, hence, e) before sending the

message. By contradiction, suppose that Pi enters another

epoch e′ after entering e and before sending the view-core

message.

By Lemma 3, we have that e′ > e. However, this means

that Pi does not send any view-core messages associated

with v after entering e′ (since (e′ − 1) · (f + 1) + 1 > v

andPi enters monotonically increasing views by Lemma 3).

Thus, a contradiction, which concludes the proof. □

Next, we show that a correct process sends (at
most) O(n) view-core messages associated with a
single epoch.

Lemma 27 Let Pi be a correct process. For any epoch e,

Pi sends (at most) O(n) view-core messages associated with

views that belong to e.

Proof Recall that Pi enters monotonically increasing views

(by Lemma 3), which means that Pi never invokes

start executing(v) (line 8 of Algorithm 3)multiple times for

any view v.

Consider a view v that belongs to e. We consider two

cases:
• Let Pi be the leader of v. In this case, Pi sends (at

most) O(n) view-core messages associated with v.
• Let Pi not be the leader of v. In this case, Pi sends (at

most) O(1) view-core messages associated with v.

Given that Pi is the leader of at most one view in every

epoch e (since leader(·) is a round-robin function),Pi sends

(at most) 1 ·O(n) + f ·O(1) = O(n) view-core messages

associated with views that belong to e. □

Finally, we prove the complexity of Quad.

Theorem 6 (Complexity) Quad achieves O(n2) communi-

cation complexity and O(f) latency complexity.

Proof As soon as all correct processes remain in the same

view for 8δ time, all correct processes decide from the view

core. As RareSync uses ∆ = 8δ in the implementation

of Quad (line 3 of Algorithm 3), all processes decide by

time ts + 8δ, where ts is the first synchronization time

after GST (Definition 3). Given that ts + 8δ − GST is

the latency of RareSync (see §4.1) and the latency com-

plexity of RareSync is O(f) (by Theorem 2), the latency

complexity of Quad is indeed O(f).
Fix a correct process Pi. For every epoch e, Pi sends

(at most) O(n) view-core messages associated with views

that belong to e (by Lemma 27). Moreover, if Pi sends a

view-core message associated with a view that belongs to

an epoch e, then e is the last epoch entered by Pi prior

to sending the message (by Lemma 26). Hence, in the time

period [GST , ts + 8δ], Pi sends view-core messages asso-

ciated with views that belong to (at most) O(1) epochs (by
Lemma 25). Thus, Pi sends (at most) O(1) · O(n) = O(n)
view-core messages in the time period [GST , ts+8δ], each
containing a single word.Moreover, during this time period,

the communication complexity of RareSync is O(n2) (by
Theorem 2). Therefore, the communication complexity of

Quad is n ·O(n) +O(n2) = O(n2). □

As a final note, while our definition of com-
munication complexity considers the bits exchanged
between GST until td(α) (i.e., when the last correct
process has decided), it is straightforward to extend
our results to account for all messages exchanged
between GST and infinity. This is achieved by hav-
ing correct processes halt the sending of messages of
the underlying RareSync protocol immediately after
deciding, and rebroadcasting (once) the first correct
decidemessage they see. This is because, by the time
the first correct process decides, every correct pro-
cess is also guaranteed to decide regardless of the
continued use of RareSync, as termination is now
solely dependent on the reception of the decidemes-
sage. This once-per-process rebroadcast incurs only
an additional O(n2) bits exchanged in total, with
latency remaining unaffected, so all results continue
to hold.

5.3 SQuad: Protocol Description

At last, we present SQuad, which we derive from
Quad.

Deriving SQuad from Quad. Imagine a locally-
verifiable, constant-sized cryptographic proof σv

vouching that value v is valid. Moreover, imagine that
it is impossible, in the case in which all correct pro-
cesses propose v toQuad, for any process to obtain a
proof for a value different from v:

• Computability: If all correct processes propose v
toQuad, then no process (even if faulty) obtains
a cryptographic proof σv′ for a value v′ ̸= v.

If such a cryptographic primitive were to exist, then
the Quad protocol could be modified in the follow-
ing manner in order to satisfy the validity property
introduced in §1:

• A correct process accompanies each value by a
cryptographic proof that the value is valid.



• A correct process ignores any message with a
value not accompanied by the value’s proof.

Suppose that all correct processes propose the same
value v and that a correct process Pi decides v

′ from
the modified version of Quad. Given that Pi ignores
messages with non-valid values, Pi has obtained a
proof for v′ before deciding. The computability prop-
erty of the cryptographic primitive guarantees that
v′ = v, implying that validity is satisfied. Given
that the proof is of constant size, the communication
complexity of the modified version of Quad remains
O(n2).

Therefore, themain challenge in obtaining SQuad

fromQuad, while preservingQuad’s complexity, lies
in implementing the introduced cryptographic prim-
itive.

Certification phase. SQuad utilizes its certifica-

tion phase (Algorithm 6) to obtain the introduced
constant-sized cryptographic proofs; we call these
proofs certificates.7 Formally, Certificate denotes the
set of all certificates. Moreover, we define a locally
computable function verify: Value × Certificate →
{true, false}. We require the following properties to
hold:

• Computability: If all correct processes propose
the same value v to SQuad, then no process
(even if faulty) obtains a certificate σv′ with
verify(v′, σv′) = true and v′ ̸= v.

• Liveness: Every correct process eventu-
ally obtains a certificate σv such that
verify(v, σv) = true , for some value v.

The computability property states that, if all correct
processes propose the same value v to SQuad, then
no process (even if Byzantine) can obtain a certifi-
cate for a value different from v.The liveness property
ensures that all correct processes eventually obtain a
certificate. Hence, if all correct processes propose the
same value v, all correct processes eventually obtain
a certificate for v and no process obtains a certificate
for a different value.

In order to implement the certification phase, we
assume an (f + 1, n)-threshold signature scheme
(see §3) used throughout the entirety of the certi-
fication phase. The (f + 1, n)-threshold signature
scheme allows certificates to count as a single word,
as each certificate is a threshold signature. Finally,
in order to not disrupt Quad’s communication and

7Note the distinction between certificates and prepare and locked QCs of
the view core.

latency, the certification phase itself incurs O(n2)
communication and O(1) latency.

A certificate σ vouches for a value v (the verify(·)
function at line 21) if (1) σ is a threshold signature
of the predefined string łany value” (line 22), or (2)
σ is a threshold signature of v (line 23). Otherwise,
verify(v, σ) returns false .

Once Pi enters the certification phase (line 1), Pi

informs all processes about the value it has proposed
by broadcasting a disclose message (line 3). Process
Pi includes a partial signature of its proposed value in
the message. If Pi receives disclosemessages for the
same value v from f + 1 processes (line 4), Pi com-
bines the received partial signatures into a threshold
signature of v (line 6), which represents a certifi-
cate for v. To ensure liveness, Pi disseminates the
certificate (line 7).

If Pi receives 2f+1 disclosemessages and there
does not exist a łcommon” value received in f + 1
(or more) disclosemessages (line 9), the process con-
cludes that it is fine for a certificate for any value
to be obtained. Therefore, Pi broadcasts an allow-

any message containing a partial signature of the
predefined string łany value” (line 11).

If Pi receives f+1 allow-anymessages (line 12),
it combines the received partial signatures into a cer-
tificate that vouches for any value (line 14), and it
disseminates the certificate (line 15). Since allow-

anymessages are received from f+1 processes, there
exists a correct process that has verified that it is
indeed fine for such a certificate to exist.

If, at any point, Pi receives a certificate (line 18),
it adopts the certificate, and disseminates it (line 19)
to ensure liveness.

Given that eachmessage of the certification phase
contains a single word, the certification phase incurs
O(n2) communication. Moreover, each correct pro-
cess obtains a certificate after (at most) 2 = O(1)
rounds of communication.Therefore, the certification
phase incurs O(1) latency.

We explain below why the certification phase
(Algorithm 6) ensures computability and liveness:

• Computability: If all correct processes propose
the same value v to SQuad, all correct processes
broadcast a disclose message for v (line 3).
Since 2f + 1 processes are correct, no process
obtains a certificate σv′ for a value v′ ̸= v such
that CombinedVerify(v′, σv′) = true (line 23).
Moreover, as every correct process receives

f +1 disclosemessages for v within any set of
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Algorithm 6 Certification Phase: Pseudocode (for process Pi)

1: upon init(Value proposal): ▷ propose value proposal
2: ▷ inform other processes that proposal was proposed
3: broadcast ⟨disclose, proposal ,ShareSigni(proposal)⟩

4: upon exists Value v such that ⟨disclose, v,P Signature sig⟩ is received from f + 1 processes:
5: ▷ a certificate for v is obtained

6: Certificate σv ← Combine
(

{sig | sig is received in a disclose message}
)

7: broadcast ⟨certificate, v, σv⟩ ▷ disseminate the certificate
8: exit the certification phase

9: upon for the first time (1) disclose message is received from 2f + 1 processes, and (2) not exist Value v such that
⟨disclose, v,P Signature sig⟩ is received from f + 1 processes:

10: ▷ inform other processes that any value can be łaccepted”
11: broadcast ⟨allow-any,ShareSigni(łany value”)⟩

12: upon ⟨allow-any,P Signature sig⟩ is received from f + 1 processes :
13: ▷ a certificate for łany value” is obtained

14: Certificate σ⊥ ← Combine
(

{sig | sig is received in an allow-any message}
)

15: broadcast ⟨certificate,⊥, σ⊥⟩ ▷ disseminate the certificate
16: exit the certification phase

17: ▷ a certificate for v is obtained; v can be ⊥, meaning that σv vouches for any value
18: upon reception of ⟨certificate,Value v,Certificate σv⟩:
19: broadcast ⟨certificate, v, σv⟩ ▷ disseminate the certificate
20: exit the certification phase

21: function verify(Value v,Certificate σ):
22: if CombinedVerify(łany value”, σ) = true : return true
23: else if CombinedVerify(v, σ) = true : return true
24: else return false

2f + 1 received disclose messages, no correct
process sends an allow-any message (line 11).
Hence, no process obtains a certificate σ⊥ such
that CombinedVerify(łany value”, σ⊥) = true

(line 22). Thus, computability is ensured.
• Liveness: If a correct process receives f +1 dis-
closemessages for a value v (line 4), the process
obtains a certificate for v (line 6). Since the pro-
cess disseminates the certificate (line 7), every
correct process eventually obtains a certificate
(line 18), ensuring liveness in this scenario.
Otherwise, all correct processes broadcast an

allow-any message (line 11). Since there are
at least 2f + 1 correct processes, every correct
process eventually receives f + 1 allow-any

messages (line 12), thus obtaining a certificate.
Hence, liveness is satisfied in this case as well.

SQuad = Certification phase + Quad. We obtain
SQuad by combining the certification phase with
Quad. The pseudocode of SQuad is given in Algo-
rithm 7.

A correct process Pi executes the following steps
in SQuad:
1. Pi starts executing the certification phase with

its proposal (line 2).

2. Once the process exits the certification phase
with a certificate σv for a value v, it pro-
poses (v, σv) to Quadcer , a version of Quad

łenriched” with certificates (line 5). While exe-
cuting Quadcer , correct processes ignore mes-
sages containing values not accompanied by
their certificates.

3. Once Pi decides from Quadcer (line 6), Pi

decides the same value from SQuad (line 7).

In summary:

Theorem: SQuad is a Byzantine consensus protocol

with (1) O(n2) communication complexity, and (2)

O(f) latency complexity.

5.4 SQuad: Formal Proof

First, we show that the certification phase of SQuad

ensures computability and liveness.

Lemma 28 (Computability & liveness) Certification phase

(Algorithm 6) ensures computability and liveness. Moreover,

every correct process sends (at most) O(n) words and obtains
a certificate by time GST + 2δ.



Algorithm 7 SQuad: Pseudocode (for process Pi)

1: upon init(Value proposal): ▷ propose value proposal
2: start the certification phase with proposal

3: upon exiting the certification phase with a certificate σv for a value v:
4: ▷ in Quadcer , processes ignore messages with values not accompanied by their certificates
5: start executingQuadcer with the proposal (v, σv)

6: upon Quadcer decides Value decision :
7: trigger decide(decision) ▷ decide value decision

Proof As every correct process broadcasts disclose, cer-

tificate or allow-any messages at most once and each

message contains a single word, every correct process sends

(at most) 3·n·1 = O(n)words. Next, we prove computabil-

ity and liveness.

Computability. Let all correct processes propose the same

value v to SQuad. Since no correct process broadcasts a dis-

closemessage for a value v′ ̸= v, no process ever obtains a

certificate σv′ for v′ such thatCombinedVerify(v′, σv′) =
true (line 23).

Since all correct processes broadcast a disclose mes-

sage for v (line 3), the rule at line 9 never activates at

a correct process. Thus, no correct process ever broad-

casts an allow-any message (line 11), which implies

that no process obtains a certificate σ⊥ such that

CombinedVerify(łallow any”, σ⊥) = true (line 22). The

computability property is ensured.

Liveness. Every correct process receives all disclose mes-

sages sent by correct processes by time GST + δ (since

message delays are δ after GST ; see §3). Hence, all correct
processes receive (at least) 2f + 1 disclose messages by

timeGST +δ. Therefore, by timeGST +δ, all correct pro-

cesses send either (1) a certificatemessage upon receiving

f+1 disclosemessages for the same value (line 7), or (2) an

allow-any message upon receiving 2f + 1 disclose mes-

sages without a łcommon value” (line 11). Let us consider

two possible scenarios:
• There exists a correct process that has broadcast a

certificate message upon receiving f + 1 disclose

messages for the same value (line 7) by timeGST+δ.

Every correct process receives this message by time

GST +2δ (line 18) and obtains a certificate. Liveness
is satisfied by time GST + 2δ in this case.

• Every correct process broadcasts an allow-anymes-

sage (line 11) by timeGST + δ. Hence, every correct

process receives f + 1 allow-any messages by time

GST + 2δ (line 12) and obtains a certificate (line 14).
The liveness property is guaranteed by timeGST+2δ
in this case as well.

The liveness property is ensured by timeGST +2δ. □

Finally, we show that SQuad is a Byzantine con-
sensus protocol with O(n2) communication com-
plexity and O(f) latency complexity.

Theorem 7 SQuad is a Byzantine consensus protocol with

(1) O(n2) communication complexity, and (2) O(f) latency
complexity.

Proof If a correct process decides a value v′ and all correct

processes have proposed the same value v, then v′ = v

since (1) correct processes ignore values not accompanied

by their certificates (line 5), and (2) the certification phase

of SQuad ensures computability (by Lemma 28). Therefore,

SQuad ensures validity.

Fix an execution ESQuad of SQuad. We denote by tlast
the time the last correct process starts executing Quadcer
(line 5) in ESQuad; i.e., by tlast every correct process has

exited the certification phase. Moreover, we denote the

global stabilization time of ESQuad by GST1. Now, we

consider two possible scenarios:
• Let GST1 ≥ tlast . Quadcer solves the Byzantine

consensus problem with O(n2) communication and

O(f) latency (by Theorem 6). As processes send (at

most) O(n) words associated with the certification

phase (by Lemma 28), consensus is solved in ESQuad

with n · O(n) + O(n2) = O(n2) communication

complexity and O(f) latency complexity.
• Let GST1 < tlast . Importantly, tlast −GST1 ≤ 2δ
(by Lemma 28). Now, we create an executionEQuad of

the originalQuad protocol in the following manner:

1. EQuad ← ESQuad. If a process sends a value

with a valid accompanying certificate, then just

the certificate is removed in EQuad (i.e., the cor-

responding message stays inEQuad). Otherwise,

the entire message is removed. Note that no

message sent by a correct process in ESQuad is

removed from EQuad as correct processes only

send values accompanied by their valid certifi-

cates.

2. We remove from EQuad all events associated

with the certification phase of SQuad.

3. The global stabilization time of EQuad is set to

tlast . We denote this time by GST2 = tlast .

Note that we can set GST2 to tlast as tlast >

GST1.

In EQuad, consensus is solved with O(n2) commu-

nication and O(f) latency. Therefore, the consensus

problem is solved in ESQuad.
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Let us now analyze the complexity of ESQuad:

– The latency complexity of ESQuad is tlast −
GST1+O(f) = O(f) (as tlast−GST1 ≤ 2δ).

– The communication complexity of ESQuad is the

sum of (1) the number of words sent in the

time period [GST1, tlast ), and (2) the number of

words sent at and after tlast and before the deci-

sion, which is O(n2) since that is the commu-

nication complexity of EQuad and each correct

process sends (at most) O(n) words associated
with the certification phase (by Lemma 28).

Fix a correct process Pi. Let us take a closer

look at the time period [GST1, tlast ):
∗ Let epochsRareSync denote the number

of epochs for which Pi sends epoch-

completed or enter-epoch messages in

this time period. By Lemma 20, Pi enters

(at most) 2 = O(1) epochs in this time

period. Hence, epochsRareSync = O(1) (by
lemmas 16 and 17).

∗ Let epochsQuadcer
denote the number of

epochs for which Pi sends view-core mes-

sages in this time period. By Lemma 20, Pi

enters (at most) 2 = O(1) epochs in this

time period. Hence, epochsQuadcer
= O(1)

(by Lemma 26).

For every epoch e, Pi sends (at most) O(n)
epoch-completed and enter-epoch messages

(by lemmas 18 and 19). Moreover, for every

epoch e, Pi sends (at most)O(n) view-core mes-

sages associated with views that belong to e (by

Lemma 27).8 As each epoch-completed, enter-

epoch and view-core message contains a single

word and Pi sends at most O(n) words during
the certification phase (by Lemma 28), we have

that Pi sends (at most) epochsRareSync ·O(n) +
epochsQuadcer

· O(n) + O(n) = O(n) words

during the time period [GST1, tlast ). Therefore,

the communication complexity of ESQuad is n ·

O(n) +O(n2) +O(n2) = O(n2).9

Hence, consensus is indeed solved in ESQuad with

O(n2) communication complexity and O(f) latency
complexity.

The theorem holds. □

8Note that lemmas 16, 17, 18, 19, 20, 26 and 27, which we use to prove the
theorem, assume that all correct processes have started executing RareSync
andQuad byGST . In Theorem 7, this might not be true as some processes
might start executingRareSync afterGST (since tlast > GST ). However,
it is not hard to verify that the claims of these lemmas hold even in this case.

9The first łn · O(n)” term corresponds to the messages sent during the
time period [GST1, tlast ), the second łO(n2)” term corresponds to the
messages sent during the certification phase, and the third łO(n2)” term
corresponds to the messages sent at and after tlast and before the decision
has been made.

6 Concluding Remarks

This paper shows that the Dolev-Reischuk lower
bound can be met by a partially synchronous
Byzantine consensus protocol. Namely, we intro-
duce SQuad, an optimally-resilient partially syn-
chronous Byzantine consensus protocol with opti-
mal O(n2) communication complexity, and optimal
O(f) latency complexity. SQuad owes its complex-
ity to RareSync, an łepoch-based” view synchronizer
ensuring synchronization with quadratic communi-
cation and linear latency in partial synchrony. In the
future, we aim to address the following limitations of
RareSync.

Lack of adaptiveness. RareSync is not adaptive,
i.e., its complexity does not depend on the actual

number b, but rather on the upper bound f , of Byzan-
tine processes. Consider a scenario S in which all
processes are correct; we separate them into three
disjoint groups: (1) group A, with A = f , (2) group
B, with B = f , and (3) group C , with C = f + 1.
At GST , group A is in the first view of epoch emax ,
group B is in the second view of emax , and group
C is in the third view of emax .

10 Unfortunately, it
is impossible for processes to synchronize in epoch
emax . Hence, they will need to wait for the end of
epoch emax in order to synchronize in the next epoch:
thus, the latency complexity is O(f) (since emax has
f + 1 views) and the communication complexity is
O(n2) (because of the łall-to-all” communication step
at the end of emax ). In contrast, the view synchronizer
presented in [47] achieves O(1) latency and O(n)
communication complexity in S.

Suboptimal expected complexity. A second limi-
tation of RareSync is that its expected complexity is
the same as its worst-case complexity. Namely, the
expected complexity considers a weaker adversary
which does not have a knowledge of the leader(·)
function. Therefore, this adversary is unable to cor-
rupt f processes that are scheduled to be leaders right
after GST .

As the previously introduced scenario S does
not include any Byzantine process, we can analyze
it for the expected complexity of RareSync. There-
fore, the expected latency complexity of RareSync

is O(f) and the expected communication complex-
ity of RareSync is O(n2). On the other hand, the
view synchronizer of Naor and Keidar [47] achieves

10Recall that emax is the greatest epoch entered by a correct process before
GST ; see §4.3.



O(1) expected latency complexity andO(n) expected
communication complexity.

Limited clock drift tolerance. A third limitation of
RareSync is that its latency is susceptible to clock
drifts. Namely, let ϕ > 1 denote the bound on clock
drifts after GST . To accommodate for the bounded
clock drifts afterGST , RareSync increases the dura-
tion of a view. The duration of the i-th view of
an epoch becomes ϕi · view duration (instead of
only view duration). Thus, the latency complexity of
RareSync becomes O(f · ϕf ).
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A RareSync: Basic Properties

This section is dedicated to the correctness of
RareSync (Algorithm 2). Concretely, we now for-
mally prove Lemmas 1 to 8, which are merely stated
in §4.4 without accompanying proofs for brevity.

Lemma 1 Let Pi be a correct process. Then, 1 ≤ view i ≤
f + 1 throughout the entire execution.

Proof First, view i ≥ 1 throughout the entire execution

since (1) the initial value of view i is 1 (line 3 of Algorithm 1),

and (2) the value of view i either increases (line 6) or is set

to 1 (line 27).

By contradiction, suppose that view i = F > f+1 > 1
at some time during the execution. The update of view i to

F > f + 1 must have been done at line 6. This means that,

just before executing line 6, view i ≥ f + 1. However, this
contradicts the check at line 5, which concludes the proof.

□

Lemma 2 Let Pi be a correct process. Let Expd be any expi-

ration event of dissemination timer i that belongs to hi
and let Invd be the invocation of the measure(·) method

(on dissemination timer i) that has produced Expd. Then,

Expd immediately follows Invd in hi.

Proof In order to prove the lemma, we show that only

Expd can immediately follow Invd in hi. We consider the

following scenarios:
• Let an invocation Inv ′d of the measure(·) method

on dissemination timer i immediately follow Invd

https://doi.org/10.48550/ARXIV.2201.01107
https://arxiv.org/abs/2201.01107


in hi: Inv
′
d could only have been invoked either at

line 18 or at line 24. However, an invocation of the

cancel() method on dissemination timer i (line 17

or line 23) must immediately precede Inv ′d in hi,

which contradicts the fact that Invd immediately

precedes Inv ′d. Therefore, this scenario is impossible.
• Let an invocation Inv ′d of the cancel() method on

dissemination timer i immediately follow Invd in

hi: Inv
′
d could only have been invoked either at

line 17 or at line 23. However, an invocation of the

cancel() method on view timer i (line 16 or line 22)

must immediately precede Inv ′d in hi, which contra-

dicts the fact that Invd immediately precedes Inv ′d.

Hence, this scenario is impossible, as well.
• Let an expiration event Exp′d ̸= Expd of

dissemination timer i immediately follow Invd in

hi: As Invd could have been invoked either at line 18

or at line 24, an invocation of the cancel() method

on dissemination timer i (line 17 or line 23) imme-

diately precedes Invd in hi. This contradicts the fact

that Exp′d ̸= Expd is produced and immediately

follows Invd, which renders this scenario impossible.
• Let an invocation Invv of the measure(·) method on

view timer i immediately follow Invd in hi: Invv
could have been invoked either at line 8 or at line 29.

We further consider both cases:

– If Invv was invoked at line 8, then Invv is

immediately preceded by an expiration event of

view timer i (line 4). This case is impossible as

Invv is not immediately preceded by Invd.

– If Invv was invoked at line 29, then Invv is

immediately preceded by an expiration event of

dissemination timer i (line 25).This case is also

impossible as Invv is not immediately preceded

by Invd.

As neither of the two cases is possible, Invv cannot

immediately follow Invd.
• Let an invocation Invv of the cancel() method on

view timer i immediately follow Invd in hi: Invv
could have been invoked either at line 16 or at line 22.

In both cases, an invocation of the cancel() method

on dissemination timer (line 17 or line 23) immedi-

ately follows Invv in hi. This contradicts the fact that

Invd produces Expd, which implies that this case is

impossible.
• Let an expiration event Expv of view timer i imme-

diately follow Invd in hi: As Invd could have been

invoked either at line 18 or at line 24, invoca-

tions of the cancel() method on view timer i and

dissemination timer i (lines 16, 17 or lines 22, 23)

immediately precede Invd in hi. This contradicts the

fact that Expv is produced and immediately follows

Invd, which renders this scenario impossible.

As any other option is impossible, Expd must immediately

follow Invd in hi. Thus, the lemma. □

Lemma3 (Monotonically increasing views) LetPi be a cor-

rect process. Let e1 = advance(v), e2 = advance(v′) and

e1
βi

≺ e2. Then, v′ > v.

Proof Let epochi = e and view i = j when Pi triggers

advance(v). Moreover, let epochi = e′ and view i = j′

when Pi triggers advance(v
′). As the value of the epochi

variable only increases throughout the execution (lines 13,

15 and lines 19, 21), e′ ≥ e.

We investigate both possibilities:
• Let e′ > e. In this case, the lemma follows from

Lemma 1 and the fact that (e′ − 1) · (f + 1) + j′ >

(e− 1) · (f + 1) + j, for every j, j′ ∈ [1, f + 1].
• Let e′ = e. Just before triggering advance(v) (line 3
or line 9 or line 30), Pi has invoked the measure(·)
method on view timer i (line 2 or line 8 or line 29);

we denote this invocation of the measure(·) method

by Invv .

Now, we investigate two possible scenarios:

– Let Pi trigger advance(v′) at line 9. By con-

tradiction, suppose that j′ ≤ j. Hence, just

before triggering advance(v′) (i.e., just before

executing line 6), we have that view i < j.

Thus, line 27 must have been executed by Pi

after triggering advance(v) and before trigger-

ing advance(v′), whichmeans that an expiration

event of dissemination timer i (line 25) fol-

lows Invv in hi. By Lemma 2, the measure(·)
method on dissemination timer i was invoked

by Pi after the invocation of Invv . Hence, when

the aforementioned invocation of themeasure(·)
method on dissemination timer i was invoked

by Pi (line 18 or line 24), the epochi variable had

a value greater than e (line 15 or line 21) since

epochi ≥ e when processing line 13 or line 19;

recall that the value of the epochi variable only

increases throughout the execution. Therefore,

we reach a contradiction with the fact that e′ =
e, which means that j′ > j and the lemma holds

in this case.

– Let Pi trigger advance(v′) at line 30. In

this case, Pi processes an expiration event of

dissemination timer i (line 25); therefore, the

measure(·) method on dissemination timer i
was invoked by Pi after the invocation of Invv
(by Lemma 2). As in the previous case, when

the aforementioned invocation of themeasure(·)
method on dissemination timer i was invoked

by Pi (line 18 or line 24), the epochi variable

had a value greater than e (line 15 or line 21);

recall that the value of the epochi variable only

increases throughout the execution. Thus, we

reach a contradiction with the fact that e′ = e,

which renders this case impossible.
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In the only possible scenario, we have that j′ > j,

which implies that v′ > v.

The lemma holds as it holds in both possible cases. □

Lemma 4 Let Pi be a correct process. Let Invv be any

invocation of the measure(·) method on view timer i that

belongs to hi. Invocation Invv is not immediately fol-

lowed by another invocation of the measure(·) method on

view timer i in hi |view .

Proof We denote by Inv ′v the first invocation of the

measure(·)method on view timer i after Invv in hi |view .

If Inv ′v does not exist, the lemma trivially holds. Hence, let

Inv ′v exist in the rest of the proof. We examine two possible

cases:
• Let Inv ′v be invoked at line 8: In this case, there exists

an expiration event of view timer i (line 4) separating

Invv and Inv ′v in hi |view .
• Let Inv ′v be invoked at line 29: In this case, Inv ′v is

immediately preceded by an expiration eventExpd of

dissemination timer i (line 25) in hi. By Lemma 2,

an invocation Invd of the measure(·) method on

dissemination timer i immediately precedes Expd
in hi. As Invd could have been invoked either

at line 18 or at line 24, Invd is immediately pre-

ceded by invocations of the cancel() methods on

view timer i and dissemination timer i (lines 16, 17

or lines 22, 23). Hence, in this case, an invocation of

the cancel() method on view timer i separates Invv
and Inv ′v in hi |view .

The lemma holds since Inv ′v does not immediately follow

Invv in hi |view in any of the two cases. □

A direct consequence of Lemma 4 is that an
expiration event of view timer i immediately follows
(in a timer history associated with view timer i) the
measure(·) invocation that has produced it.

Lemma 5 Let Pi be a correct process. Let Expv be any expi-

ration event that belongs to hi |view and let Invv be the

invocation of the measure(·) method (on view timer i) that

has producedExpv . Then,Expv immediately follows Invv in

hi |view .

Proof We prove the lemma by induction.

Base step: Let Inv1v be the first invocation of themeasure(·)
method in hi |view that produces an expiration event, and let

Exp1v be the expiration event produced by Inv1v . Expiration

event Exp1v immediately follows Inv1v in hi |view .

Since Inv1v produces the expiration event Exp1v , an invo-

cation of the cancel() method does not immediately fol-

low Inv1v in hi |view . Moreover, no invocation of the

measure(·) method immediately follows Inv1v in hi |view
(by Lemma 4). Finally, no expiration event produced by a

different invocation of themeasure(·)method immediately

follows Inv1v in hi |view since Inv1v is the first invocation of

the method in hi |view that produces an expiration event.

Therefore, the statement of the lemma holds for Inv1v and

Exp1v .

Induction step: Let Inv
j
v be the j-th invocation of the

measure(·) method in hi |view that produces an expiration

event, where j > 1, and let Expjv be the expiration event pro-

duced by Inv
j
v . Expiration event Expjv immediately follows

Inv
j
v in hi |view .

Induction hypothesis: For every k ∈ [1, j − 1], the k-th invo-

cation of the measure(·) method in hi |view that produces

an expiration event is immediately followed by the produced

expiration event in hi |view .

An invocation of the cancel() method does not immedi-

ately follow Inv
j
v in hi |view since Inv

j
v produces Expjv .

Moreover, no invocation of the measure(·) method imme-

diately follows Inv
j
v in hi |view (by Lemma 4). Lastly, no

expiration event produced by a different invocation of the

measure(·) method immediately follows Inv
j
v in hi |view

by the induction hypothesis.Therefore, the statement of the

lemma holds for Inv
j
v andExp

j
v , which concludes the proof.

□

Lemma 6 Let Pi be a correct process. Let Expv be any expi-

ration event of view timer i that belongs to hi and let Invv
be the invocation of themeasure(·)method (on view timer i)

that has produced Expv . Then, Expv immediately follows

Invv in hi.

Proof Let us consider all possible scenarios (as in the proof

of Lemma 2):
• Let an invocation Invd of the measure(·) method on

dissemination timer i immediately follow Invv in

hi: Invd could have been invoked either at line 18

or at line 24. However, an invocation of the cancel()
method on dissemination timer i (line 17 or line 23)

must immediately precede Invd in hi, which contra-

dicts the fact that Invv immediately precedes Invd.

Therefore, this scenario is impossible.
• Let an invocation Invd of the cancel() method on

dissemination timer i immediately follow Invv in

hi: Invd could have been invoked either at line 17

or at line 23. However, an invocation of the cancel()
method on view timer i (line 16 or line 22) must

immediately precede Invd in hi, which contradicts



the fact that Invv immediately precedes Invd. Hence,

this scenario is impossible, as well.
• Let an expiration event Expd of

dissemination timer i immediately follow Invv in

hi: This is impossible due to Lemma 2.
• Let the event immediately following Invv be

(1) an invocation of the measure(·) method on

view timer i, or (2) an invocation of the cancel()
method on view timer i, or (3) an expiration event

Exp′v of view timer i, where Exp′v ̸= Expv : This

case is impossible due to Lemma 5.

As any other option is impossible, Expv must immediately

follow Invv in hi. □

Lemma 7 Let Pi be a correct process. Let Invv denote an

invocation of the measure(·) method on view timer i which

produces an expiration event, and let Expv denote the expira-

tion event produced by Invv . Let epochi = e and view i = v

whenPi invokes Invv . Then, whenPi processesExpv (line 4),

epochi = e and view i = v.

Proof By contradiction, suppose that epochi ̸= e or

view i ̸= vwhenPi processesExpv . Hence, the value of the

variables of Pi must have changed between invoking Invv
and processing Expv . Let us investigate all possible lines

of Algorithm 2 where Pi could have modified its variables

for the first time after invoking Invv (the first modification

occurs before processing Expv):
• the view i variable at line 6: If Pi has modified its

view i variable here, there exists an expiration event

of view timer i (line 4) which follows Invv in hi. By

Lemma 6, this expiration event cannot occur before

processing Expv , which implies that this case is

impossible.
• the epochi variable at line 15: If Pi updates its epochi
variable here, an invocation of the cancel() method

on view timer i (line 16) separates Invv and Expv in

hi. However, this is impossible due to Lemma 6, which

renders this case impossible.
• the epochi variable at line 21: If Pi updates its epochi
variable here, an invocation of the cancel() method

on view timer i (line 22) separates Invv and Expv in

hi. However, this is impossible due to Lemma 6, which

implies that this case is impossible.
• the view i variable at line 27: If Pi updates

its view i variable here, an expiration event of

dissemination timer i (line 25) separates Invv and

Expv in hi, which contradicts Lemma 6.

Given that Pi does not change the value of neither epochi
nor view i between invoking Invv and processingExpv , the

lemma holds. □

Lemma 8 Let Pi be a correct process. Let advance(v) ∈ βi,

where v is the j-th view of an epoch e and j > 1. Then,

advance(v − 1)
βi

≺ advance(v).

Proof Since Pi enters view v, which is not the first view

of epoch e, Pi triggers advance(v) at line 9: Pi could not

have triggered advance(v) neither at line 3 nor at line 30

since v is not the first view of epoch e. Due to line 4, the

measure(·) method was invoked on view timer i before

advance(v) is triggered; we denote by Invv this specific

invocation of the measure(·) method on view timer i and

by Expv its expiration event (processed by Pi just before

triggering advance(v)).
When Pi triggers advance(v) (at line 9), we have that

epochi = e and view i = j. Moreover, when processing

Expv , we have that epochi = e and view i = j − 1 (due

to line 6). By Lemma 7, when Pi has invoked Invv , we had

the same state: epochi = e and view i = j − 1. Process Pi

could have invoked Invv either (1) at line 2, or (2) at line 8,

or (3) at line 29. Since Pi triggers advance(·) immediately

after (line 3, line 9, or line 30), that advance(·) indication is

for v − 1 (as epochi = e and view i = j − 1 at that time).

Hence, advance(v − 1)
βi

≺ advance(v). □
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