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Key points:  

● Generality: deepBreaks is a new computational tool for identifying genomic 

regions and genetic variants significantly associated with phenotypes of interest. 

● Validation: A comprehensive evaluation of deepBreaks performance using 

synthetic data generation with known ground truth for genotype-phenotype 

association testing.  

● Interpretation: Rather than checking all possible mutations (breaks), 

deepBreaks prioritizes statistically promising candidate mutations. 

● Elegance: User-friendly, open-source software allowing for high-quality 

visualization and statistical tests.  

● Optimization: Since sequence data are often very high volume (next-generation 

DNA sequencing reads typically in the millions), all modules have been written 

and benchmarked for computing time.  

● Documentation: Open-source GitHub repository of code complete with tutorials 

and a wide range of real-world applications. 
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Abstract 

Sequence data (e.g., nucleotides or amino-acids) are critical for advancing our understanding of 

biology. However, there are many challenges with investigating and analyzing sequencing data 

and genotype-phenotype associations, including non-independent observations, large noise 

components, nonlinearity, colinearity, and high dimensionality. Therefore, machine learning (ML) 

algorithms are well suited for analyzing sequence data as they can capture nonstructural patterns 

of relationships with the biology of interest as genotype-phenotype associations. Nevertheless, 

flexible and user-friendly implementations of ML approaches are lacking, especially ones that take 

advantage of the unique features of high-volume DNA sequence data. Here, we present 

deepBreaks, a generic approach with unified data analysis steps that identify the most important 

positions in sequence data that correlate with phenotypic traits of interest. deepBreaks compares 

the performance of multiple ML algorithms and prioritizes the most important positions based on 

the best-fit models. deepBreaks is open-source software with documentation available online at 

https://github.com/omicsEye/deepBreaks. 

Main 

We developed a generic and computationally optimized tool, namely deepBreaks, to identify 

and prioritize important sequence positions in genotype-phenotype associations. Our approach 

is as follows: first, we prepare a training dataset based on the provided raw sequencing data. 

Second, we fit multiple machine learning algorithms and, based on their cross-validation score, 

select the best model and use the model to predict the phenotype of interest based only on its 

provided sequence and then try to interpret this model in order to find the most discriminative 

positions of the sequence. By doing this, we not only assess the possibility of the predictability 



of the phenotype based on the sequences but also use the most accurate predictive models to 

find out and prioritize the positions in the sequence that are more predictive. 

Advancements in sequencing and computational technologies have provided researchers with 

large-scale data, and the development of tools for analyzing such data is growing1. A great 

challenge in developing predictive sequence-to-phenotype models is to deal with linear and 

non-linear effects and consider the whole sequence simultaneously, which makes machine 

learning algorithms suitable to address these problems2. Decoding and interpreting results from 

predictive models are essential to make biological inferences3,4. Fitting machine learning and 

deep learning models on sequence data to model traits has been studied in various frameworks 

ranging from predicting drug resistance5–7 to cancer detection8,9. deepBreaks is developed to 

rank the performance of machine learning models that best fit the data and then, based on 

those models, prioritize and report the most discriminative positions of the sequence with 

respect to a given phenotype of interest. Early efforts in this field were implemented by 

proposing a Bayesian method and utilizing all the marker data simultaneously to predict the 

phenotype10. Machine learning approaches for genotype-phenotype associations have evolved, 

and some support more effective and reproducible use of multivariate genotype data for the 

prediction of quantitative traits11. Tools such as KOVER predict phenotypes based on reference-

free genomes using k-mers (short DNA sequences) as the features, chi-square tests for filtering 

redundant features prior to modeling12, and for the features that have exact equal values, assign 

the same importance score12. Studies have attempted various approaches for predicting 

phenotypes based on the sequence, including using dense neural networks13, convolutional 

neural networks14,15, and ensemble learners14. Comparing the outcome of different machine 

learning algorithms shows that there is no universally best predictive algorithm for the diversity 

of genotype-phenotype studies13. To find the best model that is suited for a given set of data, 

researchers compared several models and made their inferences about the feature importances 

only based on the best model16. 

In this paper, we have evaluated the performance of the deepBreaks approach on simulated 

data and assessed its performance in finding the important variables in a dataset with the 

ground truth. We have also applied deepBreaks to multiple datasets to show its wide 

applications and power to detect the most important positions in both nucleotide and amino acid 

sequence data. In the methods section, we elaborate on the steps that deepBreaks takes to 

prepare the data, fit models to the data, and interpret the results. deepBreaks is a generic 

software that can be applied in sequence-to-phenotype studies to show the feasibility of first 

predicting the phenotype based on a sequence and then determining what are the most 

discriminative parts of the sequence in predicting the phenotype. 



Results  

Methods overview 

 
Figure 1: deepBreaks overall workflow. a) deepBreaks begins with sequencing data organized in a multiple 

sequence alignment (MSA) format. Sequences can be nucleic acids or amino acids. The phenotype of interest is also 

a required input parameter. Preprocessing steps are conducted to recode the sequencing data and phenotype into a 

format usable by the machine learning models. A modeling step follows in which various models are attempted and 

ranked. The best model is probed to identify the positions which best predict phenotype. These results are then 

merged and presented to the user as visualizations and interpretable tables. b) The illustrated preprocessing steps 

implemented in the deepBreaks pipeline are essential for the approach efficiency by summarizing positions used in 

analyses.  

 

The input data of deepBreaks is a Multiple Sequence Alignment (MSA) file containing𝑋𝑖 =(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚), 𝑖 ∈ {1,2, . . . , 𝑛}, n sequences of length 𝑚 and a phenotypic metadata, with a 

vector of size n, and 𝑝𝑖s, as phenotypes which are related to the 𝑖𝑡ℎ sequence. 𝑥𝑖𝑗 (the 𝑗𝑡ℎ 

element of the sample 𝑖) can be a subset of {𝐴, 𝑇/𝑈, 𝐶, 𝐺}, or any one-letter character 

representing an amino acid. Phenotypes (𝑝𝑖s) can be continuous measures such as height, 

BMI, categorical, or binary variables such as obese/healthy weight/underweight, antibacterial 

resistance/sensitivity, or mild/severe cases of a disease. deepBreaks has three phases: i) 

preprocessing, ii) modeling, and iii) interpreting (Fig. 1a). In the data preprocessing phase, 

illustrated in Fig. 1b, we deal with imputing missing values, ambiguous reads, dropping zero-

entropy columns, clustering correlated positions (features), and dropping redundant features 

which do not carry a significant amount of information in association with the phenotype under 

study. To keep track of positions before starting to drop the columns, all of them (by default) are 

named from 𝑝1 to 𝑝𝑚. The names of the columns (positions) in the dataset are fixed, and 

dropping certain columns does not change the position names in a sequence. To identify the 

colinearity of features, we cluster features based on their pairwise distances. Then we cluster 

them using the density-based spatial clustering of applications with noise (DBSCAN) method17 

algorithm and take the feature that is the closest to the center of the cluster as the 

representative of the cluster in the training data set18. Two sets of models for continuous or 

categorical phenotypes are incorporated in our training model phase, and a complete list of 

these models with their default parameters is available in the Methods section. For model 

comparison, deepBreaks by default uses a 10-fold cross-validation approach and ranks the 

models based on their average cross-validation score. The default performance metrics for 



regression and classification that deepBreaks uses are mean absolute error (MAE) and F-score, 

respectively. A complete list of other performance metrics is available in the Methods section. 

For interpreting the contribution of the positions in the sequence to the predictive models, we 

use the feature importance and coefficients. These importance values are then scaled to 0 and 

1 (maximum importance). We also consider the same importance values for features that have 

been clustered together. We provided a detailed elaboration of the pipeline in the Methods 

section. 

 

Simulation Study 

In the data preprocessing steps, we first, drop the redundant positions based on the p-values of 

a statistical test, and then to deal with the colinearity of features, we calculate the distance 

between features and then cluster them into groups of features and select one of them as the 

representative of the group. We designed a simulation study to assess the effects of these steps 

and the changes in the threshold for p-value and distance metric on the performance of three 

different models (Adaboost, Decision Tree, and Random Forest) and their ability to estimate the 

true effect size of the groups of features in different datasets. 

Each data set is simulated based on this formula: 

 
 

 

We first created a data matrix of size 𝑋𝑛×𝑚 with binary data, then we selected a subset of its 

features as informative. The corresponding regression coefficients of these selected informative 

features were then sampled from a normal distribution and the rest was considered zero. We 

call this data set, the initial dataset which has no colinear features. Then, based on the initial 

dataset, we created datasets with colinear features. To add a colinear feature, we randomly 

selected one of the informative features, and then replaced 40% of its values with random 

samples from a binary distribution. We repeat this process 5 times and each time use the data 

set created in the last step as the initial data set. So, we start with data with no colinear features 

and gradually increase the number of colinear features. Fig. 2 illustrates three steps of the 

simulation on a sample dataset with 10 features (4 informative, 6 redundant). 



 
Figure 2: Creating training datasets with different levels of multicolinearity. The first dataset has independent 

features and only some of them are informative. Then, we start to replace the redundant features with samples from 

the informative features to add colinear features to the training dataset. For example, we took a sample from f1 and 

replaced it with f5. 

 

The correlations between sampled features in the dataset are a random number between 0.6 to 

1 (exactly the same). With each data frame, we train models with different combinations of 

thresholds for correlation (no clustering, 0.7, and 0.9) and different thresholds for p-value (no 

filtration and 0.2) and then run 5 times repeated 10-fold cross-validation on the data set. Finally, 

each data set with each of the combinations results in 50 performance metrics for the model 

and one value for the correlation between the estimated effect size and the true effect size. We 

used two different datasets as the initial datasets. One has 1000 samples, and 1000 features 

with 10 informative features, and the other have 1000 samples and 2000 features with 20 

informative features.  

We can see that in Fig. 3, the performance of the models stays in the same range, and 

preprocessing methods do not affect the predictive performances. However, if we do not cluster 

the colinear features together, we can see that the ability of the models to estimate the true 

effect sizes decrease significantly (Fig. 3a-b, e-f). The complete code for simulation and 

visualization of the results is available at https://github.com/omicsEye/deepbreaks/simulation. 

 



 
Figure 3: A simulation study. a-d results of simulation on a dataset with 1000 samples, 1000 features with 10 

informative features. e-h results of simulation on a dataset with 1000 samples, 2000 features with 20 informative 

features. boxplots show the validation scores of each model with different levels of colinearity (x-axis) and line plots 

show the correlation between the true effect sizes and the predicted effect sizes by models. colinearity (x-axis) zero 

means the starting dataset. a,e, using no clustering and no filtration. b,f, using no clustering but filtering redundant 

features with a p-value of 0.2. c,g, using clustering with a threshold of correlation 0.7 and no filtration. d,h, using 

clustering with a threshold of correlation of 0.7 and filtering redundant features with a p-value of 0.2. 

 

deepBreaks identifies amino acids associated with color sensitivity  

Opsins are genes involved in light sensitivity and vision, and when coupled with a light-reactive 

chromophore, the absorbance of the resulting photopigment dictates physiological phenotypes 

like color sensitivity. We analyzed the amino acid sequence of rod opsins because previously 

published mutagenesis work established mechanistic connections between 12 specific amino 

acid sites and phenotypes19. Therefore, we hypothesized that machine learning approaches 

could predict known associations between amino acid sites and absorbance phenotypes. We 

identified opsins expressed in rod cells of vertebrates (mainly marine fishes) with absorption 

spectra measurements (λmax, the wavelength with the highest absorption) (Fig. 6a). The dataset 



contains 175 samples of opsin sequences including samples with experimental mutations. We 

next applied deepBreaks on this dataset to find the most important sites contributing to the 

variations of λmax. We found sites 37, 39, 50, 83, 124, 127, 137, 158, 165, 173, 225, 261, 292, 

and 299 to be important in terms of affecting the λmax (Fig. 6b). Some of these sites are known 

from published mutagenesis experiments19 to strongly affect λmax (Fig. 4d). Fig. 4c illustrates the 

effects of mutations in positions 261 and 292 of the sequences. 

 
Figure 4: Anatomy of the eye involved in light sensing. a, the overall view from a vertebrate eye, structure of the 

retina, and position of opsins in rod and cone cells. b, important positions in opsin amino acid sequences. c, functional 

changes in positions 292 and 50 as exemplary. d, the importance score of experimentally validated positions, yellow 

color points, and novel positions below points above the importance score threshold colored as a dashed line.  

 

deepBreaks identifies HIV regions with potentially important functions  

Subtypes of the human immunodeficiency virus type 1 (HIV-1) group M are different in the 

envelope (Env) glycoproteins of the virus. These parts of the virus are displayed on the surface 

of the virion and are targets for both neutralizing antibody and cell-mediated immune responses20. 

The third hypervariable domain (V3) of HIV-1 gp120 is a cysteine-bounded loop structure usually 

composed of 105 nucleotides and labeled as the base (nu 1:26 and 75:105), stem (nu 27:44 and 



54:74), and turn (nu 45:53) regions20. Among all of the hyper-variable regions in gp120 (V1-V5), 

V3 is playing the main role in the virus infectivity21. Here we use deepBreaks to identify regions in 

the V3 loop that are important in terms of associating the V3 sequences to subtypes B and C. We 

used the Los Alamos HIV Database22 (www.hiv.lanl.gov) to gather the nucleotide sequences of 

the V3 loop of subtypes B and C. We then dropped the repeated samples from the same patients 

and the final dataset contained 35,424 sequences with a combination of 24,042 (67.87%) 

sequences of subtype B and 11,382 (32.13%) sequences of subtype C. The maximum length of 

the sequences was 105 nucleotides. Three distinct communities (clusters) with potentially 

different biological functions were detected using the omeClust23 based (a zoom-out approach) 

on V3 loop distances between samples suggesting there are variations in the V3 loop with 

potential functions(Fig. 5a). deepBreaks is a zoom-in approach to identifying important mutations 

(Fig. 5b-d). The most important changes are in the stem and turn parts of the V3 loop (Fig. 5c). 

Having a T in position 39 is more prevalent in subtype B, and subtype C mostly has a G in this 

position (Fig. 5d).  

 

Figure 5: Classification of HIV-1 subtypes B and C based on nucleotide sequences of the V3 loop. a, cluster analysis 

of the sequences with ground truth labels from the Los Alamos National Lab database. b, results of 10-fold cross-

validation of top 5 classification models, trained to predict the subtypes of the HIV-1 based on the V3 loop. c, important 

positions reported by deepBreaks based on the results of the top three models labeled with the sections of the 

sequence. d, stacked bar plots of the top 5 positions that contribute to the classification models.  

 

Novel insights of niche associations in the oral microbiome 

Microbial species tend to adapt at the genome level to the niche in which they live. We 

hypothesize that genes with essential functions change based on where microbial species live. 

Here we use microbial strain representatives from stool metagenomics data of healthy adults from 

the Human Microbiome Project24. Each microbial strain representative is a concatenation of 

marker genes using the StrainPhlAn tool25. The input for deepBreaks consists of 1) an MSA file 



with 1006 rows, each a representative strain of a specific microbial species, here Haemophilus 

parainfluenzae, with 49839 lengths of only marker genes used by strainPhlAn; and 2) labels for 

deepBreaks prediction are body sites from which samples were collected: buccal mucosa, 

supragingival plaque, and tongue dorsum. deepBreaks predicts an influential mutation at location 

2282 in the PARA_08970 gene (Fig. 6a). Location wise buccal mucosa, and supragingival plaque 

are closer26 and have similar mutation rates compared to tongue dorsum (Fig. 6b). The mutation 

is located in the PARA_08970 gene, membrane-spanning protein in TonB-ExbB-ExbD complex, 

which can have a function related to Haemophilus parainfluenzae clades in different oral sites. 

This suggests environmental conditions such as pH and temperature in oral sites cause microbial 

species mutation to adapt to the niche they live.  

 
Figure 6: Mutations in Haemophilus parainfluenzae from human oral systems are associated with sampling 

sites. a, aggregated importance of positions across the top three models. b, stacked barplot of two top positions 

showing the frequency of nucleotides in each position for different niches. 

 

deepBreaks reveals important SARS-CoV-2 regions associated with Alpha and 

Delta variants 

Variants occur with new mutations in the virus genome. Most mutations in the SARS-CoV-2 

genome do not affect the functioning of the virus. However, mutations in the spike protein of 

SARS-CoV-2, which binds to receptors on cells lining the inside of the human nose, may make 

the virus easier to spread or affect how well vaccines protect people. Other mutations may lead 

to SARS-CoV-2 being less responsive to treatments for COVID-1927. Variants of SARS-CoV-2 

have been categorized into multiple variants, but based on their effect on public health and five 

of these — Alpha, Beta, Delta, Gamma, and Omicron — have been labeled as variants of 

concern and associated with enhanced transmissibility and increased virulence28,29. We used 

the publicly available data from GSAID30 and obtained 10,000 sequences of spike protein region 

for SARS-CoV-2 samples of the Alpha variant — one of the first variants of concern identified by 

the WHO — and 10,000 sequences of the spike protein region for SARS-CoV-2 samples of the 

Omicron variant — one of the newest variants of concern identified by the WHO. We used 

MAFFT algorithm31 with PAM 20032 to align these sequences. The final data set after dropping 

the replicates was consist of 9863 sequences of the Alpha variant and 9618 sequences of 

Omicron variant (19481 total). Then, we used deepBreaks to analyze the data and find the most 

important (predictive) positions in these sequences in terms of classifying the variants (Fig. 7a). 

The mutations in this part of the sequence were highly correlated and happened almost 



concurrently. We have shown 6 of the positions with mutations in these sequences and their 

detailed changes in Fig. 7b.  

 
Figure 7: Classifying the SARS-CoV-2 variants based on the spike protein sequences. a, important positions in 

the spike protein (S) of SARS-CoV-2 in terms of predicting Alpha and Omicron variants. b, details of how the mutations 

appear in variants. 

 

Discussion 
In this study, we provided an integrated generic approach to find the most discriminative 

changes in a sequence in association with a given phenotype of interest. Our approach is based 

on first training accurate machine learning models and then using their information to interpret 

the predictive power of each position in the sequence data. However, having an accurate 

predictive model for sequence-to-phenotype studies is a challenging task. One of the major 

challenges in training an accurate model is rooted in the high-dimensional MSA files with 

lengthy sequences and a limited number of samples, known as the curse of dimensionality33. 

The other tremendous challenge for training and interpreting the models is the colinearity 

between positions of an MSA file which have a negative effect on the performance of the 

models18. We showed that by implementing multiple filtration methods in the data preprocessing 

step, deepBreaks not only finds the most accurate model based on the given data but also 

allows for the interpretation of the trained models. To justify our approaches in terms of dealing 

with the redundancy of features and multicollinearity, we also conducted a simulation study on 

multiple datasets with different levels of colinear features. The results of these simulation 

studies showed that our method not only helps in reducing the dimensionality of the data by 

clustering the colinear features and dropping the redundant features but also assists the models 

in being able to estimate the importance of features with the presence of different levels of 

multicollinearity. 

We also evaluated the performance of deepBreaks on real data with 5 different datasets. 

deepBreaks pointed out the important positions in the sequences of each of the data sets which 

have been mentioned in the literature without any prior knowledge of the problem and only 

based on the provided samples. Moreover, in each study, important positions were reported that 

have not been mentioned in the literature before, opening new topics for further research. 

Finally, by applying deepBreaks in different scenarios ranging from predicting a continuous 

phenotype, such as light sensitivity with amino acid sequences of opsins, to categorical 

phenotypes, such as different niches of Haemophilus parainfluenzae based on its genome 

sequence, and finding significant results, we showed its wide applicability. To facilitate the 



usage of this tool, we have provided it as an open-source python library with various sample 

codes and tutorials for both installation and usage at https://github.com/omicsEye/deepbreaks. 

Data Availability 
All of the data used in this study and the Jupyter notebooks that were used to produce the 

results are available at https://github.com/omicsEye/deepbreaks. 
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Methods  

Approach 
Machine learning (ML) is a field of inquiry devoted to understanding and building methods 

that 'learn', that is, methods that leverage data to improve performance on some set of 

tasks34. Supervised learning, which is a branch of ML, aims to find a function 𝑓 that maps 

input data to output variable 𝑦 through a training set of 𝑡 =  {(𝑋1, 𝑝1), (𝑋2, 𝑝2), . . . , (𝑋𝑛 , 𝑝𝑛)}. A 

supervised learning algorithm takes 𝑋𝑖 as input and produces 𝑓(𝑋𝑖) as an estimation for the 𝑝𝑖. Supervised learning algorithms are designed to enhance their performance by 

minimizing the distance ||𝑓(𝑋𝑖) − 𝑝𝑖|| 35. In our case, 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚), 𝑖 ∈ {1,2, . . . , 𝑛} are 

sequences of length 𝑚 (𝑚 nucleotides or amino-acids) and 𝑝𝑖s are phenotypes related to 

the 𝑖𝑡ℎ sequence. For example 𝑥𝑖𝑗 (the 𝑗𝑡ℎ element of the sample 𝑖) can be a subset of {𝐴, 𝑇/𝑈, 𝐶, 𝐺}, or any amino acids. Phenotypes (𝑝𝑖s) can also be a continuous measure such as 

height, BMI, or categories such as obese/not obese, antibacterial resistance, or mild/severe 

cases. Assuming that raw data (sequences and phenotype) are provided, actions are still 

required to prepare the data for machine learning algorithms. deepBreaks has three phases: i) 

preprocessing the data, ii) fitting models to preprocessed data and comparing them, iii) 

interpreting the results of top predictor(s) by reporting tables and visualizations. 



 

Preprocessing 
Data preprocessing is a fundamental step for any ML algorithm. Sequence data may contain 

missing values, ambiguous reads, zero-entropy columns, correlated positions (features), and 

redundant features which do not carry a significant amount of information in association with the 

phenotype under study. The deepBreaks pipeline for preprocessing starts with dropping 

columns in the dataset that contain missing values over a certain threshold. The default 

threshold is 80% of the number of samples. So, if we have 1000 samples while preserving the 

position names, we drop all the positions that have over 800 missing values from the training set 

(this value can be changed based on the user preference). Dropping the zero-entropy (constant) 

features from the dataset is the next step. It is worth mentioning that before starting to drop the 

columns, all of them (by default) are named from 𝑝1 to 𝑝𝑚. The names of the columns 

(positions) in the dataset are fixed, and dropping certain columns does not change the position 

names in a sequence. For the remaining missing values, if the number of missing values are 

above a certain threshold (default 15%) we impute them by the term ‘GAP’, and if they are 
below that threshold we use the mode (most frequent) of reads in each position to impute the 

missing values. Some columns may also have ultra-rare cases which have a share of below 2% 

of the reads in a position. These values are also replaced by the mode of that column. After this 

step, as we modified the reads, positions are again checked for entropy, and positions with zero 

entropy will be dropped from the training set. The next step is to perform chi-square (categorical 

phenotype) or Kruskal-Wallis (continuous phenotype) tests to reduce the number of positions in 

the training data set and drop the redundant ones. We use these statistical tests to assess the 

significance of each position by running tests on all the positions against the phenotype one by 

one. Those features where the p-value of their test against the phenotype is less than a 

threshold36 (default p-value = 0.25) will be dropped. A list of all features and their test p-values 

will be provided as a report to the user. As we consider each position in the sequences as a 

feature of our training dataset, we need to check for colinearity between our predictive variables, 

as it can cause issues for parameter estimation18. To check for the relationship between 

positions, we first one-hot encode the features and drop one feature of each position to avoid 

adding colinear features to the training dataset. Then, we use a distance function that calculates 

the pairwise distances between features. The list of available metrics are spearman 

correlation37, hamming38, jaccard39, normalized mutual information40, adjusted mutual 

information41, and adjusted Rand score42. The result of this step is a symmetric distance matrix 

with values between 0 (being exactly the same) to 1 (uncorrelated). We then use this symmetric 

matrix of distance values and feed it into the density-based spatial clustering of applications with 

noise (DBSCAN) method17 for clustering the features based on their pairwise distances. The 

reason behind this is to cluster the features that provide the same information18. After that, we 

select one feature from each cluster as the representative of that cluster and drop the rest of the 

features in that cluster from the training set. Although we drop the rest of the features in each 

cluster except the representative, we keep the information of the members of the clusters for 

interpretation after the modeling step. The default parameters of the DBSCAN are epsilon 

(distance between centers) equal to 0.2 and the minimum points for a cluster are equal to 2.  

 



Models 
We use different sets of models for continuous or categorical phenotypes. For continuous 

phenotypes, we fit linear regression, Ridge Regression43, Lasso Regression44, Bayesian 

Regression, Lasso Least Angle Regression45, Huber Regressor 46, Extremely Randomized 

Trees (Extra Trees)47, Extreme Gradient Boosting (xgboost)48, Light Gradient Boosting Machine 

(lightgbm)49, Random Forest50, Decision Tree51, and AdaBoost52. For problems with a 

categorical phenotype, we use Extra Trees, xgboost, lightgbm, Random Forest, Decision Tree, 

AdaBoost, Gradient Boosting, and Logistic Regression. For all of the above-mentioned models, 

we use the default hyperparameters from the scikit-learn library in python53 and a grid search 

(expandable by user preference) parameter set that is provided in the documentation. For 

model comparison, deepBreaks by default uses a 10-fold cross-validation approach and ranks 

the models based on their average cross-validation score. K-fold cross-validation is a 

resampling method that partitions the whole dataset into k separate equal-size parts and then 

uses k-1 parts for training the model and 1 part for testing the performance. This process is 

repeated k times, and the average score of all k models is called the cross-validation score 

(SFig. 2).  

The default performance metrics for regression and classification that deepBreaks uses are 

Mean Absolute Error (MAE) and F-score.  𝑀𝐴𝐸 =  ∑𝑛𝑖=1 |𝑓(𝑋𝑖)−𝑝𝑖|𝑛  = ∑𝑛𝑖=1 |𝑒𝑖|𝑛  , 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  2𝑟𝑒𝑐𝑎𝑙𝑙−1+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 

The default list of metrics that deepBreaks reports are provided in the documentation and the 

user and provide predefined custom metrics or a set o metrics from the scikit-learn library in 

python53. 

 

Interpretation 
For interpreting the contribution of sequence positions to the predictive models, we use the 

feature importance, coefficients, and weights as different algorithms have different kinds of 

output. For xgboost54 and lightgbm55 the reported feature importance represents the number of 

times a feature appears in a tree. For AdaBoost, random forest, decision tree, extra tree, and 

gradient boosting the importance of a feature is its Gini importance which is computed as the 

normalized total reduction of the criterion brought by that feature53. 

If we have 𝑁 samples that reaches the node 𝑗 of a tree and 𝐺 be the impurity of the node 𝑗, the 

importance of node 𝑗, 𝑖𝑜𝑛𝑗  is calculated as follows: 

 𝑖𝑜𝑛 𝑗 = 𝑁𝑗𝐺𝑗 − 𝑁𝑙𝑒𝑓𝑡 𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒(𝑗)𝐺𝑙𝑒𝑓𝑡 𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒(𝑗) − 𝑁𝑟𝑖𝑔ℎ𝑡 𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒(𝑗)𝐺𝑟𝑖𝑔ℎ𝑡 𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒(𝑗) 
Based on this, the feature importance value of the 𝑖𝑡ℎ feature is: 𝑓𝑖𝑖 = ∑𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 𝑖𝑜𝑛𝑗∑𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑜𝑛𝑘  

And then we can normalize the feature importance value for the 𝑖𝑡ℎ feature by dividing it with the 

sum of the importance of all the features: 𝑛𝑜𝑟𝑚𝑓𝑖𝑖 = 𝑓𝑖𝑖∑𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑖𝑗 



These calculations are just based on one tree and in other tree-based algorithms such as 

random forest, AdaBoost, and extra tree, the final importance of a feature is its average over all 

of the fitted trees. For the linear models, the regression coefficients or weight is considered as 

the feature importance53. 

In the preprocessing phase, we one-hot encoded the positions into training features, so, each 

position (based on the number of its unique characters), is transformed into one or more than 

one feature. For example, if position 𝑝𝑖 consists of {𝐴, 𝑇, 𝐶}, its features are 𝑝𝑖_𝐴 and 𝑝𝑖_𝑇 in the 

form of one-hot encoded features (we drop 𝑝𝑖_𝐶 to avoid colinearity). These features have 

separate importances and we sum the absolute value of their importance and the importance of 

position 𝑝𝑖 is the sum of importances of the feature 𝑝𝑖_𝐴 and 𝑝𝑖_𝑇. After that, to normalize the 

importances, all the importances will be divided by their maximum value. We consider zero 

importance for all the positions that have been dropped during the preprocessing steps. For all 

those positions that were in the same group and dropped based on their distance values and 

DBSCAN clustering, we consider the same feature importance value. deepBreaks by default 

considers the top three best-fitted models, but the user can change this number. We then 

calculate the average importance value for each feature over the top selected models. 

deepBreaks creates reports of the models and merged results separately. 

 

deepBreaks Output 
deepBreaks creates reports of 1) p-values from statistical tests for each position against a 

phenotype, 2) the related distance matrix, 3) clusters of correlated positions, 4) a table of fitted 

models with their performance metrics, 5) feature importance values for each of the top models 

and their merged results, 6) plots for importance values based on individual models and merged 

results 7) box plot (continuous phenotype) or stacked bar plot (categorical phenotype) for most 

discriminative positions. 

In the data preprocessing we use NumPy56, Pandas57 and SciPy58 python libraries. For model 

comparisons and cross-validation pipeline, we use scikit-learn53, xgboost 48, and lightgbm49. 

Visualizations generated by deepBreaks make use of the seaborn59 and matplotlib60 libraries in 

python. We used deepBreaks 1.0.1 for all the applications and evaluations in this manuscript. 
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