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Abstract
Background: Endometriosis is a widespread disease in reproductive age. Epidemiological studies reported
that patients with endometriosis had an increased risk of developing endometriosis-associated ovarian
cancer (EAOC). The present study aimed to identify shared genes and key pathways that commonly
interacted between EAOC and endometriosis.

Methods: The expression matrix of ovarian cancer and endometriosis were collected from the Gene
Expression Omnibus database. The weighted gene co-expression network analysis (WGCNA) was used to
construct co-expression gene network. Functional enrichment analyses were conducted to clarify the
potential regulatory mechanisms. Protein-protein interaction (PPI) network and machine learning
algorithms were applied to identify characteristic genes. CIBERSORT deconvolution algorithm was used
to explore the difference in tumor immune microenvironment. Receiver operating characteristic curves
were utilized to assess the clinical diagnostic ability of hub genes. Furthermore, diagnostic nomogram
was constructed and evaluated for supporting clinical practicality.

Results: We identi�ed 262 shared genes between EAOCand endometriosis via WGCNA analysis. They
were mainly enriched in cytokine-cytokine receptor interaction, which may be considered a common
mechanism between EAOC and endometriosis. After PPI network and machine learning algorithms, we
recognized two characteristic genes (EDNRA, OCLN) and established a nomogram that presented an
outstanding predictive performance. The hub genes demonstrated remarkable associations with
immunological functions. OCLN were highly upregulatedin ovarian cancer compared to non-tumor
tissues, while expression levels of EDNRA were signi�cantly downregulated in ovarian cancer samples.
Survival analysis indicated that dysregulated expressions of EDNRA and OCLNwere closely correlated
with prognosis of ovarian cancer patients. GSEA analyses revealed that the two characteristic genes were
mainly enriched in the cancer- and immune-related pathways. Gene drug interaction analysis found 15
drugs compound that interacted with the hub genes.

Conclusion: We identi�ed two hub genes (EDNRA, OCLN) and constructed a nomogram to predict the risk
of EAOC based on WGCNA analyses and machine learning algorithms. They can be used as effective
predictive biomarkers for detecting EAOC. Our �ndings pave the way for further investigation of potential
candidate genes and will aid in improving the diagnosis and treatment of EAOC in endometriosis
patients.

Introduction
Endometriosis is a disease caused by the implantation of active and growing ectopic endometrium in the
ovary, commonly in women of childbearing age, which is benign but with invasive and recurrent
malignancy-like behavior [1, 2]. Epidemiological studies reported that patients with endometriosis,
especially ovarian endometriosis cysts, had an increased risk of developing epithelial ovarian cancer,
signi�cantly higher than the general population, and 0.7%-2.5% of endometriosis was associated with
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malignant transformation to endometriosis-associated ovarian cancer (EAOC) [3, 4]. The main clinical
features of patients at risk of endometriosis malignancy are: (i) a long history of endometriosis (> 10
years); (ii) having endometriosis at an early age; (iii) a history of endometriosis-related infertility and/or
infertility treatment; and (iv) ovarian endometriosis cysts. Sampson originally proposed the criteria of
EAOC caused by endometriosis included that the tumor needed to be situated next to unequivocal foci of
endometriosis, no other primary tumor present, and the presence of tissues similar to endometrial stroma
surrounding epithelial glands [5]. Growing number of evidences demonstrated that atypical endometriosis
was a precancer lesion for ovarian cancer [6–8]. EAOC patients have a relatively early age of onset and
early clinical stage, with the proportion of stage I patients accounting for approximately 54.2%. Age
factors, economic status, depression, pelvic in�ammatory disease, and endometriosis-related infertility
are high-risk factors for EAOC.

The development of sequencing technologies and bioinformatics has made it possible to investigate the
genetic pathogenesis of disease-disease interactions. This study aimed to identify the co-expression
genes modules and shared genes of EAOC and endometriosis via weighted gene co-expression network
analysis (WGCNA) [9] and machine learning algorithms. WGCNA enables the reconstruction of gene
regulatory networks and the identi�cation of modules of genes with similar expression patterns. By
integrating gene expression data with other omics data, WGCNA provides a comprehensive view of gene
interactions and can help to uncover the underlying biological pathways involved in complex diseases
[10, 11]. Machine learning algorithm has been utilized to identify characteristic genes for several diseases
[12, 13]. Support vector machine - recursive feature elimination (SVM-RFE) [14] algorithm eliminates
super�uous variables and retains only those variables that are relevant to the results. Least absolute
shrinkage and selection operator (LASSO) [15] logistic regression is commonly utilized to narrow down
variables and identify the most appropriate λ for categorization. Random forest (RF) [16] is used to work
with high-dimensional data, construct predictive model and predict the importance of each variable. It is
generally accepted that bioinformatics and machine learning algorithms can be effectively employed to
identify shared genes and biomarkers for forecasting EAOC.

Our study revealed that EAOC and endometriosis shared 262 genes. They were mainly enriched in
cytokine-cytokine receptor interaction, which may be considered a common mechanism between EAOC
and endometriosis. After machine learning algorithm in the con�rmation cohort, we identi�ed two hub
genes (EDNRA, OCLN) and established a nomogram. They can be used as effective predictive biomarkers
for detecting occult EAOC in endometriosis patients. Additionally, the dysregulated degree of immune cell
in�ltration and association of hub genes with immune cells were initially discussed.

Material And Methods

Data sources and preprocessing
The expression pro�les of ovarian carcinoma were collected from the Gene Expression Omnibus (GEO)
database. In total, four available datasets were collected via R package “GEOquery”. The high throughput
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sequencing dataset GSE157153 including 29 ovarian carcinoma tissues and 37 endometriosis tissues
was used to explore the shared genes between endometriosis and endometriosis-associated ovarian
cancer (EAOC). GSE5108 contained 11 ectopic endometrial samples and 11 eutopic endometrial tissues,
GSE18520 consisted of 53 ovarian adenocarcinoma tissues and 10 normal ovary samples. Both of them
were utilized to con�rm the shared genes. Furthermore, the expression matrix of malignant ovarian
samples from The Cancer Genome Atlas (TCGA) dataset and expression pro�le of normal ovarian tissues
from the Genotype-Tissue Expression (GTEx) also served as a validation dataset. The study �owchart is
shown in Fig. 1.

WGCNA
We constructed co-expression gene networks of endometriosis and EAOC using WGCNA in order to
investigate the underlying biological processes and common genes involved in disease progression. The
data were preprocessed by calling the "WGCNA" function package, and the "goodsamplegenes()" function
was used to check whether there were abnormal genes in the data and select appropriate thresholds to
reject outliers. The clinical feature data were loaded, and the gene-feature clustering tree was drawn to
complete the construction of the co-expression network and the selection of modules. The
"pickSoftThreshold" algorithm chose an appropriate "soft" threshold (β) to calculate the adjacency matrix
and to obtain a biologically signi�cant scale-free network. The clustering dendrogram was drawn for
module selection, and the minimum module capacity and module shear height were set to merge
modules with high similarity. The EAOC gene set in the modules that were highly correlated with ovarian
carcinoma. Scatter plots of gene signi�cance (GS) and module membership (MM) in the signi�cant co-
expression modules were plotted to clarify the signi�cance of genes in the selected modules.

Functional enrichment analysis
Gene set enrichment analysis (GSEA) was performed to clarify the potential regulatory mechanisms
responsible for the disease progression of endometriosis to EAOC, and the gene set
(“c2.cp.kegg.v7.4.symbols.gmt”) were obtained from the Broad Institute database. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment were also conducted.
Gene Set Variation Analysis (GSVA) was utilized to reveal the differences in signaling pathways between
the endometriosis and EAOC by "GSVA" R package. The selected gene set “h.all.v7.4.symbols.gmt” was
got from the Molecular Signature Database (MSigDB). All these analyses were performed via R packages
“limma”, “clusterPro�ler”, “gseaplot2”, and “ggplot2”.

Con�rmation of shared genes in endometriosis and EAOC
To con�rm the shared genes in endometriosis and EAOC, we applied the differentially expressed gene
(DEGs) analysis in con�rmation dataset GSE157153 including both endometriosis and EAOC tissues with
the cutoff value of adjusted p < 0.05 and |Log2 (fold change)| >1 via “limma” package. The overlap of
above shared genes from WGCNA analyses of GSE5108 and GSE18520 and DEGs in the con�rmation
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cohort GSE157153 were presented by a Venn diagram using EVenn (http://www.ehbio.com/test/venn/#/)
online tool.

Identi�cation of hub genes from protein-protein interaction
network
The STRING database was used for protein interaction analysis for a set of shared genes and the results
were imported into the Cytoscape software to investigate the target modules and hub genes from the
protein-protein interaction (PPI) network. An interaction score with a con�dence level of 0.4 was used as
the cutoff criterion for construction and unconnected nodes were hidden. Then we utilized four different
algorithms (Closeness, Betweenness, MCC, and Degree) via the CytoHubba plugin to identify the top 30
hub shared genes.

Machine learning algorithm
Three machine learning algorithms including SVM-RFE, RF, and LASSO regression analysis were used to
investigate the effectiveness of 23 shared DEGs via packages of “msvmRFE.R”, “caret”, and “glmnet”.
These algorithms were performed to carry out the binary classi�cation of the data through supervised
learning method. Receiver operating characteristic (ROC) curves were calculated based on 23 common
genes from the GSE157153 transcriptome dataset, and area under the ROC curves (AUCs) were used to
evaluate the diagnostic ability of commonly shared genes from the three classi�cation algorithms. The
dataset was randomly divided into training cohort and test cohort in a ratio of 4:1.

Nomogram construction
The common genes obtained as a result of the three classi�cation algorithms were combined to
construct the nomogram via “rms” package. The consistence between the nomogram − predicted
probability of nonadherence and the actual results were evaluated by calibration curves. We also used
decision curve analysis (DCA) to summarize the performance of our shared gene constructed model and
to evaluate whether this model has utility in supporting clinical decisions. All these analyses were
performed via R packages “VRPM”, “rmda”, “ggDCA”, “rms”, and “ggplot2”.

Expression pro�le and survival analysis of shared genes
between endometriosis and EAOC
We calculated the different expression of shared genes between endometriosis and EAOC in the
GSE157153 dataset. Then, these expression pro�les were evaluated in the GSE18520 and TCGA-OV
database. Boxplot was utilized to present the differential expression of these genes. Furthermore, the
overall survival of these shared genes was compared by Kaplan-Meier method according to the package
“survminer” and “survival”. An adjusted p-value < 0.05 was considered statistically signi�cant.

Tumor microenvironment cell in�ltration analyses
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To quantify the relative proportion of immune cells in endometriosis cohort and EAOC cohort, CIBERSORT
deconvolution algorithm was used to evaluate the immune in�ltration proportion of 22 immune cell
subtypes in accordance to the gene expression values. Spearman correlation analysis was used to
display the association between immune in�ltration proportion of immune cells and the expression of
hub genes.

Predicting regulatory targets of transcription factor
The JASPAR TF binding site pro�le database was used to identify transcription factors (TFs) that bound
to shared genes. Additionally, shared genes regulation-related miRNA that negatively correlated with
protein expression were predicted by TarBase (v8.0). The topology networks of TFs-gene and miRNA-gene
were constructed based on the NetworkAnalyst platform.

Evaluation of clinical diagnostic ability of shared genes
ROC curves and AUCs were utilized to assess whether shared genes could well distinguish EAOC patients
from control group via “pROC” package in GSE157153. Additionally, GSE18520 and TCGA-OV datasets
were used to assess and explore the shared genes with the most clinical diagnostic ability.

The protein expressions and shared genes between
endometriosis and EAOC
The Human Protein Atlas (HPA) database (https://www.proteinatlas.org/) mapped all the human proteins
in cells, tissues and organs by integrating multiple omics technologies. We searched the representative
images of immunohistochemistry showing shared genes expression in endometriosis and EAOC tissues.

Gene–Drug interaction analysis
Although there is promising development of novel therapeutic drugs for ovarian cancer, the prognosis of
ovarian cancer is often poor. In the present study, we searched the drug-gene interaction database
(DGIdb) for potential drugs that interacted with common genes between endometriosis and EAOC.

Results

Identi�cation of signi�cant modules via WGCNA
We executed WGCNA to identify co-expressed gene modules in endometriosis- and EAOC-related
datasets. Based on scale independence of > 0.8, the best soft threshold (β) was 4 for GSE5108 to ensure
biologically signi�cant scalefree topology and we found the same soft threshold for GSE18520 (Fig. 2A,
2B). GSE5108 and GSE18520 co-expression networks were separated into 14 and 6 modules,
respectively. Figure 2C and Fig. 2D presented the co-expression modules clustering in endometriosis and
ovarian cancer. Each branch represented each gene, and genes clustered into the same module were
assigned the same color. As depicted in Fig. 2F, correlation heatmaps of module eigengene values with
clinical traits revealed that the Blue and Brown modules were highly correlated with EAOC, while Black
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and Grey modules were predominantly associated with endometriosis (Fig. 2E). Therefore, we identi�ed
and intersected the hub modules to obtain the shared genes between endometriosis and EAOC patients.
Finally, 362 common genes were selected for further investigation.

GO and KEGG pathway enrichment analysis
GO and KEGG pathway enrichment were used based on these 362 common genes between
endometriosis and ovarian cancer. GO enrichment analysis consisted of biological process (BP), cell
composition (CC) and molecular function (MF) analysis. BP mainly correlated with leukocyte cell-cell
adhesion and regulation of leukocyte proliferation. CC was mainly associated with apical part of cell and
collagen-containing extracellular matrix. The MF was mainly related to peptidase regulator activity and
endopeptidase regulator activity (Fig. 3A). The KEGG pathway showed that these shared genes were
mainly enriched in the cytokine-cytokine receptor interaction, intestinal immune network for lgA
production, and IL-17 signaling, indicating that these common genes may be involved in tumorigenesis
and tumor progression in ovarian cancer (Fig. 3B).

Con�rmation of shared genes between endometriosis and
EAOC
To con�rm shared genes between endometriosis and EAOC, we performed the differentially expressed
gene (DEGs) analysis in con�rmation dataset GSE157153, which included both endometriosis and EAOC
tissues, using the cutoff value of adjusted p < 0.05 and |Log2 (fold change)| >1. We identi�ed 1316
upregulated and 1662 downregulated DEGs from these data (Fig. 3C). Heatmap showed the top 30 up-
regulated and down-regulated DEGs in endometriosis and EAOC (Fig. 3D). The shared genes in
endometriosis and EAOC were then intersected with these DEGs. Finally, we obtained a total of 116
common genes, which may play crucial role in both endometriosis and EAOC (Fig. 3E).

Protein-protein interaction network construction
A PPI network of potential targets was constructed via the STRING online database, and a total of 116
common genes were visualized by Cytoscape software. Using the CytoHubba plugin and four distinct
algorithms (Closeness, Betweenness, MCC, and Degree), we identi�ed the top 30 shared genes (Fig. 3F).
Finally, 23 node genes were selected from this network for subsequent analysis.

Machine learning algorithms for hub genes selection
Three classi�cation algorithms were applied in this study to further investigate shared genes between
endometriosis and EAOC for potential biomarkers from 23 potential genes. Twelve genes were found to
have the lowest binominal deviation using the LASSO regression algorithm (Fig. 4A, 4B). SVM-RFE
analysis revealed that the model incorporating four genes owing the lowest error (Fig. 4D). Based on the
importance score provided by the RF algorithm, the top ten genes were chosen and ordered. (Fig. 4C, 4E).
Finally, two hub genes (EDNRA and OCLN) were selected for the nomogram construction and diagnostic
ability evaluation. A Venn diagram was used to display the intersected genes of three machine learning
algorithms (Fig. 4F).
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Nomogram construction and assessment of diagnostic
ability of hub genes
The diagnostic nomogram was constructed and presented that the expression of two characteristic
genes contributed to the clinical diagnosis of EAOC. By integrating the scores corresponding to the
relative expression of each gene, the probability of a patient being diagnosed with EAOC was calculated
(Fig. 5A). Calibration plots demonstrated the diagnostic nomogram's strong prognostic value (Fig. 5B). To
evaluate the clinical practicality of our characteristic genes, DCA was performed, which integrated the
preferences of the patients or clinicians into consideration (Fig. 5C). In this analysis, clinical judgment of
the bene�ts and harms related to diagnostic model will be made. We compared EDNRA, OCLN and
nomogram and found that nomogram demonstrated the best overall net bene�t across a wide and
practical range of threshold probabilities. This study may help clinicians make more accurate diagnoses
of patients with EAOC.

ROC curves and AUCs were utilized in GSE157153 to evaluate the diagnostic performance of EDNRA and
OCLN. The results showed each gene to have exceptional predictive performance as shown below.: OCLN
(AUC: 0.991, 95%CI: 0.976–1.000, Fig. 5D); EDNRA (AUC: 0.922, 95%CI: 0.850–0.993, Fig. 5E); Nomogram
(AUC: 0.993, 95%CI: 0.982–1.000, Fig. 5F). The result showed that the nomogram consisting of EDNRA
and OCLN presenting the best predictive performance and acting a potential diagnostic biomarker for
EAOC. GSE18520 was utilized to validate the diagnostic value and the results showed that the AUCs of
OCLN, EDNRA, and Nomogram were 0.789, 0.860, and 0.900 respectively via ROC curve analyses (Fig. 5J-
L). Furthermore, TCGA-OV was also used to evaluate the predictive performance of EDNRA and OCLN.
The ROC analyses yielded the AUCs of 0.995, 0.867, and 0.996 for OCLN, EDNRA, and Nomogram
respectively, demonstrating good clinical diagnostic ability (Fig. 5G-I).

Immune in�ltration analysis
To compare the difference in immune in�ltration landscape between endometriosis and EAOC patients,
we evaluated the in�ltration levels of the immune cells, immune checkpoint molecular. CIBERSORT
deconvolution algorithm demonstrated that the immune in�ltration levels of plasma cells, T cells
follicular helper, Macrophages M1, and Mast cells activated were signi�cantly elevated while CD8+ T
cells, NK cells activated, macrophages M2, and mast cells resting were remarkably decreased in EAOC
group (Fig. 6A). Correlation analysis showed that T cells CD4 memory resting had the greatest positive
correlation with CD8+ T cells, while B cells memory displayed the highest negative correlation with T cells
regulatory (Tregs) (Fig. 6D). Furthermore, spearman correlation analyses were conducted to investigate
the expression values of hub genes with immune cell in�ltration degree and the results showed that
OCLN was positively correlated with Tfh, macrophages M1, and mast cells activated, while negatively
correlated with CD8+ T cells, mast cells resting, and macrophages M2 (Fig. 6B). EDNRA was positively
correlated with mast cells resting, NK cells activated, and CD8+ T cells, and negatively correlated with
plasma cells, macrophages M1, T cells follicular helper (Tfh), and mast cells activated (Fig. 6C).
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GSVA of hallmark gene sets between EAOC and endometriosis and GSEA functional analysis of hub
genes

GSVA of hallmark gene sets between EAOC and endometriosis patients was performed in the GSE157153
dataset (Fig. 7C). The results showed that the MYC_TARGETS_V1, PI3K_AKT_MTOR_SIGNALING, and
P53_PATHWAY were activated, while NOTCH_SIGNALING, and TGF_BETA_SIGNALING were suppressed in
the progression from endometriosis to EAOC. Furthermore, GSEA analyses were utilized to evaluate
signaling pathways involved in the hub genes. We found that EDNRA and OCLN were mainly enriched in
the tumor-related pathways, including P53 signaling pathway, calcium signaling pathway, cell cycle, focal
adhesion, and MAPK signaling pathway (Fig. 7A, 7B). While OCLN were also associated with enrichment
in immune-related pathways, like systemic lupus erythematosus, cytokine–cytokine receptor interaction,
chemokine signaling pathway, and autoimmune thyroid disease (Fig. 7B).

Identi�cation of TFs and miRNAs interacting with shared
genes
To investigate the regulatory mechanisms of shared genes OCLN and EDNRA in endometriosis and EAOC,
we used NetworkAnalyst tool to explore the TFs and miRNAs. In the TF-hub genes network, we found that
OCLN may be regulated by HNF4A, JUND, and SRF. EDNRA may be regulated by STAT3, FOXL1, and
CREB1(Additional �le 1A). Additionally, miRNA-hub genes network demonstrated that has-mir-129-2-3p
may play core regulatory role. Through network analysis, the TFs and miRNAs connected to two
characteristic genes were shown in Additional �le 1B.

The expression pro�les and protein expression of shared
genes
We compared the expression pro�les of the hub genes EDNRA and OCLN in patients with endometriosis
and EAOC, the results revealed that the expression values of EDNRA were profoundly downregulated
while the expression pro�les of OCLN were signi�cantly upregulated in ovarian cancer (Fig. 8A, 8B). The
above �ndings were also evaluated and validated in the GSE18520 (Fig. 8C, 8D) and TCGA-OV cohorts
(Fig. 8E, 8F). To further investigate the protein expression of EDNRA and OCLN, we searched the
representative images of immunohistochemistry stainings from HPA and found that OCLN proteins
expression levels were signi�cantly elevated in ovarian carcinoma tissues when compared to normal
ovarian tissues, while EDNRA were remarkably overexpressed in normal ovarian samples when compared
to ovarian carcinoma samples (Fig. 8I), which were consistent with the expression patterns of mRNA. To
evaluate the correlation of expression pro�les of hub genes with prognosis of EAOC, Kaplan-Meier curves
were plotted to compare the overall survival difference between high- and low-expression groups. The
results demonstrated that EAOC patients in TCGA-OV dataset with upregulated expression of OCLN and
EDNRA showed signi�cant worse prognosis than those with downregulated expression of EDNRA and
OCLN (Fig. 8G, 8H).

Prediction of potential therapeutic drugs
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Drug-gene interaction analysis was performed to investigate the potential drugs that interact with two
shared genes between endometriosis and EAOC via the DGIdb database. We constructed drug-
corresponding hub genes networks and found 15 potential drugs, including sitaxentan, ambrisentan, and
bosentan. These potential drugs derived from hub genes may play a crucial role in elucidating the
mechanism of genes and cell function in relation to receptor sensitivity (Additional �le 2).

Discussion
Endometriosis is a widespread disease in reproductive age. It causes chronic in�ammatory reaction that
may result in the formation of scar tissue within the pelvis. The expression of cytokines, which were
responsible for the in�ammatory response and its regulation, was shown to be affected by the
dysfunction of the immune system. The activation of immune cells triggered signaling pathways, caused
the release of in�ammatory cytokines and accumulated multiple cell types at the site of in�ammation
[17–19]. In the endometriotic environment, higher levels of IL-17, which modulates immune cells and
perpetuates chronic in�ammation, have been detected [20–22]. Recent research demonstrated that the
immune system actively contributed to the pathogenesis of ovarian cancer, and that local and systemic
immune responses determined tumor growth and clinical outcomes. Immunotherapy for gynecological
cancers may assist in reversing immunosuppression and lymphocyte depletion brought on by previous
treatments. Interestingly, the KEGG pathway showed that these sheard genes were mainly correlated with
the cytokine-cytokine receptor interaction, intestinal immune network for lgA production, and IL-17
signaling pathway. The GO enrichment analysis demonstrated the biological functions of these common
genes were enriched in regulation of immune cells proliferation. These results indicated that the immune
system played a crucial role in the progression of endometriosis and EAOC.

WGCNA is a systematic biological method that uses a topological overlap measure to construct a
network of genes based on their expression pro�les. WGCNA has been widely used to identify gene-gene
interactions, study gene expression patterns, and identify gene regulatory networks. It has also been
applied to a variety of biological problems, from cancer to cardiovascular disease. Herein, there were 14
endometriosis-related and 6 EAOC-related gene modules via WCGNA. The blue and brown modules
exhibited the highest correlation and were deemed EAOC-related modules, whereas the black and grey
modules were applied as endometriosis-related key modules. By intersecting the shared genes of
endometriosis-related and EAOC-related gene clusters, a total of 362 genes were obtained. Limma
analysis was utilized to identify DEGs in the con�rmation cohort consisting both endometriosis and
EAOC patients. Then, we selected 23 DEGs after PPI network construction and analysis. After intersection
of three machine learning methods (SVM-RFE, LASSO, and RF), two hub DEGs (EDNRA and OCLN) were
chosen for nomogram construction and diagnostic ability evaluation for endometriosis patients with
EAOC. First, we identi�ed two diagnostic biomarkers (EDNRA and OCLN) by integrating the scores
corresponding to the expression of hub genes. Then, we performed external validation using two
additional datasets, which revealed that the two hub genes had exceptional predictive performance for
EAOC in endometriosis patients, indicating their potential diagnostic roles during the tumorigenesis and
progression of EAOC.
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Endothelin (EDN) was initially isolated from cultured porcine aortic endothelial cells [23, 24]. EDN
receptors, namely endothelin A receptor (EDNRA) and endothelin B receptor (EDNRB), which belonged to
the G protein-coupled receptor family [25], mediated the biological actions of EDN. EDNRA was expressed
in both vascular and non-vascular tissues and regulated a wide range of physiological processes [26, 27].
A study on chemotherapeutic resistance of ovarian cancer found that the activation of EDNRA by EDN1
promoted a direct interaction between β-arr1 and β-catenin to regulate epigenetic modi�cations driving
cancer chemoresistance onset. It also reported that the overexpression of EDNRA correlated with poor
prognosis, indicating EDNRA as a potential predictive marker of chemoresistance [28]. The survival rate
of EAOC patients with a high expression of EDNRA was also found to be lower in the present study.

Tight junctions are protein structures that regulate the transcellular transport of water, ions, and
macromolecules. OCLN, the �rst tight junctions protein identi�ed, is considered a necessary integral
protein for the structure and function of tight junctions [29]. Pakuła et al. demonstrated that the
expression of junctional proteins, including OCLN, E-cadherin, and desmoglein, in peritoneal mesothelial
cells determined the integrity of the peritoneal mesothelium, which played critical role for the invasion of
ovarian cancer [30]. Tobioka et al. reported that in human endometrial carcinoma, OCLN expression
decreased proportionally with tumor grade and correlated with myometrial invasion and lymph node
metastases [31]. Forced expression of OCLN in human cervical carcinoma cells enhanced the sensitivity
of the cells to differently triggered apoptotic stimuli and thus inhibited the tumorigenic potencies of the
transformed cells and suppressed tumor development [32]. Martin et al. found that knockdown of OCLN
in human breast cancer cells lead to the profoundly increased invasive potential cells. In addition, the
absence of OCLN expression was linked to metastatic disease. And they concluded that OCLN was
necessary for the proper function of tight junctions in human breast epithelial cells [33].

Local and systemic immune responses determined tumor growth and clinical outcomes and had a
signi�cant impact on the pathogenesis of ovarian cancer. As a result, we compared the proportion of
immune cell in�ltrating in EAOC patients and found that the immune in�ltration levels of plasma cells,
Tfh, macrophages M1, and mast cells activated were signi�cantly elevated, while CD8+ T cells, NK cells,
macrophages M2, and mast cells resting were remarkably decreased. Previous research demonstrated
that CD8+ T cells were essential for tumor suppression and linked to better prognoses in a variety of
cancers [34]. NK cells are granular lymphocytes that play critical roles in the immune surveillance of
tumors. In patients with cancer, the degree of NK cell in�ltration in tumor tissues was prognostic, and a
reduced NK cell function was associated with worse outcome [35, 36]. The recent advancements in
ovarian cancer research showed that macrophage could enhance ovarian tumor progression, but due to
its high plasticity, it can also inhibit tumor growth by remodeling the M2-like phenotype to M1-like
phenotype, and the plasticity of macrophage can be exploited in ovarian cancer treatment [37, 38]. Tfh
are a subset of CD4+ T cells identi�ed for the �rst time in the human tonsil. They play an essential role in
protective immunity by assisting B cells in the production of antibodies against foreign pathogens.
Recent studies �nd that mast cells have both tumor-promoting and tumor-inhibiting effects, and
compartmentalized by the microenvironment responsible for this effect [39]. Chan et al. demonstrated
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that high degree of mast cell in�ltration was correlated with better prognosis than low degree of
in�ltration in women with advanced ovarian cancer [40]. Moreover, our study revealed that there was
positive correlation between EDNRA expression level and activated CD8+ T cells and NK cells, indicating
that EDNRA was associated with enhancing the antitumor immune response. Combined with the
downregulated expression levels of EDNRA in EAOC patients, our study indicated that decreased EDNRA
levels were correlated with a suppressive immunophenotype in patients with EAOC. OCLN expression
level showed positive correlations with immune in�ltration degree of Tfh, macrophages M1, and mast
cells activated, Meanwhile, it was negatively correlated macrophages M2. Similar to EDNRA, the above
results also suggest that OCLN is associated with an activated immunophenotype. It is partially
con�rmed that the increased OCLN expression level may be related to the enhanced activation of the
immune system when considering the expression pattern of OCLN in EAOC patients. However, the
functions of these hub genes in EAOC need further investigate by vitro and vivo experiments.

There were some limitations in this study. Firstly, the diagnostic biomarkers were constructed only on the
basis of public databases without real-world data validation. Therefore, further veri�cation with
improvement in sample size, sequencing data, and clinical information is needed in the future. Secondly,
due to the distinct experimental designs for each dataset, the combination of various gene expression
datasets may be biased.

Conclusion
We identi�ed two shared genes (EDNRA, OCLN) and developed a diagnostic nomogram to predict the risk
of EAOC patients with endometriosis via WGCNA analysis and machine learning algorithms. Cytokine-
cytokine receptor interaction was found to be a common signaling pathway between EAOC and
endometriosis. The correlation of hub genes with immune cells as well as the dysregulated level of
immune cell in�ltration were initially discussed. Collectively, the results of our research lay the
groundwork for further exploration of possible candidate genes and aid in the improvement of EAOC
diagnosis and treatment. However, more research is required to determine the exact mechanisms by
which these two hub genes affecting the development and progression of EAOC from endometriosis.
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Figure 1

Study �owchart.
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Figure 2

Identi�cation of modules linked to clinical features of endometriosis in the GSE5108 dataset and ovarian
cancer in the GSE18520 dataset by WGCNA. (A, B) Determining the appropriate “soft” threshold (β) that
satis�ed a scale-free network. (C, D) Co-expression module clustering in endometriosis (C) and ovarian
cancer (D). Each branch represented each gene, and genes clustered into the same module were assigned
the same color. (E, F) Heap of module–trait relationships in endometriosis (E) and ovarian cancer (F). (G,
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H) Scatter plots for the relationships of module membership in the black module and blue module with
gene signi�cance for (G) endometriosis and (H) ovarian cancer.

Figure 3

Functional enrichment analysis and identi�cation of DEGs between endometriosis and EAOC. (A) GO
enrichment analysis. (B) KEGG pathways enrichment analysis. (C) Volcano diagram shows the DEGs in
endometriosis and EAOC. (D) Heatmap shows the top 30 up-regulated and down-regulated DEGs in
endometriosis and EAOC. (E) A total of 116 common genes were identi�ed after intersection of genes
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from three datasets. (F) 23 DEGs were selected for further analysis based on the intersection of genes
from four algorithms.

Figure 4

Machine learning algorithms for hub genes selection. (A) In the LASSO regression model, minimum
standard was adopted to obtain the value of the super parameter λ by 10-fold cross-validation. Twelve
genes were selected as the potential biomarkers with the lowest binominal deviation. (B) The overview of
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LASSO coe�cients. (C) Random forest construction. The number of trees used to build the random forest
was speci�ed as 200 before making the prediction. (D) Four genes were identi�ed based on SVM-RFE
with the lowest error. (E) The top 10 genes were selected based on the importance score of RF algorithm.
(F) Two hub genes (OCLN, EDNRA) were �nally identi�ed via intersection of three machine learning
algorithms.

Figure 5
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Nomogram construction and evaluation of diagnostic ability of hub genes. (A) Nomogram construction
for diagnosing EAOC based on two characteristic genes. (B) Calibration curve. (C) Decision curve analysis
(DCA). (D-F) ROC curves and AUCs were utilized in GSE157153 to evaluate the diagnostic performances
of OCLN (D), EDNRA (E), and Nomogram (F). (G-I) ROC curves and AUCs were applied in TCGA-OV to
evaluate the diagnostic performances of OCLN (G), EDNRA (H), and Nomogram (I). (J-L) ROC curves and
AUCs were used in GSE18520 to assess the diagnostic performances of OCLN (J), EDNRA (K), and
Nomogram (L).
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Figure 6

Immune cell in�ltration between endometriosis and EAOC groups. (A) The in�ltrating levels of 22 immune
cell types between endometriosis and EAOC groups via CIBERSORT deconvolution algorithm. (B-C)
Spearman analyses were conducted to investigate the correlation of OCLN (B) and ENDRA (C) with
immune cell in�ltration degree. (D) Correlation among 22 immune cells types, where red and blue denote
positive and negative correlations, respectively, and white denotes no correlation between the designated
immune cell populations.
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Figure 7

GSVA of hallmark gene sets between EAOC and endometriosis and GSEA functional analysis of hub
genes. (A, B) GSEA identi�ed signaling pathways involved in the characteristic genes of ENDRA (A) and
OCLN (B). (C) GSVA of hallmark gene sets was conducted to reveal the differences in signaling pathways
between EAOC and endometriosis patients.
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Figure 8

The expression pro�les and validation of the two hub genes by immunohistochemistry analysis.

(A, B) The expression pro�les of EDNRA (A) and OCLN (B) in EAOC and endometriosis patients in
GSE157153 dataset. (C, D) The expression pro�les of EDNRA (C) and OCLN (D) in EAOC and control
groups in GSE18520 dataset. (E, F) The expression pro�les of EDNRA (E) and OCLN (F) in EAOC and
control groups in TCGA-OV cohort. (G, H) Kaplan-Meier curves were plotted to compare the overall
survival difference between high- and low-expression groups with regard to EDNRA (G) and OCLN (H). (I)
Immunohistochemistry of two hub genes in ovarian cancer tissues and control tissues from the Human
Protein Atlas database.
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