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Abstract: In order to process respiratory sounds to achieve acquiring available information of 13 

sound signals Empirical Mode Decomposition (EMD) and Wavelet Decomposition (WD) are 14 

applied separately to analyze lung sound signals. The de-noise of original signals is processed 15 

with spectral subtraction method. EMD divides the signal into independent Intrinsic Mode 16 

Functions (IMFs). Moreover, WD method decomposes the signal with wavelet transform. After 17 

receiving the decomposition signals of EMD and WD, a comparation is demonstrated. 18 

According to the results, WD has 85% signal information concentrate on layer 7 and Hilbert 19 

diagram shows the EMD owns more efficiency in decomposing signals with information 20 

keeping. 21 

 22 

Key words: Empirical Mode Decomposition; Wavelet Decomposition; Spectrum Subtraction; 23 

Hilbert Transform. 24 
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 26 

1. Introduction 27 

Recently, COVID-19 becomes a serious worldwide issue which is need to be fixed. This 28 

virus leads to serious lung disease which is the reason many people passed in the past year. In 29 

the procession of curing the lung disease to obtain the breathing information is extremely 30 

significant. The respiratory sounds can demonstrate important lung information of patients.[1] 31 

Thus, analyzing of respiratory sounds of patients to achieve getting the information is 32 

significant.[2]-[3] This article is going to discuss about the decomposition methods of original 33 

respiratory sound signals efficiency. The methods include Empirical Mode Decomposition 34 

(EMD) and Wavelet decomposition.  35 

After the acquisition of the respiratory sounds, the first step is to pre-process the signal. 36 

Respiratory sounds are sounds of breathing within the lungs over the chest wall. [4] During 37 

the period of breathing and acquisition of signal, the noise cannot be avoided. Moreover, the 38 

lung is near to the heart. Thus, the heart sound is unpreventable noise, which can have severe 39 

influence on acquisition of lung sound signals. [5]  40 

There are many methods to de-noise the signals. Hadjileontiadis et al. demonstrated a 41 

method that using the combination of fractal dimension (FD) and EMD eliminate the noise of 42 



 
 

lung sound signals. [6] Emmanouilidou et al. [7] introduced adaptive subtraction method to 43 

decrease the heart sound noise of respiratory signal. Moreover, in 2021, Haider used Spectral 44 

Subtraction method with EMD and hurst to do the de-noise of lung sound signals, which is 45 

proved has excellent performance.[8] In this article, the method of Spectral Subtraction De-46 

noise method is chosen to do the noise elimination.  47 

Empirical mode decomposition was introduced in 1998 by N.E. Huang to process non-48 

linear and unstable signals.[9] After EMD method coming out, a bunch of optimization 49 

algorithms and papers appeared based on the research result of N.E. Huang. [10] EMD 50 

algorithm has widely application category in medical area, and it can be used for analyzing 51 

lung sounds. [11] 52 

According to the characteristics of Wavelet Transform (WT), mature and low-complexity, 53 

it has been widely used for processing respiratory sound signals. Hossain I et al proposed a 54 

method using WT combine with spectral characteristics to build filter of respiratory sounds 55 

signals. [12] In 2004, a method based on fast WT was used for lung sounds classification.[13]  56 

In this article, based on EMD and WD respiratory sound signals will be analyzed. The signal 57 

will be de-noise by spectrum subtraction method, then using EMD and WD to analyze the 58 

denoise signals separately. In the end, the efficiency of keeping the original signals 59 

characteristics will be compared. 60 

For respiratory sound signals analyzing, signal information keeping is a significant 61 

problem. This paper is trying to compare EMD and WD to examine the ability of keeping 62 

original signal information. Firstly, this article chooses spectral subtraction de-noise method in 63 

pre-processing original signal. Secondly, the EMD method is demonstrated. Moreover, WD is 64 

used for signal decomposition and Shannon entropy of relative wavelet energy is used for 65 

texting. 66 

2. Spectral Subtraction De-noise 67 

In this paper, the de-noise method based on spectral subtraction was used to do the voice 68 

signal de-noise. First of all, assuming the voice sequence as 𝑥(𝑛) to do the window framing of 69 𝑥(𝑛) . Thus, 𝑥𝑖(𝑚)  can be got after window framing. Afterall, Discrete Fourier Transform 70 

method is used to deal with 𝑥𝑖(𝑚). The equation below can be achieved: 71 

𝑥𝑖(𝑘) = ∑ 𝑥𝑖(𝑚)𝑒(𝑗2𝜋𝑚𝑘𝑁 )𝑁−1
𝑚=0       𝑘 = 0,1,2, … , 𝑁 − 1 (1) 72 

Phase angle is obtained with equation (2) 73 𝑋𝑎𝑛𝑔𝑙𝑒𝑖 (𝑘) = arctan [𝐼𝑚(𝑥𝑖(𝑘))𝑅𝑒(𝑥𝑖(𝑘))] (2) 74 

Then the energy of the noise is: 75 

𝐷(𝑘) = 1𝑁𝐼𝑆 ∑|𝑋𝑖(𝑘)|2𝑁𝐼𝑆
𝑖=1 (3) 76 

 77 

After all the steps above, the below equation can be used for de-noise: 78 |𝑥𝑖(𝑘)|2 = { |𝑋𝑖(𝑘)|2 − 𝑎 × 𝐷(𝑘)                  |𝑋𝑖(𝑘)|2 ≥ 𝑎 × 𝐷(𝑘)𝑏 × 𝐷(𝑘)                                        |𝑋𝑖(𝑘)|2 < 𝑎 × 𝐷(𝑘)     (4) 79 



 
 

The spectral subtraction de-noise algorithm block diagram is showing in figure 1. 80 
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Figure 1. spectral subtraction de-noise block diagram 82 

The de-noise result of the original signal is showing in Figure 2. As can be seen in the 83 

figure, with this de-noise method, the noise can be decreased efficiently, and the characteristics 84 

of the signals can be kept. 85 
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 86 

Figure 2. Spectral subtraction waveform comparation 87 

As can be seen from figure 2, the spectrum can provide efficiently de-noise of the 88 

respiratory signal. After the denoise, the characteristics of the original signal are still kept. With 89 

the 10 DB signal to noise ratio (SNR), the proposed method can eliminate the noise 90 

contaminations very well. The respiratory sounds signals were started sampling at 4000 Hz 91 

rate. Afterall, let the result pass a Butterworth Band-pass filter of 20-2000Hz, which can 92 

eliminate all the high frequency noises. Moreover, the spectral subtraction was used to get 93 

further outcoming of the denoise of signals. 94 

3. Empirical mode decomposition 95 

EMD method has advance in non-stationary and non-linear signals analysis. The 96 



 
 

respiratory sound signal can be divided into several independent intrinsic mode functions 97 

(IMFs) based on frequency difference. [13] 98 

To achieve the EMD analysis, the first step is to get the mean value of upper and lower 99 

envelop of input signal 𝑥(𝑡). Assuming the mean value as 𝑚1, the equation (5) below can be 100 

got: 101 ℎ1 = 𝑥(𝑡) − 𝑚1 (5) 102 

The second step is using ℎ1 as new 𝑥(𝑡) to run the process above again until ℎ1 satisfy 103 

the IMF conditions then output the first IMF as 𝐶1. 104 

 105 
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Figure 3. Empirical mode decomposition algorithm flowchart 107 



 
 

With the separation of 𝐶1 and 𝑥(𝑡), a signal 𝑟1 without high-frequency components is 108 

obtained.  109 𝑟1 = 𝑥(𝑡) − 𝐶1 (6) 110 

Repeat the steps above until the remain signal is monotonic function. 111 𝑟𝑛 = 𝑟𝑛−1 − 𝐶n (7) 112 

Overall, the original signal 𝑥(𝑡) can be represent as below: 113 

𝑥(𝑡) = ∑ 𝐶𝑖(𝑡) + 𝑟𝑛(𝑡)𝑛
𝑖=1 (8) 114 

The whole algorithm flowchart of EMD is demonstrated in Figure 3.  115 
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Figure 5. IMF 1 to 4 of mild sputum stasis respiratory sound and spectrum 118 

 119 

According to the method described above, the different signals were processed with EMD. 120 

Figure 4 shows the original signal of mild sputum stasis respiratory lung sounds. The spectrum 121 

Figure 4. original signal and signal spectrum of mild sputum stasis 



 
 

of original signal is illustrated in Figure 4 as well.  122 

According to the characteristics of EMD, the 1st to 4th IMFs are the independent 123 

components with higher frequency then the rest. In this paper, only the first 4 IMFs results are 124 

given. Based on figure 5, IMF 3 and 4 can reflect the characteristics of original signal most 125 

effectively. Thus, the IMF 4 was chosen to illustrated the characteristics. Figure 6 is showing 126 

the signal of IMF 4 and spectrum. Moreover, the envelop of IMF 4 and instantaneous frequency 127 

are also given. 128 

Figure 6 demonstrates that the mild sputum stasis respiratory sound has slight change in 129 

instantaneous frequency change.  130 
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Figure 6. mild sputum stasis respiratory sound IMF 4 characteristics 132 

In figure 7 and 8, the comparation of light severe and severe of sputum stasis can be made. 133 

As shown in the figures, the mild sputum stasis signal has regular breath signal with the longest 134 

period. The light severe sputum stasis signal shows that the breath become more hush and 135 

unregular. The severe sputum stasis original signal demonstrates that the more severe sputum 136 

stasis, the more unregular signal it is. 137 

 138 
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Figure 7. Original signal of light severe sputum stasis 140 
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Figure 8. Original signal of severe sputum stasis 143 

Figure 9 and 10 show the 1 to 4 IMFs of light severe sputum stasis and severe sputum stasis 144 

signals, which convey the most information of original signals.  145 
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Figure 9. 1 to 4 IMFs light severe sputum stasis 147 
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 148 
Figure 10. 1 to 4 IMFs of severe sputum stasis 149 

It can be seen from figure 9 and 10 that the combination of the IMFS and spectrum results 150 

are almost equal to the original signal. Moreover, according to the comparation between severe 151 

sputum stasis IMFs and mild sputum stasis IMFs, the severe sputum stasis causes more 152 

unregular and strong sound noise.  153 

The results of the figure 9 and 10 comparing to original signals respectively demonstrate 154 

that the IMFs has similar components which is similar to the original signal. In other word, all 155 

the IMFs can demonstrate part information of original signal. The combination of all IMFs 156 

information equal to original signal, which means the whole information can be almost kept. 157 

After got the  IMFs, then do the Hilbert translation for every IMFs: 158 ℎ̂𝑖(𝑡) = 1𝜋 ∫ ℎ̂𝑖(𝜏)𝑡 − 𝜏+∞
−∞ 𝑑𝜏 (9) 159 ℎ̂𝑖(𝑡) is represent each IMFs, then construct analytic function: 160 𝑧𝑖(𝑡) = ℎ𝑖(𝑡) + 𝑗ℎ̂𝑖(𝑡) = 𝑎𝑖(𝑡)𝑒−𝑗𝜑𝑖(𝑡) (10) 161 

After that the amplitude function can be got: 162 



 
 

𝑎𝑖(𝑡) = √ℎ𝑖2(𝑡) + ℎ̂𝑖2(𝑡) (11) 163 

The instantaneous frequency 𝑓𝑖(𝑡) is: 164 𝑓𝑖(𝑡) = 12𝜋 𝜔𝑖(𝑡) (12) 165 

 166 

Then: 167 

𝑥(𝑡) = 𝑅𝑒 ∑ 𝑎𝑖(𝑡)𝑒−𝑗 ∫ 𝜔𝑖(𝑡)𝑑𝑡𝑛
𝑖=1 (13) 168 

Thus, the Hilbert Diagram can be obtained according to the function (14) 169 

𝐻(𝜔, 𝑡) = 𝑅𝑒 ∑ 𝑎𝑖(𝑡)𝑒−𝑗 ∫ 𝜔𝑖(𝑡)𝑑𝑡𝑛
𝑖=1 (14) 170 

 171 

The Hilbert Diagram can reflect the amplitudes of IMFs change in the whole frequency 172 

band with time and frequency change. 173 

 174 

Figure 11. Hilbert Diagram of mild sputum stasis 175 



 
 

 176 

Figure 12. Hilbert Diagram of light severe sputum stasis 177 

 178 

Figure 13. Hilbert Diagram of severe sputum stasis 179 

As shown in figure 11, 12 and 13, the Hilbert Diagram shows the IMFs frequency change 180 

characteristics with time change. The color represents different amplitude of signals. The 181 

results illustrate that the after de-noise and empirical mode decomposition, the characteristics 182 

of original signals are almost kept. From above figures, mild sputum stasis and light severe 183 

sputum stasis results shows that the frequency of this two signals frequency concentrates in 0 184 

to 200 Hz. For severe sputum stasis signal, although the frequency range is more wide than the 185 

other two signals, the high amplitude part still concentrate in 200 Hz below frequency range. 186 

Wavelet Decomposition 187 

Wavelet Decomposition (WD) is a signal decomposition method based on wavelet 188 

transform. The wavelet transform can be represented by the equation below: 189 𝐶𝑊𝑇𝑓 = ∫ 𝑓(𝑥)𝜑(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥+∞
−∞ (15) 190 

In the equation (9), 𝜑(𝑥)̅̅ ̅̅ ̅̅  that represent wavelet mother function is  191 𝜑(𝑥)̅̅ ̅̅ ̅̅ = |𝑎|−12𝜑 (𝑥 − 𝑏2 )     𝑎, 𝑏 ∈ 𝑅 (16) 192 



 
 

The a is the dyadic dilation and the b represent dyadic position. 193 

Equation (11) is showing the Discrete Wavelet Transform: 194 𝐷𝑊𝑇𝑓(𝑐, 𝑑) = ∫ 𝑓(𝑥)𝜑𝑐,𝑑(𝑥)𝑑𝑥 = 𝑎0−𝑐2+∞
−∞ ∫ 𝑓(𝑥)𝜑 (𝑎0−𝑐2𝑡 − 𝑘𝑏0) 𝑑𝑥+∞

−∞ (17) 195 

The DWT has high complexity for calculation. Then using the MALLAT algorithm to do 196 

the wavelet decomposition which is using for making the calculation easier. By using multi-197 

resolution decomposition of the purpose signal, the coefficients can be obtained. [14,15]  198 

  199 

Figure 14. mild sputum stasis respiratory sound wavelet decomposition 200 

 201 

Figure 15. slight severe sputum stasis respiratory wavelet decomposition 202 



 
 

 203 

Figure 16. severe sputum stasis respiratory wavelet decomposition 204 

The above figure 14 to 16 show the decomposition results of mild sputum stasis, slight 205 

severe sputum stasis and severe sputum stasis sound signals.  206 

The disorder of the probability distribution of a random process can be measured by 207 

Shannon entropy as shown in following equation [16] 208 S𝑊𝑇 = ∑ 𝑝𝑖 ln ( 1𝑝𝑖)𝑖 (18) 209 𝑝𝑖 shows in the equation represent the probability of a random process.  210 

If the 𝑝𝑖 can be represented by Relative Wavelet Energy RWE), this entropy can define the 211 

disorder of the relative wavelet energy distribution. [17] The relative wavelet energy can be 212 

calculated by: 213 RWE𝑖 = 𝑊𝐸𝑁𝑖𝑊𝐸𝑁𝑡𝑜𝑡𝑎𝑙 (19) 214 

The 𝑊𝐸𝑁𝑖 in equation (13) is layer I wavelet energy and 𝑊𝐸𝑁𝑡𝑜𝑡𝑎𝑙 is the total wavelet 215 

energy. 216 

Thus, the Shannon entropy of relative wavelet energy of mild, slight severe and severe 217 

sputum stasis is showing in figure 17.  218 
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Figure 17. Shannon entropy of mild, slight severe and severe sputum stasis 220 

As shown in the result, the RWE Shannon entropies of light severe and severe sputum 221 

stasis signal on the seventh wavelet layer are more than 85%. Thus, the most information of the 222 

signal is concentrated on layer 7. However, the mild sputum stasis signal has different 223 

information distribution. Thus, when it comes to signal analysis, the different distribution 224 

method can lead to hard to define the feature vector of the signal. In the contrast, the EMD 225 

method information distribution is concentrate on first 1 to 4 IMF, which has stable 226 

distribution. 227 

Conclusion 228 

In conclusion, this article is using spectrum subtraction de-noise method process three 229 

kinds of signals, mild sputum stasis, slight severe sputum stasis and severe sputum stasis 230 

sound signals. The spectral subtraction de-noise method has efficient effect in preprocessing 231 

respiratory sound. After preprocess, results of the three kinds of signals are decomposed by 232 

EMD and WD separately. The EMD results are transformed by Hilbert transformation function 233 

and the Hilbert diagrams showing the results that all the information of original signals is 234 

keeping well and concentrating in 200 Hz frequency range for EMD method. Results of WD 235 

were processed with Shannon entropy of RWE. In the end, the information of original signals 236 

over 85% is kept in layer 7 of wavelet transformation for light severe and severe signals, which 237 

cannot be analyzed well. It turns out that the EMD has better efficiency in preprocessing signals 238 

than WD. 239 
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