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Abstract

Dual comb spectroscopy enables fast and accurate measurements over broad spectral ranges, offering a
powerful tool to identify chemical species with unprecedented spectral resolution. Co-generation of
soliton combs in one single microresonator can be used to improve the compactness of multi-comb
sources and bridge the lab-to-fab gap. However, the robustness of pristine microresonators to
environmental changes limits their potential in broader applications such as biochemical sensing. Here,
we realize for the first time a two-dimensional-material functionalized dual-comb spectrometer by
asymmetrically depositing graphene in an over-modal microsphere. Spectrally trapped Stokes solitons
belonging to distinct transverse mode families are co-generated in one single device. A soliton mode in
the graphene-functionalized region is highly sensitive to environmental changes while a second soliton
mode in the pristine region serves as reference, thus producing dual-comb ultrasensitive beat notes in the
electrical domain. Taking advantage of an advanced optoelectronic heterodyne detection scheme, we
trace the frequency shift of the dual-soliton beat-note with uncertainty < 0.2 Hz and we achieve real-time
individual gas molecule detection in vacuum. This combination of atomically thin materials and
microcombs shows the potential for integrated spectroscopy with unprecedented performances and
offers new insights toward the design of versatile functionalized microcavity photonic devices.

Main Text

Achieving ultra-high sensitivity is one of the major goals and challenges of any detection scheme. In the
case of chemical sensors aiming at single molecule detection, advanced schemes based on the
measurement of the photothermal shift [11], the evanescent wave amplitude in nanowires [12], the
plasmonically enhanced scattering [13,14], fluorescent behaviors [9,15] and the mode splitting at the
exceptional point [16,17] have been proposed. However, detection of individual gas molecules using
integrated photonic devices is still a challenge because of the stringent requirements in terms of spectral
resolution and ultralow noise. Dual-comb spectroscopy based on Kerr or Raman solitons [18] naturally
has narrow linewidth and high frequency stability and could thus be the ideal tool to achieve individual
molecule detection on microscale photonic devices and on-chip. However, the inert nature of the materials
(silica, silicon nitride or metal fluorides) that are typically used for soliton microcomb devices inhibits gas
adsorption and sensing applications. In this context, chemical functionalization could significantly
expand the capability of dual-comb devices for sensing applications. Here we demonstrate that
functionalization of an over-modal microresonator with a single layer of graphene allows to realize a
dual-comb spectrometer with unprecedented chemically sensitivity. Leveraging such graphene
functionalized dual-comb microresonator, we successfully achieve individual gas molecule detection at
high-speed. Such graphene-microcavity device, which has been used for optoelectronic tuning of
frequency comb generation [19,20,21,22], was never used in comb spectroscopy to date. Our results stem
from the precise spatial positioning of the graphene flake on the microcavity to create a unique ‘reference-
probe dual-comb system. In particular, by depositing graphene 30° away from the equator of the
microcavity we generate one Stokes soliton interacting with graphene (probe) and one Stokes soliton
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from the pristine microcavity (reference). Molecule adsorption on graphene changes its Fermi level [19,23]
and thus modifies the free-spectrum-range of the probe comb. Finally, taking advantage of an advanced
optoelectronic heterodyne detection scheme, we trace the frequency shift of the dual-soliton beat-note
with uncertainty < 0.2 Hz to detect single molecule dynamics.

Fig. 1a shows the conceptual design of the graphene based micro dual-comb device (GMDC). A silica
microsphere with diameter =~ 600 pm and typical intrinsic Q factor =~ 3x108 is used for the Kerr and
Stokes soliton generation. Thanks to its large mode volume, such a microsphere supports multiple
transverse co-oscillating intracavity modes, driven by one single pump laser. This enables different
soliton frequencies to be generated simultaneously either in a low-order mode (blue arrow) or in a high-
order mode (yellow). In this architecture, a mechanically exfoliated graphene flake is deposited on the
surface of the microsphere by deterministic dry-transfer [24]. The position of graphene is carefully
controlled to be 30° above the equatorial plane, to ensure the overlap only with the high order modes
(with wider energy distribution) of the microcavity. On the other hand, the fundamental mode, which
distributes tightly along the equator, will not be affected by the presence of graphene. Such scheme will
provide both the “probe” (graphene functionalized) and “reference” (pristine) combs, as we show in the
following. Moreover, positioning the graphene away from the equator also prevents its damage and
heating when the intracavity power is high (up to tens of watts). Fig. 1b shows a top-view optical
microscopy picture of our device and a scanning electron microscopy image where the atomically
smooth surface of the silica microresonator and the 80 x 30 pm? graphene layer are clearly visible. More
details about the transfer method and characterization of the device are available in the Supplementary
Notes S3 & S4.

Fig. 1cillustrates the measured intracavity intensity evolution of the Kerr and Stokes combs, which are
traced synchronously by using a C+L/U band wavelength division multiplexer. When red scanning the
pump laser (at fixed power 200 mW) from 1549 nm to 1550 nm with a scanning speed of 500 MHz/ms, a
Kerr comb begins to form and creates Raman amplification. To observe both Kerr and Stokes solitons, the
following four conditions must be satisfied: 1) the Stokes soliton lines must lie within the Raman gain
spectrum generated by the Kerr soliton; 2) the FSR of the Stokes solitons must be close to that of the Kerr
soliton; 3) the mode family of Kerr soliton and Stokes solitons overlap efficiently in both space and time;
4) the pump power reaches the Raman threshold. In this way, the Stokes solitons rely on the existence of
the Kerr soliton due to the spatial-temporal overlap for Kerr effect trapping and Raman amplification. In
Fig.1c one can also observe that the Kerr soliton step appears earlier than the Stokes soliton step. Further
theoretical analysis is available in Supplementary Notes S1 and S2. Fig. 1d plots the optical spectrum of
the co-generated Kerr and Stokes solitons. The Kerr soliton spans from 1500 nm to 1600 nm, while the
multiple Stokes solitons are generated in the band from 1650 nm to 1700 nm. Although their central
wavelengths are different, the Stokes solitons shows FSRs similar to those of the Kerr soliton. In the
zoomed-in panel, we also observe that the excited Stokes solitons have distinct comb envelopes, since
they belong to different mode families. This means that one Kerr soliton can trap many Stokes solitons
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thanks to the over-modal nature of the microresonator. As a consequence, these Stokes solitons can beat
with each other, offering a powerful tool for dual-comb spectroscopy in the electrical domain.

Fig. 2a maps the frequency-resolved auto-correlation traces of the Kerr soliton and the Stokes solitons
based on second-harmonic generation (SHG). First, in the C band (1550 nm), the pulse structure with
10.24 ps interval clearly suggests the existence of a single Kerr soliton. Based on the autocorrelation
trace, the measured pulse duration of the Kerr soliton is 350 fs, as expected from the 3 dB spectral range
of 0.93 THz. On the other hand, in the U band (1670 nm), the signal to noise ratio of the auto-correlation
trace is lower because the Stokes solitons contain pulse trains with different repetition rates. These
Stokes solitons with different repetition rates can interfere leading to a frequency down-conversion in the
radio frequency domain. Fig. 2b plots the beating signal of a pair of dual Stokes solitons. This beat note
can't be due to the Kerr-Stokes interaction, as they don’t overlap in frequency (photon energy). The dual
Stokes soliton beating provides an electrical comb with 7.514 MHz spacing, such a frequency difference
is more than 4 orders of magnitude smaller than the soliton FSR. (in Supplementary Note S5 we also
show that the dual soliton modes with 7.514 MHz FSR difference have orthogonal polarizations.). The
zoomed-in panel shows more details on the dual Stokes soliton beating. The signal-to-noise ratio (SNR)
of the first beating line is > 55 dB and its spectral linewidth is < 10 Hz. Moreover, Fig. 2¢c shows the
measured single-sideband (SSB) phase noise of this beat note and reveals that the phase noise is < -130
dBc/Hz at 10 kHz, and < -140 dBc/Hz at 1 MHz. This result could be further optimized by using active
feedback [22,25,26]. In Fig. 2d, we measure the long-term stability of the 7.514 MHz beating signal. For a
continuous measurement of 2 hours at room temperature the frequency shift is < 2.5 Hz and the intensity
variation is < 0.1 dB. Such a high stability with uncertainty at the Hz level offers a unique platform for
gas sensing applications.

Fig. 3a shows a schematic of our gas sensing device for individual molecule detection. In the
microresonator, the reference Stokes soliton at the equator has a FSR f5 while the probe Stokes soliton
interacting with the graphene flake has a FSR fp, and their beating down conversion frequency is Af = f -
fp. Once gas molecules are adsorbed on the graphene flake the refractive index experienced by the probe
soliton will change, leading to a change of fp. As a result, we will detect a shift of the beating frequency

Af, that we can measure in the electrical domain to obtain the gas dynamics with individual molecule
sensitivity. Fig. 3b explains the optical refractive index change induced by adsorption of individual gas
molecules on graphene. The Fermi level of graphene is related to the carrier density by /E-/ = 7/v/(TtN)
~1/2127], where Nis the carrier density, vp = 10° m/s is the Fermi velocity, and 72 is the reduced Plank’s
constant. In this equation, Nincludes both the intrinsic doping and the external doping, determined in our
case by the gas adsorption. Tuning of the Fermi level affects the refractive index of graphene, as
explained in details in Refs [19,28] and in the Supplementary Note S6. In the right panels of Fig. 3b, we
show the calculated real and imaginary refractive index spectra of the graphene (Refng}and Imf{n}) for
different values of the Fermi level and wavelengths in the range 1500 nm — 1700 nm. For our application,
at the wavelength = 1670 nm an increment of the Fermi level from 0 eV to 0.31 eV induces a change of
the Re{n,} from 2.75 to 3.25, thus approximately 1.61/eV. In this work, we use ammonia (NHz) molecules
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as a sensing target [23,29]. The adsorption of a single NH; molecule provides 2 additional electrons to
graphene. Considering that the area of the (p-doped) graphene flake is 1.6x10° m?, the adsorption of a
single NH; molecule will induce a | E- reduction of 1.7x10™ eV. As a result, Refn } will decrease by

2.74x10* inducing an increase of the probe comb mode FSR and a spectral shift of the reference-probe
comb beat note.

Fig. 3c shows the measured shifts of the reference-probe comb beat note for different values of NH;
concentration in the pM/L range. For this experiment, we put our GMDC device in a vacuum chamber with
volume of 8 L (the setup is shown in the Supplementary Note S7) and we inject pure NH5 gas in the
vacuum chamber, controlling the minimum concentration of the NH in steps of 0.5 pM/L. When the NH;
concentration is 0.5 pM/L, 1 pM/L, 2 pM/L, 4 pM/L, and 8 pM/L, we record dual-comb beat note shifts of
85 Hz, 159 Hz, 203 Hz, 230 Hz, and 248 Hz respectively. Fig. 3d summarizes the performances of our
sensing device. The maximum sensitivity reaches 170 Hz/(pM/L) in the 0 ~ 0.5 pM/L region, while a
higher in-chamber gas concentration gives lower sensitivity due to saturation of the gas adsorption. In
repeated measurements, the gas molecules attached on graphene can be >99% released simply by
heating the device via an electrical heater. Moreover, after repeated use the sensitivity of the dual-comb
sensor does not deteriorate.

To achieve single molecule detection, we further implement a heterodyne lock-in amplification scheme, as
shown schematically in Fig. 4a. We use a signal generator to produce a RF line with a stable frequency of
7.464 MHz to beat the 7.514 MHz signal (Af), thus forming a new 50 kHz frequency (Afj) that falls within

the bandwidth of the lock-in amplifier (125 kHz, Stanford Research SR 810) used for our experiments. Any
shift of the dual-comb beat note will induce a shift of Af,. We then used a narrow filter (bandwidth 0.3

Hz) on the lock-in amplifier to lock and amplify only the amplitude at 55 Hz. Since the 50 kHz Afj, beat
note has a linewidth of 10 Hz (defined by the spectral linewidth of the dual Stokes soliton beating) with

an electrical intensity 1 mV, the frequency shift dependent amplitude change reaches 0.1 mV/Hz in sech?
approximation. Such intensity variation could be further amplified by 30 dB. Considering that the
resolution of the oscilloscope used for our measurements (see Supplementary Fig. S7) is 0.01 mV, we

obtain a theoretically maximum resolution of 10% Hz. More details on the experimental implementation
are shown in Supplementary Fig. S7.

Finally, we inject 0.08 pM NHjs into the chamber (corresponding to concentration of 0.01 pM/L in

chamber) and we measure the dual-comb response (Fig. 4b). Following interaction between the graphene
flake and NHj, the lock-in amplified intensity increases from 0 to 34 mV on a time-scale of approximately

100 ms, defined by the gas diffusion process in vacuum. When we zoom-in the gas response trace of Fig.
4b, we observe clear steps caused by individual molecule adsorption/desorption (Fig. 4c). Before
injecting the NH5 gas, the trace is uniformly flat and there is no evidence of any molecular on/off case

(statei). Once the NH5 gas is injected in the chamber, we observe that the intensity curve increases in
small steps, suggesting that adsorption of individual molecules occurs (state ii). When the interaction
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between the graphene and the NH; gas reaches the dynamic balance, the intensity curve becomes flat
again, although we can still observe on/off steps due to microscopic molecular thermal motion. Fig. 4d
shows that the height of all the observed steps are multiple integers of 0.2 mV, which is the smallest
number corresponding to individual molecule adsorption. This is another strong evidence that individual
molecule dynamics can be detected with our device. We also count the molecular on-off cases occurring
within 200 ms after the injection of the gas in the chamber. Gas adsorption dominates during the state i,
and the on-off cases are balanced in the state iii. Moreover, when the GMDC is exposed to NHs, the large
steps are rare (such as > 2 molecular on/off events), whereas unit steps are dominant. These statistical
results obey a power-law distribution, which is also a sign of individual molecule adsorption events [10].

To conclude, dual-comb spectroscopy is demonstrated in a graphene functionalized over-modal
microresonator. Stokes soliton combs with = 1670 nm central wavelength in distinct mode families are
co-generated and trapped by the Kerr soliton in the communication band. By placing graphene away from
the equator of the microresonator, we managed to simultaneously generate one Stokes soliton interacting
with graphene and another Stokes soliton interacting only with the pristine cavity. The formeris used as a
probe and the latter as a reference for gas sensing. To this end, we measured the probe-reference
intermode dual-comb beating signal in the in the RF spectral region and thanks to a heterodyne lock-in
scheme we achieved sub Hz spectral resolution and individual molecule sensitivity. This scheme offers a
label-free optical tool to realize individual gas molecule detection. Such a compact device not only
demonstrates a unique potential for chemical sensing, but also paves the way to design novel
microcomb devices for applications ranging from radio signal generators, frequency modulators and to
spatial rangefinders.

Methods

Co-generation of the Kerr and Stokes solitons. The Kerr comb generation relies on phase-matched four-
wave-mixing, while Stokes comb excitation is based on the Raman gain. The photonic energy transfers
from the pumping laser and the Kerr comb (C band) to the Stokes lines (U band). Once the laser pump
detuning > 5 GHz, the excitation of Stokes combs appear in distinct mode families. 1) By using the finite-
element-method, we analyze the mode distributions and refractive indices in the microsphere, and
discuss the influence for Kerr-Stokes comb interaction. 2) By using the Lugiato-Lefever-equation with a
Raman term, we theoretically analyze the comb formation and trapping and investigate the temporal and
spectral evolutions numerically. A detailed discussion is shown in Supplementary Note S1 and S2.

Fabrication of the graphene deposited microspheres. We fabricate the microsphere resonators based on
electrical arc discharging thermal melting-shaping technique, which is implemented in a high power fiber
fusion splicer (FITEL S184; FITEL S178). By controlling the arc discharge power, discharge duration and
discharge position, we can control the diameter of the microspheres. Here we use =~ 620 ym diameter
microspheres because they can support hundreds of transverse mode families. For soliton comb
formation, these samples can produce a repetition rate =~ 100 GHz. The arc-melting-shaping scheme
ensures the surface uniformity and smoothness, enabling ultrahigh Q factor (>102) for light oscillation.
Page 7/14



Afterwards, we prepare the high-quality crystalline graphene via PDMS based mechanical exfoliation.
Then, by using the dry-transfer technique, we deposit the graphene nano-layer on the surface of the
microsphere. In this implementation, we carefully optimize the graphene location, making sure that some
modes of the intracavity transmitting light can interact with the graphene, while the graphene is not at the
equator of the microresonator. The fabrication steps and characterization of the device are shown in
Supplementary Note S3.

Experimental setups. We check the transmission of our cavities and the Q factor of the resonators by
sweeping the ECDL wavelength 1550 nm to 1551 nm, fixing the ECDL power at 0.2 mW to avoid any
ringdown. The tunable laser is connected to an oscilloscope to provide a trigger for time-frequency
calibration. The spectral sampling rate can be as low as 1 kHz, which allows to identify resonances in the
MHz level. The Q factor corresponds to the carrier frequency times the width of the resonance. For soliton
comb formation, we use the power kicking scheme, via detuning the C-band tunable laser diode into the
resonances, after erbium based amplification (pumping power 120 mW). Light is launched in and
collected by using a tapered fiber with diameter 1 ym. We use a commercial frequency resolved optical
gating (FROG, MesoPhotonics) to measure the pulse durations and the high repetition rates. This
contains a motor controlled tunable mechanical travel stage, a BBO crystal to generate SHG, and a visible
band OSA (ocean optics) for spectral analysis, with spectral resolution 0.2 nm, measurement window 20
ps, and sampling rate 10 fs/point. To achieve the SHG threshold, the average comb power is amplified to
1 W. For the optoelectronic sensitivity enhancement, we first use an amplified photodetector (PD, Thorlabs
APD 103C) to extract the dual-comb beat note. Then a wave generator (Tektronix AFG 3100, 250 MHz) is
used to produce an electric signal for further down conversion of the comb beat note to 50 kHz. Finally,
we use a lock-in amplifier to complete the heterodyne measurement. More details are shown in
Supplementary Note S4-S7.
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spectral uncertainty < 2.5 Hz, and intensity uncertainty < +0.1 dB.
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Figure 3

Mechanism and performance of the gas sensing device. a, Schematic illustration of the gas sensing
device: gas adsorption on the graphene flake changes the comb spacing of the probe soliton, leading to a
frequency shift of the dual-comb beat note. b, Simulations show that the gas adsorption changes the EF
of graphene and thus modifies the refractive index of the microcavity. Here the white arrows marks the
central wavelength of the Stokes comb. ¢, Measured frequency shift of the dual-comb beat note with
initial frequency 7.514 MHz. In this measurement, gas concentration is tuned at 0.5 pM/L, 1 pM/L, 2
pM/L, 4 pM/L, and 8 pM/L. d, Left: correlation of the frequency shift and the gas concentration; Middle:
the recovery capability (blue arrows: gas in, red arrows: gas release from graphene); Right: repeated
measurement showing that the maximum sensitivity for 0.5 pM/L NH3 is 170 Hz/(pM/L) on average.

Page 13/14



a b
— Vacuum  1pM/LNH; gmmp, n
T 30 1 o
Spectral shift eg v i
e ke
y E
. = 10 1
n amplitude E
nt
-10 T T r T T T T
50 55 0 50 100 150 200 250 300 350 400
Frequency (Hz) Time delay (ms)
c 06 d 1.2
0.3 ] : g 081
0 T APR T ;_A_rnnua‘-u- T Lo J'u'.; -
<5 04 1
_0‘3 - = E N
2L o
‘0-6 L T L L] . L o L] L E— -
S 06 £ 044
£ 17 m 038
v -1.5 4
T 2 off 1off l1on 2on 3on 4on
=
2 24 Fﬂ r“ - M*‘"’* 4
[+ 3
E _3.3 T T ¥ T L L T L L m T
b4}
34.8 1 ii < 40 -
34.3 1 10n+ S 0 1
338 3 10ff y ' ] I
33.3 T T r ' T r . v r 0 =T |
0 5 10 4 3 2 1 1 2 3 4 5
Time delay (ms) off off off off on on on on on
Figure 4

Detection of individual molecule dynamics. a, Principle of the lock-in amplification for enhanced
individual molecule detection. This technique enables us to detect a small frequency shift (=~ Hz) as a
large (> 30dB) change in intensity. b, Measured output trace of the lock-in amplifier, the amplitude
increment is induced by the gas absorption on graphene. After injection of the gas in the chamber, the
time window to switch from state i (vaccum) to state iii (dynamic balance) is = 100 ms. ¢, Zoomed-in
panels of b. Discrete steps in state ii and iii suggest individual molecule on/off events. d, Top panel: the
measured steps are integer multiples of 0.2 mV. Bottom panel: We count the molecular on/off
(adsorption/desorption) events. The obtained statistics follow a power law.
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