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Abstract
The influence of Ketoconazole and β-CD/Ketoconazole was previously reported on cotton fabric as
fungal skincare; however, the impact of nanosilver on the antifungal and antibacterial properties of the
same products is unknown. Here, silver NPs were synthesized on β-CD/KZ composites and then attached
to the cotton using a cross-linking agent. The nanocomposites and treated fabrics were analyzed by UV-
vis, dynamic light scattering (DLS), zeta-potential and FE-SEM. The drug delivery and cytotoxicity of the
products were also studied. The nanocomposites antimicrobial efficiency was examined on Candida
albicans and Aspergillus niger as fungi and E. coli & S. aureus as bacteria. The synthesis of Ag-NPs on
the β-CD/KZ amplifies both antifungal and antibacterial efficiencies. This also extends the drug regular
release time for medical and drug delivery purposes. Having tremendous antimicrobial activities without
cytotoxicity effects and regular release time of drug with excellent washing durability of treated samples
make it suitable for medical applications likewise wound dressings and sportswear designed for sensitive
skin.

Introduction
Human skin covers the whole body that in contact with the environment generates most injuries such as
wounds, burns and skin fungi (Benita 2006; Farokhi et al. 2018; Kim et al. 2019; Wu et al. 2018). This
immense surface is easily accessible for drug delivery as a painless and non-invasive method. Topical
drug delivery has advantages such as high drug concentration on the skin, lower side-effects, ease of
transfer, more sustainability and water solubility (Benita 2006; Farokhi et al. 2018; Kim et al. 2019; Lee et
al. 2017). Therefore, diverse chemical and physical technologies were adapted to improve drug delivery
via the skin. On this base, nanoparticles were used to extend half-life, decrease drug dosage and improve
drug properties (Farokhi et al. 2018; Kim et al. 2019; Lee et al. 2017; Veerakumar et al. 2020; Wang et al.
2015). Nevertheless, a dressing substrate with drug release properties such as cotton treated with
cyclodextrin (CD) can be useful for this purpose (Ning et al. 2020; Pinho et al. 2014; Radu et al. 2016;
Sharaf and El-Naggar 2019; Yao et al. 2019). Because, β-cyclodextrin (β–CD) with the hydrophobic cavity
and hydrophilic surface can control the release of aromatic compounds (Abarca et al. 2016).

It is well-known that Ketoconazole (KZ), as an antifungal and water-insoluble drug with high molecular
weight, is often used topically to treat superficial fungal infection (Che et al. 2015), especially Candida
albicans (Kaur & Kakkar 2010). The entrapped KZ in β–CD showed antifungal properties without
antibacterial effects (Kaushik et al. 2017; Rameshkumar et al. 2003). However, introducing nanoparticles
to the antimicrobial drugs has a significant synergistic effect, entering into the cell wall carrying more
antibiotic into the cell, causing cell death (Durán et al. 2016; Jiang et al. 2019; Rana et al. 2016; Sedighi et
al. 2014). Further, capping Ag-NPs with β-CD improved their efficacy and cytotoxicity (Gupta et al. 2020).
Nevertheless, the combination of KZ/Ag-NPs showed the most synergistic effects in comparing with the
common antifungal drugs such as Nystatin, Fluconazole and Clotrimazole (Falahati et al. 2014; Jiang et
al. 2019; Rana et al. 2016; Sedighi et al. 2014).
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In our previous study, KZ and β-CD/KZ were loaded on the cotton fabric via padding by immersing the
fabric in the prepared solution, squeezed and finally dried at 80 ˚C. This was also done through
exhaustion by immersing the fabric in the prepared solution heated for 1 h at 80 ˚C along with stirring and
final drying at 80 ˚C. We investigated and reported the drug release, antimicrobial activities and
cytotoxicity of the products (Hedayati et al. 2020). The KZ release rate was prolonged, especially in the
exhaustion method compared with the other drugs release from the samples reported by others. Also, β-
CD/KZ showed antifungal properties with no inhibition zone against bacteria (Hedayati et al. 2020). Here,
Ag-NPs were synthesized on β-CD/KZ to improve the antimicrobial properties and moderate the release
rate. KZ was entrapped in β-CD, then Ag-NPs synthesized on the β-CD/KZ composites successively
loaded on the cotton fabric with two exhaustion and padding methods.

The sample with the most antimicrobial activities and slow/regular drug release, besides the highest
washing durability, breathability and moisture absorption, was selected as the best sample. This sample
can be used as a safe product for medical purposes and clothing applications.

Materials And Experimental Procedures
Materials

β-CD was obtained from X'ian Hong Chang Pharmaceuticals Co. (China) and KZ was gifted from Arasto
Pharmaceutical Chemicals Inc. Silver nitrate 99 %, acetic anhydride, citric acid, sodium hypophosphite
(SHP), methanol, ethanol and cell culture medium were used from Merck Co. (Germany). Aspergillus
niger-ATCC 9642, Candida albicans-ATCC 10231, Escherichia coli- ATCC 25922 and Staphylococcus
aureus-ATCC 2592 were also used. Sodium dioctyl sulfosuccinate and phosphate-buffered saline were
purchased from Sigma-Aldrich Co. (Germany). Nonionic surfactant was procured from a local market in
Tehran, Iran. Also, the bleached cotton fabric was used with 118 g.m-2 weight from Brojerd Textile Co,
Iran.

Preparation of nanocomposites solution and indicator

β-CD/KZ was prepared according to the previous report; briefly, KZ and β-CD in a molar ratio of 1:1 were
stirred in the water at 25±2 °C for 3 days in the dark and the remaining solid was separated by filter paper.
The pH was approximately 7±0.5 (Hedayati et al. 2020).

In order to synthesize silver nanoparticles on the β-CD/KZ nanocomposites, silver nitrate (Ag+:β-CD with
molar ratios of 1:50 (2 % w/w), 1:100 (1 % w/w), 1:200 (0.5 % w/w) and 1:500 (0.2 % w/w)) was added to
100 mL β-CD/KZ solution at pH=11.5 ± 0.5 adjusted with sodium hydroxide. The solution was stirred on a
magnetic stirrer and heated for 3 h keeping the temperature around 80 °C.

Also, KZ was dissolved in ethanol exactly (pH = 7±0.5) with the same portion used in β-CD/KZ without β-
CD.
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As previously reported, the λmax of KZ was obtained at 243 nm with a slope of 0.0282 and R2 = 0.994
(Hedayati et al. 2020). The obtained λmax conflicted with the absorbance peaks of the other compounds;
thus, it was shifted to the visible range using a saturated solution of citric acid in acetic anhydride (CAA)
as an indicator. Briefly, 100 mL of acetic anhydride was added to excess solid citric acid (preparing a
saturated solution) stirred for 2 h and then filtered used immediately after the preparation (Omar et al.
2006). The stock solutions of KZ were produced with different concentrations of KZ in absolute methanol
(Hedayati et al. 2020). 10 mL of each solution transferred to a beaker and evaporated to dry in a Bain-
Marie. Then 2.5 mL of CAA indicator was added and put in Bain-Marie for 20 min kept at room
temperature (20±2 °C) to cool down and then pure ethanol added to 10 mL (Omar et al. 2006). The λmax
of KZ was obtained at 535 nm with a slope of 0.3615 and R2 = 0.9916 (Y=0.3615X-0.0056) (Fig1).

Preparation of samples

The loading of nanoparticles on the cotton fabric was carried using two diverse methods (Hedayati et al.
2020). Before loading nanocomposites on the cotton fabric, the samples were washed with 1 g.L-1

nonionic detergent for 30 min at 50 ˚C. Then the nanocomposites were loaded on the fabric in exhaustion
(treating 1 h at 80 ˚C with stirring and finally drying at 80 ˚C) and padding (immersing three times in the
solution and squeezing and finally drying at 80 ˚C). Further, citric acid (10 % w/w) as a cross-linking agent
and sodium hypophosphite (6 % w/w) as a catalyst were added to the nanocomposites and treated on
the fabric, then squeezed followed by drying at 80 ˚C. All samples were finally cured at 140 ˚C for 4 min
and then rinsed with cold water. Moreover, the blank sample without β-CD was prepared with the same
amount of dissolved KZ in ethanol and then loaded on the cotton fabric.

Instruments and experimental procedures

One piece of the fabric sample cut and immersed in 10 mL pure methanol (as solvent) along with stirring
to study the amount of KZ entrapped in β-CD and its release rate. At a specific time (up to 30 days), the
sample removed from the solution and the solution put in the bath to completely dry. Then 2.5 mL CAA
indicator added and put in the bath for 20 min allowed to cool down to ambient temperature; finally, pure
ethanol added to 10 mL. The KZ content was found using the UV spectra (Optizen, Mecasys, Deajoen,
Korea, 2120UV) of solutions at 535 nm and the related equation (Omar et al. 2006).

The antimicrobial properties of treated samples were measured by Aspergillus niger (A. niger), through
FTTS-FA-006 method and Candida albicans (C.albicans ATCC 10231) fungi using AATCC-100-2004
method, also Gram-negative and positive Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus)
bacteria using AATCC-100-2004 method (Ghayempour and Montazer 2017; Hedayati et al. 2020).

Antifungal activity against A. niger (FTTS-FA-006 method):

50 mg sodium dioctylsulfosuccinate as a wetting agent was dissolved into 1 L water (0.005 %). The
spores concentration was adjusted to 106±2×105 CFU/mL in a wetting agent and thoroughly shaken. The
sterilized samples in diameter of 3.8+0.5 cm were placed in solid Mineral Salt Agar medium (MSA). 1±0.1
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mL of the fungal spore suspension was distributed evenly over the specimen and control by micropipette.
All plates were incubated at 28±1 ℃ and humidity above 85 % for 14 days. The samples were assessed
by the number of spores produced on their surfaces.

Antifungal activity against C. albicans (AATCC 100-2004 method):

The raw (control) and treated samples were cut circular in diameter of 4.8±0.1 cm and sterilized in an
autoclave. 1.0±0.1 mL of 105 CFU/mL microorganisms in sabouraud dextrose broth medium taken from
untreated and treated fabrics and incubated at 30 ℃ for 24 h. Then, 100 mL of normal saline was added
to each jar and shaken vigorously for 1 min. 1 mL of each sample was added to the plates (in duplicate)
containing 15 mL sabouraud dextrose agar and mixed gently, then incubated at 37 °C for 24 h.

Antibacterial activity against E. coli and S. aureus (AATCC 100-2004 method):

The raw and treated samples were cut circular with 4.8±0.1 cm diameter and sterilized in an autoclave.
1.0 ± 0.1 mL of 105 CFU/mL microorganisms in triptic soy broth medium from untreated and treated
fabrics were incubated at 37 ℃ for 24 h. Then, 100 mL of neutralizing solution (normal saline) was
added to each jar and shaken vigorously for 1 min. 1 mL of each sample was added to plates (in
duplicate) containing 15 mL triptic soy agar medium and mixed gently. The plates were incubated at 37
°C for 24 h. Then, the numbers of colony forming units for untreated and treated samples (A and B) were
counted on the agar plates, and the reduction percentage of microbial colonies (R) was recorded
according to Equation 1 (Hedayati et al. 2020; Navik 2017; Pivec el al. 2017]:

Also, the nanocomposites durability on the cotton fabric was studied through 10, 20 and 30 washes at 60
°C for 20 min with a nonionic surfactant. These samples were considered for antifungal activities against
C. albicans (Ghayempour and Montazer 2017; Hedayati et al. 2020).

The cytotoxicity and cytocompatibility of the products on the skin is a crucial task (Ahmed et al. 2017;
Martinez-Gutierrez et al. 2010; Korrapati et al. 2016 ). Cell culture, cytotoxicity and metabolic activity were
evaluated on the normal human skin fibroblasts by MTT assay (Hedayati et al. 2020). The fibroblasts
were cultured in DMEM (1X), GlutMAXTM (GibcoTM) and 10 % fetal calf serum. In order to grow and
multiply natural fibroblast cells, passage number 3 was used and added to the 96-well microplates, then
incubated with 5 % CO2 at 37 °C for 48 h. The raw and treated fabrics were first cut in 1×1 inch2 sterilized
in an autoclave (121 °C, 15 lb/inch2 for 20 min). Then 2 mL cell culture medium was soaked and
incubated for 24 h at 37 °C. At that point, the culture medium of multiplied cells in a 96-well microplate
was slowly drained, and the samples were replaced. Finally, the microplate was incubated at 37 °C for 24
h and examined by MTT assay with 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide in
phosphate-buffered saline. The absorption of each well was recorded by Hiperion microplatereader
(MPR4+) at 570 nm, and the data were analyzed to measure the number of living cells. This was repeated
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3 times and the percentage of cell viability was obtained through the absorption ratio of treated and
control samples.

The composites detailed information was determined by 1H-NMR in CDCl3 as a solvent for KZ and D2O
for β-CD and β-CD/KZ using Ultrashield 400, BRUKER, Germany.

The dynamic light scattering (DLS) and zeta potential were used at 25 ºC by HPPSv42, Malvern
Instrument, Malvern, UK, to investigate the size and surface charge of the nanocomposites.

The Fourier transform infrared spectroscopy (FTIR- Thermo Nicolet Nuexus 870 with the range 400–4000
cm−1, USA) was also used to analyze the powder and treated samples such as KZ, β–CD/KZ and β–
CD/KZ/Ag. For this purpose, the fabric was quite finely chopped and mixed with KBr in a ratio of 1:100.

FE-SEM as a type of electron microscope, gives an image of the sample surface with high magnification
and great resolution. The MIRA3TESCAN-XMU (3-30 kV in the low vacuum) Hitachi, S-4160 was used with
resolution lower than 1 nm through a magnification of 100000X, with coverage of the outer layer of
samples with Au. This is also equipped with EDS microanalysis and E-map, which allows the detection of
the smallest phases, with the possibility of adjusting the pressure and high resolution with an
accelerating voltage of 15 kV and beam current of 1.200 nA.

The mechanical properties of samples were measured using an Instron 5566 tensile tester according to
ASTM D882-02 standard in dimensions 2.5cm×15cm at a tensile speed rate of 25 mm min-1. The
samples were tested with the same thickness, and the results were compared.

Due to the high importance of textile hydrophilicity for medical and clothing usages, the water absorption
test was performed by dropping 3 droplets of water at a distance of 1 cm from the treated samples and
measuring the water spreading time three times, reporting the average time.

Air permeability test was performed on the raw and treated fabrics using Shirley air permeability tester
(SDL, Atlas, USA) based on BS 5636 (Horrocks and Anand 2000). 

The statistical analysis of tensile and air permeability values of raw and treated samples was performed
in seven versions with five repetitions of individually treated samples, and the mean values with standard
deviations (SD) reported. One-way analysis of variance (ANOVA) was performed, and the significance of
each mean value was determined (P-values<0.05) with Tukey's multiple range test using GraphPad Prism
version 6.0 (GraphPad Software, La Jolla, CA).

Results And Discussion
The entrapment efficiency of KZ in β-CD

The efficiency of KZ entrapment in β-CD was considered according to the total weight of KZ and β-CD
and unloaded KZ in β-CD. The amount of KZ entrapped in β–CD with a molar ratio of 1:1 along shaking
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at 25±2 ˚C for 3 days was about 73.6 % due to the large molecular size of KZ and a lower rate of
penetration. This is an acceptable and justified value (Hedayati et al. 2020). Here, the KZ entrapment
efficiency was similarly evaluated at 65 °C±3 in 3 days. After filtering the solution and drying, the residual
deposit was weighed, and the efficiency of KZ entrapment in β-CD was determined by Equation 2 (Cao et
al. 2019 ; Hedayati et al. 2020):

EE (%) = (Mt – Mu)/Mt ×100                            (2)                                                 

Mt and Mu are the total weight of β-CD/KZ and unloaded KZ.

The entrapment efficiency of KZ in β-CD was about 73.71 %; however, due to the very high absorption in
UV–Vis because of the possible KZ degradation or other phenomena, the testing at this temperature was
not carried out.

1H-NMR analysis of the complex

The best method to obtain a more in-depth insight into the molecular interactions between β–CD  and
drugs is spectroscopic and especially NMR (Conceicao et al. 2018; Demirel et al. 2011; Varga et al. 2019;
Yuan et al. 2018). In this analysis, only shifts up and downfield occurred; therefore, the upfield shift of β-
CD protons and downfield shift in guest protons happened because of KZ entrapment into the β-CD
cavity (Chen et al. 2016; Ventura et al. 2006; Xu et al. 2015). 

This test was only performed on KZ, β-CD and β-CD/KZ powder and not on β–CD /KZ/Ag-NPs due to
possible toxicity. The β-CD and KZ 1H-NMR spectra in Fig2 verify the prominent peaks of KZ in the 1H-
NMR spectra of β-CD/KZ nanocomposites confirm the KZ entrapment. Thus, the KZ molecules are
entrapped into β-CDs cave mostly from -CH3 side due to the downfield shift of H1 (-CH3) from 2.15 to
2.07, H11-13, H10-14 and upfield shift H28, H17, H24 and H27 benzene ring of KZ (Kundu and Roy 2017;
Zoppi et al. 2019).

Dynamic light scattering (DLS)

DLS recently was used to express more details on cyclodextrins accumulation (Ishiguro et al. 2010;
Sajomsang et al. 2011). The colloidal stability can also be determined by the surface charge as a very
effective method via zeta potential that can only be used on the nanocomposite solutions. Table 1
demonstrates the surface charge and particle size of the synthesized nanocomposites. The
hydrodynamic sizes and surface charges of KZ, β-CD and β–CD /KZ were already reported (Hedayati et
al. 2020) as the bigger hydrodynamic size related to β–CD and creation of hydrogen or weak physical
bonding (Attarchi et al. 2013; Hedayati et al. 2020; Myles et al. 2018).

Table 1. The surface charge and particle size of diverse nanocomposites
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Solutions Hydrodynamic size Surface charge

(Water) (nm) PDI (mV) Zeta Deviation

KZ in ethanol 553.5 0.423 -1.34 14.3

β-CD 1111 0.809 -5.17 6.86

β-CD/KZ 1607 0.760 -9.2 8.06

β-CD/Ag         (2 %) 272.6 0.752 -28 10.7

β-CD/KZ/Ag  (2 %) 904 0.561 -24.1 12.1

β-CD/KZ/Ag  (1 %) 622 0.531 -28.2 7.05

β-CD/KZ/Ag  (0.5 %) 406.7 0.431 -27.6 3.71

β-CD/KZ/Ag  (0.2 %) 364.1 0.456 -24.8 13.8

Further, The KZ with two active chlorine groups increased the hydrodynamic diameter of particles due to
the possible interactions between KZ and β-CD and hydrolysis of KZ in alkali media according to Fig3,
Reaction 1 (Reichle 1970). Nevertheless, KZ in an alcoholic or alkaline environment led to different
Reactions (Fig3, Reaction 1 and 2) (de Almeida et al. 2019; Reichle 1970):The high temperature initiated
the bigger particles with a hydrodynamic size of about 2570 nm (PDI=1.000) and surface charge of -11.3
mV (Zeta Deviation=10.2) for β–CD /KZ nanocomposites in which KZ loaded at 65±3 °C in 3 days.

The size of Ag-NPs was larger than the β-CD cavity; therefore, Ag-NPs located on the β-CD surface
interacted with β-CD rim hydroxyl groups reducing the agglomeration of the particles (Attarchi et al. 2013;
Ouyang et al. 2015). Thus, the Ag-NPs in the solution caused the smaller particle size in the nanometer
range.

Zeta potential, as an important indicator of the colloidal solution stability, was considered
(Rajamanikandan and Ilanchelian 2018). Both KZ and β-CD have a negative surface charge in an
unstable range; however, the β-CD/KZ/Ag-NPs nanocomposites indicated a more negative charge, greater
stability and repulsion of the particles indicated the lower aggregation and particle size (Hedayati et al.
2020).

Synthesis of Ag-NPs in β-CD/KZ

One of the proposed methods for synthesis Ag-NPs from AgNO3, is using alkaline media with heating in
presence of stabilizer and reducing agent such as cellulose or β-CD (Reaction.3) (Aladpoosh et al. 2014;
Prasher et al. 2018; Rajamanikandan and Ilanchelian 2018; Ouyang et al. 2015). In this research, β-CD
was rolled as a stabilizer and reducing agent to synthesis Ag-NPs that is negatively charged in alkaline
media changed to β-CD-O-. Ionization of the hydroxyl groups leads to β-CD-ONa+ in sodium hydroxide
solution. Ag+ ions can replace Na+, producing β-CD.O-Ag. This is due to the higher electronegativity of
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silver (1.93) than sodium (0.93) in an aqueous solution. Also, X-ray photoelectron spectroscopic (XPS)
analysis confirmed the synthesis of Ag-NPs on β-CD (Ouyang et al. 2015).

Reaction.3. Interactions of KZ, cellulose and β-CD with silver nitrate for production of AgNPs (Aladpoosh
et al. 2014; Ouyang et al. 2015).

Drug release

Drug release was studied based on the amount of drug-loaded on the cotton fabric repeated for three
times. A color indicator was used to measure the amount of KZ. Similar percentages of KZ release were
already reported for samples treated with KZ and β–CD /KZ in ethanol for both methods using the
standard curve (Hedayati et al. 2020). However, in order to reduce the possible errors, no color indicator
was used for nanoparticle-free solutions. The highest percentage and amount of KZ loaded on the fabric
related to the exhaustion method. Also,  the release behavior of KZ from different samples with or without
β-CD was thoroughly discussed (Hedayati et al. 2020). Here, the effect of Ag-NPs on release of KZ was
investigated. According to Table 2 and Fig4.a, synthesis of Ag-NPs in the solution containing β-CD/KZ led
to the lower loading of nanocomposites or KZ release from the fabric in both practical methods. This can
be related to the decrease in aggregation due to the silver NPs (Attarchi et al. 2013; Ouyang et al. 2015).

For those samples with Ag-NPs, the test was performed on β-CD/KZ/Ag 2 % in two methods.

Table 2. KZ content of different treated cotton fabrics

Samples Method Weight KZ KZ

    (mg) (mg) (%)

KZ Exhaustion 160 0.073 0.045

β-CD/KZ Exhaustion 140 0.354 0.253

β-CD/KZ Padding 166 0.119 0.072

β-CD/KZ/Ag 2% Exhaustion 150 0.190 0.127

β-CD/KZ/Ag 2% Padding 158 0.080 0.051

Fig4-b shows the slower, regular and more linear KZ release rate for the samples containing Ag-NPs even
after 30 days, and a partial release of KZ observes after 40 days. The hydrophobic internal cavity of β-CD
is about 0.78 nm, allowing very small synthesized silver NPs to enter the cavity without the silver
nucleation. The Ag ions can react with hydroxyl groups of β-CD and hydrolyzed parts of KZ in an
alcoholic or alkaline environment. This proportionate to the state of KZ entry into the β-CD cavity as the
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KZ molecule entrapped into β-CD cave mostly from -CH3 side according to the 1H-NMR spectra. Hence,
the rate of KZ release can be slowed down by increasing the size of composites. Moreover, the nucleation
mostly formed on the hydroxyl groups of the β-CD oriented out of the structure and Ag-NPs are likely
acting to block the route for releasing KZ from the β-CD cavity (Fig3). This can be considered a reason for
the slow release of KZ from those samples having Ag-NPs (Jaiswal et al. 2010).

Generally, KZ and β-CD/KZ loaded on the cotton fabric have a very slow release rate because of the
unique structure of KZ with two active chlorine groups. These can react with hydroxyl groups of β-CD or
cellulose fibers to create a covalent bond between KZ and cellulose (Hedayati et al. 2020). Also, the
synthesis of Ag-NPs in an alkaline environment led to KZ hydrolysis, and its reaction with Ag or β-CD
hydroxyl groups caused the prolonged release of KZ (Hedayati et al. 2020; Lewis  2011]. The negative
charge on KZ makes ready for the placement of Ag+ (Fig3, Reaction 2) (de Almeida et al. 2019).

Antimicrobial activity of treated samples

Two fungus and yeasts, A. niger and C. albicans and two Gram negative and positive bacteria, E. coli and
S. aureus were selected to study the antimicrobial activities of the treated samples (Table 3).

Table 3. Antimicrobial activities of different treated samples

 

 

Samples

 

 

Method

C. albicans A.
niger

E.
coli

S.
aureus

  Washing stability (%)      

10
run

10
run

10
run

     

Blank   0 0 0 0 0 0 0

KZ Exhaustion 100 100 99.5 99 90 0 2

β-CD/KZ Exhaustion 100 100 100 100 81 0 1

β-CD/KZ Padding 96 80 73 60 50 0 0

β-CD/Ag:          2% Exhaustion 70 70 68 65 42 84 80

β-CD/KZ/Ag :  2% Padding 100 97 95 93 71 55 51

β-CD/KZ/Ag :  2% Exhaustion 100 100 100 100 98 87 83

β-CD/KZ/Ag    1% Exhaustion 100 ---- ---- ---- 96.7 70 63

β-CD/KZ/Ag : 
0.5%

Exhaustion 100 ---- ---- ---- 95 50 50

β-CD/KZ/Ag : 
0.2%

Exhaustion 100 ---- ---- ---- 91.3 ---- ----
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The antimicrobial activities of KZ and β-CD/KZ and the loading method effects have already been
reported. As such, the antifungal activities of exhausted samples are much stronger than padded ones
because of the high temperature, fibers swelling, greater pore size and more loading of nanocomposites
in the exhaustion method (Hedayati et al. 2020). However, none of those prepared samples with KZ
showed antibacterial activity. Ag-NPs are sticking to microorganism membranes disrupting the function
and making holes in the membrane and cytoplasmic fluid outflow, causing cell death (Vale et al. 2019;
Wenhao et al. 2020). Hence, Ag-NPs were synthesized on the β-CD/KZ composites to investigate their
effects on the padded and exhausted samples. β-CD/Ag 2% showed 70, 42, 87 and 82 % microbial
reduction for C. albicans, A. niger, E. coli and S. aureus, respectively. All samples containing KZ were
affected on C. albicans; however, the Ag-NPs indicated potential effects on A. niger. Among various
samples, β-CD/KZ/Ag 2 % indicated the best antifungal and antibacterial effects. Although the amount of
KZ in β-CD/KZ was much more than β-CD/KZ/Ag in the exhaustion method, a weaker fungicidal effect
was observed on A. niger. Based on the above results, Ag-NPs and KZ with great improved effects can
advance the final antimicrobial properties (Falahati et al. 2014).

Washing durability

The washing durability of samples was examined against C. albicans and the percentages of growth
inhibition are reported in Table 3. The good washing durability has already been shown on the treated
samples with KZ and β-CD/KZ via exhaustion method (Hedayati et al. 2020). The effect of Ag-NPs on the
nanocomposites after various washes exhibited very high washing durability; however, the exhausted
samples revealed better durability than padded ones. This can be due to the processing at high-
temperature along with mechanical movements that led to the fibers swelling, pores formation, and
greater loading of the nanocomposites onto the fibers. These caused covalent bonds between the
nanocomposites and the cellulosic chains of fabric.

The sample loaded with β-CD/Ag exhibited good washing durability after 30 washes as the antifungal
properties decreased from 70 to 65 %, possibly due to Ag cations reaction or cationic charged Ag-NPs
with hydroxyl groups of β-CD and cotton (Fig3).

Cell culture and cytotoxicity

The used dosage of KZ and β-CD indicated no cytotoxic effects on the human fibroblasts skin (Hedayati
et al. 2020). The cytotoxicity of Ag-NPs in different concentrations was examined due to its importance
for wound dressings and underwear. All treated samples illustrated no cytotoxic effects on the human
fibroblasts confirming safety of the products for skin (Fig 5). This confirmed no side effects on the
human skin with loading of a very low Ag-NPs on the samples.

Fourier transform infrared spectroscopy (FTIR)

FTIR spectra explore the chemical structure of materials and nanocomposites loaded on the fabrics. The
exhausted samples were selected to be analyzed due to the more loading of nanocomposites with the
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highest Ag-NPs on the cotton fabric. Fig 6 displays the FTIR spectrum of pure KZ powder, raw and treated
fabrics with nanocomposites. The prominent peaks of KZ, cotton and cross-linked β-CD on fabric (at
1726 cm-1) were thoroughly discussed previously (Hedayati et al. 2020).

The increase in the absorbance intensity of prominent KZ peaks, such as C-N stretching or C=C aromatic
rings on the treated samples, confirmed KZ entrapment or loading on the fabric. However, the lack of KZ
prominent peak at 814 cm−1 related to C–Cl stretching on the treated fabric proved the removal of
chlorine groups due to the chlorine reacts with the hydroxyl groups of cotton fabric (Hedayati et al. 2020).

The peak at 3334 cm−1 (O-H stretching) confirmed Ag-NPs and the shift of peak to 3345 cm−1 with lower
intensity could be related to the synthesis of Ag-NPs within the β-CD/KZ structure. There are no
significant changes in other prominent peaks of cotton, such as 1006 and 1032 (C–O stretching), 1112
(C–O–C glucose ring) and 2901 cm-1 (C–H stretching).

Field Emission Scanning Electron Microscopy (FE-SEM), Elemental mapping (E-map) and EDS spectrum

The FE-SEM, EDS and E-map pictures of raw and exhausted samples with the most properties are
displayed in Fig 7 indicated the surface topography and identified the elements and uniformity of their
distribution.

The image of raw cotton fabric with the fibrils on the surface can be realized in Fig7; however, the treated
fabric with nanocomposites entirely covered with the nanocomposites. The aggregation of particles can
be seen in some parts, especially on β-CD/KZ due to the high β-CD content creating hydrogen, covalent or
van der Waals bonds between β-CDs or β-CD/KZ. However, Ag-NPs potentially reduced the aggregation of
the nanocomposites.

The particle size of KZ and β-CD/KZ is about 40-65 nm, while 20-40 nm for β-CD/KZ/Ag. The E-map also
confirmed the uniformity of KZ and Ag-NPs on all samples. The amounts of Cl and N groups can be
specified to KZ in the following order:  β-CD/KZ > β-CD/KZ/Ag > KZ

Energy-dispersive X-ray spectroscopy (EDS) was used to identify elements, including Ag (Urban et al. 
2009) (Fig7). The peaks of carbon and oxygen are associated with KZ and cellulose structure of cotton
and β-CD. The loading of β-CD on fabric led to the strong peaks of carbon and oxygen elements. The
small peaks of chlorine and nitrogen corresponding to KZ can be observed. A very low intensity of
chlorine peak compared with nitrogen indicated a possible reaction of chlorine with hydroxyl groups of β-
CD or cotton fabric. The Au is also associated with a gold layer for preparing the sample.

Tensile properties

The tensile strength of raw and treated cotton samples with nanocomposites is revealed in Table 4,
screening the effects of nanocomposites and citric acid on the cotton fabric. Based on the previous study,
the more loading of nanocomposites on the cotton fabric (without fixation) caused a significant (P-
values<0.05) increase in the fabric strength due to the bonds created with the cellulosic chains of cotton
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fabric. It is claimed that the reaction of KZ with cotton fabric led to higher tensile strength. Also, the β-
CD/KZ with citric acid on cotton fabric caused the lower tensile strength due to the acid degradation of
cellulosic chains at high temperatures. This can be partially improved with increasing β-CD in the
exhaustion method (P-values<0.05) (Hedayati et al. 2020).

It is certain that the treated fabric with β-CD (P-values<0.05) has higher tensile strength (225.6 N) than β-
CD/KZ (219.38 N) because of the entrapped KZ into β-CD cavity or bonding with its rim hydroxyl groups
and lower β-CD loading. The Ag-NPs somehow reduced β-CD gathering and nanocomposites content on
the cotton fabric, consequently reduced the tensile strength (196.07 N) (P-values<0.05). In general, the
tensile strength of samples is within the acceptable range. An ANOVA analysis indicated that the amount
of nanocomposites loaded on the fabric fixed with citric acid significantly affected the tensile strength
(p<0.05).

Water absorption

The water absorption test was performed, and the average of three repeated tests are reported in Table 4.
The β-CD, KZ and Ag-NPs on the surface of cotton fibers improved the water absorption. The rate of
spreading and absorption of water droplets on all samples was fast, close to zero second time.

Air permeability

Air permeability test was performed on the raw and treated fabric samples at a test pressure drop of 50
Pa for 5 cm2 test area. This was repeated three times, and the averages are reported in Table 4. The
nanocomposites treated sample airflow rates are almost similar and somehow more than the raw sample
due to reducing the lateral fibers and increasing the pore size for air to pass through the fabric. On the
other hand, the application of nanocomposites on cotton fabric at high temperature somehow increased
the fabric air permeability (P-values<0.05).

Table 4. Other physical properties of the treat samples
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Samples

 

Method

Tensile  

Water absorption

Absorption time (s)

Air permeability

(N) CV% (mL.s-1cm-2) CV%

Blank -------------- 247.35 0.3 0 150 0.2

KZ              Exhaustion 261.54 0.5 0 190 0.2

β-CD Exhaustion 225.6 0.7 0 180 0.3

β-CD/KZ Exhaustion 219.38 1.1 0 180 0.5

β-CD/KZ Padding 185.69 1.2 0 178 0.4

β-CD/Ag        2% Exhaustion 206.1 1.6 0 160 0.7

β-CD/KZ/Ag  2% Exhaustion 196.07 1.5 0 155 0.8

β-CD/KZ/Ag  2% Padding 177.73 1.3 0 185 0.7

β-CD/KZ/Ag  1% Exhaustion -------- ---- ---- ---- ----

β-CD/KZ/Ag0.5% Exhaustion -------- ---- ---- ---- ----

β-CD/KZ/Ag0.2% Exhaustion -------- ---- ---- ---- ----

Conclusion
In this study, β-CD/KZ/Ag nanocomposites were produced and applied on the cotton fabric via two
diverse methods of exhaustion and padding created a novel antimicrobial drug delivery system. The final
products were characterized by using various analyzing tools. The exhaustion method is mostly
recommending due to the much more nanocomposites loading on cotton fabric than padding. The best
antimicrobial effects reported on the sample treated with β-CD/KZ/Ag 2 % indicating 100 % reduction of
C. albicans and A. niger fungi and about 85 % reduction of E. coli and S. aureus with no cytotoxic effects.
The Ag-NPs in the composites prevented the nanoparticle aggregation lowered the nanocomposites
content on the cotton fabric, possibly reducing the drug side effects. The placements of Ag-NPs within
and around β-CD/KZ nanocomposites may cause the closure of β-CD cavity and reduce the KZ release
with more regularity. Finally, the good durability of β-CD/KZ/Ag nanocomposites on the cotton fabric in
consecutive washes leads to the superior antimicrobial activities, breathability, water and moisture
absorption with reasonable tensile strength that can be offered as a good product to be used as the
antifungal and antibacterial substrate.
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Figures

Figure 1

(a)UV/Vis absorbance spectra of KZ dissolved in methanol at 2 and 2.4 μg.mL-1
(b). KZ calibration curve
at λ=535 nm
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Figure 2

1H-NMR spectra of pure (a) KZ, (b) pure β-CD and (c) β-CD/KZ composites
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Figure 3

Reaction 1: Possible hydrolysis of KZ in the dichlorophenyl side (Reichle 1970) Reaction 2: Possible
hydrolysis of KZ in the ethanone side (de Almeida et al. 2019) and Interactions of KZ, cellulose and β-CD
with silver nitrate for production of Ag-NPs (Attarchi et al. 2013; de Almeida et al. 2019; Prasher et al.
2018; Rameshkumar et al. 2003).
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Figure 4

The release rate of KZ from different treated samples in methanol containing the color indicator
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Figure 5

Cell growth images of various treated cotton samples (a) KZ, (b) β-CD/KZ, (c) β-CD/KZ padded (d) β-
CD/Ag 2 %, (e) β-CD/KZ/Ag 2 %, (f) β-CD/KZ/Ag 2 % padded, (g) β-CD/KZ/Ag 1 %, (h) β-CD/KZ/Ag 0.5 %,
(i) β-CD/KZ/Ag 0.2 %.
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Figure 6

FTIR spectra of pure KZ powder, raw and treated cotton fabrics with diverse nanocomposites.
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Figure 7

FE-SEM, EDS and E-map images of different cotton samples (a) blank, (b-e) treated with KZ, (f-j) treated
with β-CD/KZ, (k-p) treated with β-CD/KZ/Ag 2%


