The targets of diosmin and therapeutic targets for renal fibrosis
Figure 1 shows the flow of the network pharmacological analysis of Diosmin against renal fibrosis. The chemical formula of the diosmin molecule C28H32O15 was obtained from PubChem, and the targets related to diosmin were screened using the PharmMapper database and corrected using the UniProKB tool in the UniProt database. A total of 295 potential targets, including A1AT, CASP3, MAPK14, and MMP9, were screened after removing targets that were unrelated to humans and those without correspondence or duplication. A total of 266, 570, and 6546 target genes closely related to renal fibrosis were screened in the three commonly used databases of GeneCards, OMIM, and Dis Genet, respectively. A total of 6828 genes were identified after duplicates were eliminated. These results suggest that numerous factors cause renal fibrosis, and the pathogenesis is complex. Gene datasets obtained from the screening of renal fibrosis-related targets and diosmin component-related targets were imported into an online Venn diagram, and a total of 150 intersecting targets were obtained (Figure 2).
Drug-disease target PPI network
A total of 150 hub genes were screened by mapping the diosmin component targets to each other and to the renal fibrosis disease targets. The 150 targets were imported into the STRING database and imported into Cytoscape for visualization and analysis, and a network consisting of 112 nodes and 721 edges was obtained. The network density was 0.588, and the average node degree was 12.9. When the network density is greater than 0.5, and the average node degree is greater than 3, the network has a good correlation (Figure 3). In the network, the top ten targets with high degrees of freedom were caspase 3 (CASP3), SRC proto-oncogene, non-receptor tyrosine kinase (SRC), annexin A5 (ANXA5), matrix metallopeptidase 9 (MMP9), heat shock protein 90 alpha family class A member 1 (HSP90AA1), insulin-like growth factor 1 (IGF1), ras homolog family member A (RHOA), estrogen receptor 1 (ESR1), epidermal growth factor receptor (EGFR), and cell division cycle 42 (CDC42) (Figure 4). The related gene targets focused on apoptosis and inflammatory pathways.
GO and KEGG pathway enrichment
GO and KEGG pathway enrichment results were plotted as bar graphs and bubble plots by gene number for visual analysis. A total of 291 BP, 44 CC, 85 MF, and 98 KEGG signaling pathways were identified. GO analysis showed that diosmin mainly plays a role in the BPs of apoptosis negative regulation, protein phosphorylation, protein autophosphorylation, peptidyl-tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling pathway, response to foreign body stimulation, cellular response to insulin stimulation, and positive regulation of phosphatidylinositol 3-kinase signaling. Apoptosis was correlated with the development of renal fibrosis, while protein phosphorylation was associated with the regulation of protein activity. CC was mainly enriched in the cytoplasm and nucleoplasm. MF analysis showed an association between homologous protein binding and ATP binding (Figure 5). KEGG enriched 98 signaling pathways (P < 0.05), including cancer, lipids and atherosclerosis, proteoglycans in cancer, fluid shear stress and atherosclerosis, endocrine resistance, and Rap1, Ras, PI3K-Akt, chemokine, MAPK, FoxO, T-cell receptor, HIF-1, and estrogen signaling pathways (Figure 6). Among these, the MAPK, Ras, PI3K-Akt, FoxO, and HIF-1 signaling pathways were closely related to renal fibrosis.
Molecular docking
Diosmin and the top ten targets ranked by degree were selected for molecular docking (Table 2). The binding capacity score is an important indicator of the ability of the receptor and ligand to bind to each other; the lower the binding capacity score, the more stable the complex formed. Following the convention, a binding capacity between the tested molecules and proteins was assumed to exist when the binding energy score was greater than 4.25. Scores greater than 5.0 indicate relatively high binding affinity [49]. Hence, the selected diosmin was docked with MMP9, ANXA5, CASP3, and HSP90AA1 using AutoDock according to its binding capacity (Figure 7).
Effect of diosmin on the expression of target genes in HK-2
We further investigated the anti-fibrotic effect of diosmin on HK-2 cells. Diosmin treatment (0, 1, 5, 10, 25, 50, or 75 μM) of HK-2 cells did not significantly inhibit the viability (Figure 8). Cell viability was slightly inhibited at a concentration of 100 μM. Therefore, we treated the cells with 75 μM diosmin. Compared with the TGF-β1 group, the mRNA expression of ANXA5, CASP3, MMP9, and HSP90AA1 was significantly decreased in the diosmin group (Figure 9).