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Abstract
Sedimentation dynamics in the Lake Ulaan basin located in the northern margin of the Govi region, southern
Mongolia show high sedimentation rates of 11.8–22.7 cm/ka in the eastern part of the basin and low rates of
3.3–5.8 cm/ka in the western part during the late Holocene. The eastern and western parts of the lake have
been strongly in�uenced by �uvial and aeolian activities since the arid late Holocene. However, �uvial
sediment input was more signi�cantly recorded in the eastern part. Aeolian de�ation has been prevailing
throughout the lake bank recently. Lake Ulaan reached its maximum extent before the early Holocene
(Sternberg and Paillou, 2015; Holguin and Sternberg, 2016) with a water depth of ~43 m (Lehmkuhl et al.,
2018a). After the early Holocene, Lake Ulaan started to decrease its area, and the drop of the lake level
intensi�ed since the middle Holocene. In the late Holocene, the лйоупы western and eastern parts were
initially exposed to wind de�ation at 2.7–3.2 cal. ka BP and the aerial exposition continued at 0.6–1.3 cal. ka
BP. In the Anthropocene, Lake Ulaan has rapidly shifted into a playa lake condition during the last �ve to six
decades, and it has become an open-source area of dust generation blown out by the westerly winds.

1. Introduction
Lake sediments can reconstruct regional environmental and climate changes during the geological period
because the lake is a container, an accumulator, and a repository. Autochthonous and allochthonous lake
sediments can provide records of both lake and its basin responses to climate change (Dearing 1994). The
mineral component of lake sediments would re�ect the intensity of erosion in the basin (Roberts 1998).
Moreover, exposed paleolake deposits allow us to �nd out the origin and provenance of the lake sediments
(Einsele 1992).

Boundaries of natural regions in semiarid Mongolia, particularly the Govi (or Gobi)[1] region, are shifting from
the south to the north by year due to an abrupt rise in average air temperature by 1.7–2.5oC/yr (Dulamsuren
2016). The Govi region’s landscape in southern Mongolia is rapidly changing from the Govi to the desertic
condition. The development of the Khongor sand dune�eld in southern Mongolia at 4.0 ka BP (Felauer et al.
2012) implies that the playa environment in the Govi region started to form at that time. According to Baker
(2007), a playa environment is a �at-bottom depression, consisting of a dry lake, in interior desert basins in
arid and semiarid regions. Globally, the playa environment is periodically covered by water that slowly �ltrates
into the groundwater or evaporates into the atmosphere (Baker 2007; Komatsu et al. 2007).

Southern Mongolia is climatologically important because variations in the Mongolian High-Pressure System’s
intensity have strongly controlled Central Asian regional climate during the Quaternary Period (Owen et al.
1997). The Govi region’s climate has been generally arid in the Quaternary (Berkey and Morris 1927). The
average air temperature is –15°C to –25°C in January and 20–25°C in July, and the average precipitation is
less than 100 mm/yr (Tserensodnom 1971). The average rainfall is 50–150 mm/yr, and the open water
evaporation is 1000–1300 mm/yr in the Govi desert region (Ministry of Environment and Green Development
2013). The observed warming trend shows that the average air temperature has risen by 1.6–1.7oC/yr in the
Govi desert from 1940 to 2001 (Batima et al. 2005). Severe droughts in the eastern Govi region, observed
since the late 1990s, have intensi�ed the groundwater level and lake area (Kang et al. 2015). Climate data
observed at meteorological stations in the Valley of Lakes during 1975–2015 show trends in temperature rise
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since 1995 and precipitation �uctuations since 1975 (Orkhonselenge et al. 2018a). Rivers, feeding lakes in the
Govi region, decrease in discharges in all seasons at the present time (Davaa 2015). In the Govi region, river
water temperature is expected to rise 2.5–2.7°C in 2020, 3.2–3.5°C in 2050, and 3.9–4.2°C in 2080 (Davaa
2010).

In recent years, Lake Ulaan has attracted numerous detailed studies in geomorphology, sedimentology,
hydrology, and paleogeography. For instance, Lake Ulaan’s water level dropped by 1–2 m since 1980
(Batnasan 1998), and the lake faced the challenge of the continuous decrease in its area due to the rising
temperature over the last half-century (Orkhonselenge et al. 2018a). However, there has been little research
about how sedimentation records past climates in the Lake Ulaan basin and its evolutionary history during
the geological period. Up to now, little is known about the distribution and timing of the late Quaternary
aeolian sediments. This study presents the late Holocene sedimentation rates in Lake Ulaan, associated
�uvial and aeolian processes, hydrological evolution in the past, and when the lake has shifted into the playa
environment.

2. Site Description
2.1 Geological setting

Lake Ulaan basin is underlain by reddish sandstones over rhyolite �ows and andesites (Berkey and Morris
1927) and the middle to late Quaternary deposits on the Neogene molasses deposits (Academy of Sciences
of Mongolia and Academy of Sciences of USSR 1990) within the Proterozoic-Carboniferous lake zone (Guy et
al. 2014). Lake Ulaan is tectonostratigraphically included in the Mandal Ovoo island arc terrane consisting
mainly of the middle to late Paleozoic oceanic ophiolites, tholeiitic calc-alkaline volcanic, and volcano-clastic
rocks overlain by non-marine sedimentary rocks (Badarch et al. 2002). Hills to the west and south of Lake
Ulaan are composed mainly of Silurian limestone and dolomite and Cretaceous basalt and clastic
sedimentary rocks, while to the east and north, the bedrock is dominated by Archaean and Paleoproterozoic
metamorphic complexes and Paleozoic and Mesozoic sedimentary rocks (Academy of Sciences of Mongolia
and Academy of Sciences of USSR 1990).

For geological formation, Lake Ulaan covers a continental platform consisting of Cenozoic red and gray
terrigenous sands, gravels, and pebbles. It borders with Cenozoic limestone and basalts and Devonian
terrigenous tuff greywacke in the southeast (Academy of Sciences of Mongolia and Academy of Sciences of
USSR 1990). In the lake basin, Makhbadar (2012) identi�ed early Cretaceous Manlai, Khukh Shiir, Ulziit, and
Kholboot Formations, consisting of light grey and grey sandstone, ooze, siltstone, argillite, conglomerate,
gravels, pyroxene basalt, and andesite. Surface sediments in Lake Ulaan are derived from a ma�c igneous
rock in an oceanic island arc setting (Lee et al. 2013).

2.2 Geomorphological setting

Lake Ulaan is located at 1024 m a.s.l. in the eastern end of the Valley of Lakes between the Khangai and Govi
Altai Mountain Ranges at the northern border of the Govi region in southern Mongolia (Fig. 1a). The modern
topography of the Lake Ulaan basin formed in late Mesozoic graben-synclinal structure rift (Tserensodnom
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2000) surrounded by Paleozoic linear uplifts (Narantsetseg et al. 2011). The Lake Ulaan basin is marshy in
general, and it is located between relatively low hills at 1050–1110 m a.s.l. (Fig. 1b). Because this lake basin
is at the lowest elevation in the Valley of Lakes (Orkhonselenge et al. 2018a), thick alluvial and lacustrine
deposits were accumulated in the past (Tsegmid 1969).

Lake Ulaan is hypothesized as a deposition center for the whole lake basin system in the Valley of Lakes
during the Quaternary (Tserensodnom 2000). Bottom sediments of Lake Ulaan consisted of deposits in the
Neogene when water level and area were almost 100 m higher and several ten times larger in size than the
present (Tserensodnom, 1971). Lake beaches are �at plain and swampy (Orkhonselenge et al. 2018b), and
there are sand dune�elds in the northwest and north (Tsegmid 1969). Dashzeveg et al. (2005) noted the
Cretaceous dune�eld in the Lake Ulaan basin based on cross-bedded intervals, occasionally exhibiting wind-
ripple cross lamination in the Bayan Zag and Tugrugiin Shiree stratigraphic columns.

2.3 Hydrological setting

Lake Ulaan is a terminal lake of Ongi River (Fig. 1b), draining from the Khangai Mountain Range (Fig. 1a).
However, the river cannot permanently feed the lake today (Fig. 2g, h) due to the �uctuating precipitation;
hence the lake area is often changed. The modern Lake Ulaan is apparently divided into the eastern and
western parts separated by an approximately 6 km long and 0.5–2.0 km wide arcuate N-S trending spit (Fig.
3). The spit intersects the center of Lake Ulaan, dams the eastern part, and keeps its level ~0.5 m higher than
that of the western part during heavy rainfall. The water from the Ongi River enters the eastern part directly,
but it feeds the western part via crossing over the spit/three small channels (or spillways) in the spit (C1 to C3
in Fig. 3) or through groundwater.

Lake Ulaan holds a water resource of 0.158 km3 (Tserensodnom 2000), but it is almost dried out during low
precipitation (Fig. 2a, c). The lake has been a shallow playa lake, dry most of the year, and the lake �oor was
aerially exposed and vegetated (Fig. 2c, d). The lake reshrank in 1986–1989 (Batnasan 1998), 2010 (Davaa
2015), and 2015 (Fig. 2a). Lake Ulaan is generally a freshwater lake system even though it has no out�ow,
unlike other lakes in the Govi region (Tsegmid 1969). The lake water’s freshness is related to the lake water
�ows through the unconsolidated soil around the lake under the highly evaporative climate condition
(Tsegmid 1969). Nevertheless, according to Tsend (1965), lake water is mild, and the lake water is dominated
by HCO3

- and Ca2+.

3. Material And Methods
3.1 Field sampling

During the �eldwork on 18 June 2018, we collected bulk samples from four sites on the exposed �oor in the
eastern part of Lake Ulaan (Fig. 3b). The �rst site (LU18-1) is located at 1029 m a.s.l., where the upper 35 cm
samples were obtained. At the next site (LU18-2) at an elevation of 1029 m a.s.l., the upper 38 cm samples
were collected. For the site (LU18-3) at 1030 m a.s.l., the upper 46 cm samples were obtained. At the last site
(LU18-4) at 1028 m a.s.l., the upper 36 cm samples were collected. Stratigraphic columns with lithological
description and color of the samples are shown in Fig. 4a.
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As shown in Fig. 3b, the �rst two sites LU18-1 and LU18-2, are located in the lake’s center, whereas the last
two sites LU18-3 and LU18-4, are located toward the margins as in the case of the sites UN15-1 and UN15-2
(Fig. 3) for the previously studied by Orkhonselenge et al. (2018b). However, at present, the sites LU18-1 to
LU18-4 in the eastern part of the lake (Fig. 3b) are situated under the condition which is more permanently
inundated during rainfalls than those in the lake’s western part, which has almost shifted to the drier playa
condition (Fig. 3). It is con�rmed that our four sampling sites are included in the current lake extent but were
exposed at the time of our sampling (Fig. 2c) (see Figs. 3, 5, 7 in Holguin and Sternberg 2016).

The sites UN15-1 and UN15-2 at the exposed �oor in the western part of the lake (Fig. 3) are situated at 4–6
m lower than those sites LU18-1 to LU18-4 in the eastern part of the lake (Fig. 5a). It implies the western part
consists of the unconsolidated sediments, which are easily blown by winds, i.e., the erosion rate there may
have been higher than that in the eastern part of the lake since 3.2 cal. ka BP (Orkhonselenge et al. 2018b)
when it faced the �rst aerial exposure. Whereas, the deposition rate is higher in the eastern part of the lake
(Fig. 4b) than that in the western part of the lake (Fig. 5b, c) because the eastern part of the lake is
continuously overloaded/fed by groundwater and discharge of Ongi River during the rainfall in addition to
aeolian deposits today. The difference in a deposition is likely augmented by the presence of a spit that
provides a physical barrier blocking the smooth transfer of runoff from the eastern part to the lake’s western
part (Fig. 3). The exposed �oor in the western part of the lake (Fig. 2a) was covered by water in the Landsat 8
image in 2014 (Fig. 3a); however, the water coverage shifted to the east or left the western part of the lake in
2019 (Fig. 3b).

3.2 Major elements’ analysis

Major elements of the lake sediments were analyzed at the Division of Radionuclide Analysis, the Central
Geological Laboratory in Mongolia, using the Axios Max X-ray �uorescence (XRF) spectrophotometer. The
major elements’ functions and ratios of the lake sediments are used to create discriminant diagrams for
studying the provenance of ma�c and less-intermediate igneous (P1), intermediate igneous (P2), felsic
igneous (P3), and quartzose sediments (P4) (e.g., Roser and Korsch 1988) in Fig. 6a; and tectonic setting of
passive margin (PM), active continental margin (ACM), and oceanic island arc (ARC) (e.g., Roser and Korsch
1986) in Fig. 6b.

The geochemical classi�cation diagram to clarify source rock composition is described based on
log[SiO2/Al2O3] vs. log[Fe2O3/K2O] by Herron (1988) in Fig. 7a. The source rock composition can be
estimated using the Al2O3-CaO+Na2O-K2O (A-CN-K) ternary diagram (Nesbitt and Young 1984) in Fig. 7b. The
degree of weathering in the source area can be identi�ed by the Chemical Index of Alteration (CIA:
[Al2O3/(Al2O3+Na2O+K2O+CaO)]x100) in Fig. 7b. A high value indicates intensive weathering dominance
(Harnois 1988) and a highly chemically weathered source area (Nesbitt and Young 1982). Moreover, a
correlation between SiO2 and Al2O3+K2O+Na2O indicates the lake sediments’ chemical maturity (Suttner and
Dutta 1986).

3.3. Measurement of radiocarbon
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Analysis for radiocarbon (14C) dating was conducted with the Accelerated Mass Spectrophotometry (AMS) at
the Institute of Accelerator Analysis Ltd. in Japan. According to the laboratory report, the graphite sample was
measured against a standard of Oxalic acid (HOxII) provided by the National Institute of Standards and
Technology, USA, using a 14C-AMS system based on the tandem accelerator. The samples with the plant
fragments show su�cient carbon recovery values at 41.29–50.83% (Table 1).

For the calculation of 14C age, the Libby half-life of 5568 years was used (Stuiver and Polach 1977). Percent
of modern carbon (pMC) refers to a ratio of the 14C concentration in the sample relative to 1950. Calibrated
calendar age is a range of age corresponding to 14C age via a calibration curve produced from the 14C
concentration of samples of known age. It is expressed by the 1σ error range (68.2% probability) or the 2σ
error range (95.4% probability) in Table 2. The calibration in this study was conducted by OxCal v.4.3 (Bronk
Ramsey 2009) based on IntCal13 database (Reimer et al. 2013).

4. Results
4.1 Provenance, tectonic setting, minerals, and weathering

The discriminant functions 1 and 2 to infer provenance in the Lake Ulaan basin were plotted (Fig. 6a)
proposed by Roser and Korsch (1988). The Lake Ulaan sediments show a ma�c igneous provenance at the
site LU18-4, except for the surface sediments, and a quartzose sedimentary provenance at the sites LU18-1, 3,
and UN15-1, 2, while both ma�c igneous and quartzose sedimentary provenances at the site LU18-2. The
result coincides with the ma�c igneous rocks in an ARC setting for upper and lower sediments of Lake Ulaan
and the quartzose sedimentary rocks derived from an ACM source for medium sediments (Lee et al., 2013).

The SiO2 content and log[K2O/Na2O] of the Lake Ulaan sediments were plotted to decipher their tectonic
settings (Fig. 6b) proposed by Roser and Korsch (1986). The result shows the ARC tectonic deposition
environment for the Lake Ulaan sediments (Fig. 6b). According to McLennan et al. (1993), PM tectonic
environment is characterized by felsic composition, while the ARC tectonic environments are typically
enriched in ma�c components. The Lake Ulaan sediments show the ma�c igneous rocks formed in the ARC
setting, except for the UN15-1 sediment (Fig. 6b).

The geochemical classi�cation diagram shows that the Lake Ulaan sediments are mostly composed of shale,
while the sediments at the sites UN15-1 and LU18-4 in the lake's margin consist of greywacke and litharenite
(Fig. 7a). The A-CN-K ternary plot shows that the Lake Ulaan sediments were derived from the granitic to
granodiorite source terrain in the eastern part of the lake and from the smectite source terrain in the western
part of the lake (Fig. 7b). The granodiorite source is related to the composition of volcanic clastic sedimentary
rocks. The lake sediments along the side towards the plagioclase (Fig. 7b) imply the Na-rich and Ca-rich
feldspars’ presence.

In the Lake Ulaan sediments, the CIA range from 55.88–63.28 at the sites LU18-1 to LU18-4 in the eastern part
of the lake (Fig. 7b) to 60.24–62.64 at the sites UN15-1 and UN15-2 in the western part of the lake
(Orkhonselenge et al. 2018b). The CIA values in the Lake Ulaan sediments indicate the low degree of source
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area weathering in the lake’s eastern part and the moderate to the high degree of source area weathering in
the lake’s western part (Fig. 7b).

The results from the source area provenance (Fig. 6a) and tectonic setting (Fig. 6b), and source rock
compositions (Fig. 7a), and minerals and weathering intensity (Fig. 7b) are in agreement with the structure of
the geological formation in the Lake Ulaan basin with the non-marine sedimentary rocks underlain by the
oceanic ophiolites, tholeiitic to calc-alkaline volcanic and volcano-clastic rocks, bounded by limestone and
basalts, and terrigenous tuff greywacke around the lake basin (see details in Section 2.2).

4.2 Age correction

In terms of age correction, selecting the material for dating depending on shallow or deep lakes is crucial for
inferring erosion, transportation, and deposition in the lake basin. In deep lakes, terrestrial organic materials
are redeposited by streams (Orkhonselenge et al. 2013). For example, in Lake Khuvsgul of northern Mongolia
average ages of surface sediments are ca. 0.5 ka (Prokopenko et al. 2005), and 14C ages of bulk organics are
0.4–4.0 ka older than wood fragments (Watanabe et al. 2009). It is known that the dates obtained from plant
fragments are more reliable than those obtained from bulk organics for age corrections (e.g., McGeehin et al.
2001). However, Orkhonselenge et al. (2018b) noted that plant macrofossils and wood fragments are
applicable for precise dating if they are only found in deep sediments, and that the plants recently deposited
in surface sediments are dated as modern. Moreover, the in�ux of 14C-de�cient carbon delivered from
adjacent soils and the Paleozoic carbonate rocks during the early to the late Holocene is still active in Lake
Ulaan today (Lee et al. 2011).

In shallow Lake Ulaan, bulk sediments and plant fragments were chosen for establishing age datasets (Table
1). The plant fragments in the sediments (LU18-2: 18–20 cm, LU18-3: 25–28 cm, and LU18-4: 34–36 cm) are
dated as modern (Table 1). The modern ages show the active aeolian and �uvial erosions and rapid
sedimentations at the sites LU18-3, 4 in the lake's margin than the site LU18-2 in the center of the lake (Table
2). Therefore, the same lake sediments for obtaining precise dating and reconstructing depositional
environments in the past, the bulk sediments are used for age corrections as the well-preserved sediments in
the shallow Lake Ulaan (Orkhonselenge et al. 2018b). As described in Section 3.3, the samples with the plant
fragments from all Lake Ulaan sites show su�cient carbon recovery (Table 1), i.e., the bulk sediments from
Lake Ulaan can date the correct age and infer the sedimentation rates in the lake basin.

In the western part of Lake Ulaan the reservoir effect is negligibly corrected to be at 0.2 ka because of the
terrestrial organics’ input after removing the surface sediments by aeolian processes during the intensive
drought in the late Holocene (Orkhonselenge et al. 2018b). However, in the eastern part of the lake, it is
estimated at 0.1 ka, i.e., overall, the reservoir effect can be at 0.15 ka throughout Lake Ulaan. In addition to the
previous calibrated age data by Orkhonselenge et al. (2018b), the calibrated data (Table 2) and the age to
depth model (Fig. 8) are used for inferring sedimentation dynamics in the Lake Ulaan basin.

4.3 Radiocarbon dating

Tables 1 and 2 show the sediments’ conventional and calibrated ages in the eastern part of Lake Ulaan. The
conventional 14C ages with δ13C correction show modern to 3020±30 yr BP for bulk sediments with the pMC
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between 68.66±0.22% and 92.96±0.26%, and the modern time for plant fragments with the pMC greater than
102.77±0.27% (Table 1). The calibrated ages of the 14C dating show 616 cal. BP, with a probability of 68.0%
at the site LU18-1, 1010 cal. BP, with a probability of 95.4% and 3205 cal. BP, with a probability of 77.4% at the
site LU18-2, 2381 cal. BP with a probability of 95.4% at the site LU18-3, and 1265 cal. BP, with a probability of
76.7% at the site LU18-4 (Table 2).

The calibrated ages allow us to infer that the near-surface sediments (5 cm depths) in the eastern part of
Lake Ulaan deposited at 1010 cal. BP at the site LU18-2 in the central part and 1265 cal. BP at the site LU18-4
in the lake’s marginal part (Table 2, Fig. 8a, c). In other words, the near-surface sediments at the same 5 cm
depths were deposited at 1.0–1.3 cal. ka BP in the eastern part of the lake and at 2.7–3.2 cal. ka BP at the
sites UN15-1, 2 in the lake’s western part (Orkhonselenge et al. 2018b; Fig. 8b, d). However, the original near-
surface sediments at 5 cm depths in the western part of the lake may have already been eroded and
transported from there because the western part of the lake lies at ~4–6 m lower elevation (Fig. 5a). The
calibrated ages of the 14C dating at the sediments deeper than 20 cm in the eastern part of the lake show
3205 cal. BP at the site LU18-2 in the center and 2381 cal. BP at the site LU18-3 in the margin of the lake (Fig.
8b, c). However, the ages at 20 cm depth sediments in the lake’s western part show 6.0 cal. ka BP at the site
UN15-1 and 3.4 cal. ka BP at the site UN15-2 (Orkhonselenge et al. 2018b; Fig. 8b, d). It implies that the deep
sediments were deposited at 2.4–3.2 cal. ka BP in the eastern and 3.4–6.0 cal. ka BP in the western parts of
the lake (Fig. 8).

Overall, the eastern part of Lake Ulaan shows ages 1.7–1.9 ka younger for the near-surface sediments than
those in the western part, while the western part shows 2.8–3.6 ka older for the deep deposits (Fig. 8b). The
14C ages in the eastern part of the lake indicate that the near-surface sediment at the site LU18-2 in the center
is 0.3 ka younger than the sediment at the site LU18-4 in the lake’s margin. In comparison, the deeper
sediment at the site LU18-2 at the center is 0.8 ka older than the deeper sediment at the site LU18-3 in the
margin of Lake Ulaan (Fig. 8c). It implies that the younger at the site LU18-3 and older sediments at the site
LU18-4 in the margin than those at the site LU18-2 in the center of the lake show rapidly deposited pulse
sediments and well-preserved old sediments.

4.4 Sedimentation rate

In the center of Lake Ulaan, sedimentations at 14 cm depth of the site LU18-1 occurred at 0.6 cal. ka BP,
whereas the sedimentations at 7 cm depth of the site LU18-2 occurred at 1.0 cal. ka BP and 38 cm depth at
3.2 cal. ka BP (Table 3, Figs. 4b, 5b, c). In the lake's margin, the sedimentations at 46 cm depth of the site
LU18-3 occurred at 2.4 cal. ka BP and at 6 cm depth of the site LU18-4 occurred at 1.3 cal. ka BP (Table 3, Fig.
5b, c). In Lake Ulaan, as in other lakes in the Govi region, the sedimentation rates (Figs. 4b, 5b, c) should be a
function of both sediment deposition and de�ation by wind depending on the condition of water coverage
and the annual precipitation input to the Ongi River (Fig. 2e, f) for its discharge and the groundwater. The
center of the lake basin was more optimized for sediment preservation since it was more protected by water.
Near the center of the basin, the sedimentation has been fast during the last 600 years at the site LU18-1,
where the sedimentation rate shows a massive pulse of sedimentation with an average sedimentation rate of
22.75 cm/ka (Table 3, Figs. 4b, 5b, c). In another near center of the lake, the sedimentation rate is shown at
11.85 cm/ka at the site LU18-2 (Table 3, Figs. 4b, 5b, c). In the lake's margin, the sedimentation has been fast
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at the rate of 19.32 cm/ka at the site LU18-3, but it has been remarkably recorded for a longer period (over
2400 years) (Table 3, Figs. 4b, 5b, c). In the meanwhile another margin site LU18-4 of the lake, the
sedimentation rate was slow (4–5 cm/yr), but for a shorter period (for 1200–1300 years), i.e., the average
sedimentation rate is 4.74 cm/ka at the site LU18-4 (Table 3, Figs. 4b, 5b, c).

The average sedimentation rates in the eastern part of the lake, except for the site LU18-4 (Fig. 4b), are
indicated to have been at high levels and are comparatively larger than those of 3.3–5.8 cm/ka at the sites
UN15-1 and UN15-2 (Orkhonselenge et al. 2018b) in the western part of the lake (Fig. 5b, c). In both western
and eastern parts of Lake Ulaan, the sedimentation rates increase from the margin toward the lake's center
(e.g., from UN15-1 to UN15-2, and from LU18-4 to LU18-1) (Fig. 5b, c). The lake margins have probably been
more exposed to aeolian de�ations than the lake center hence recording slower sedimentations. Still, other
margin sites (e.g., LU18-3) may occasionally have higher sedimentations due to massive discharge pulses
during the Ongi River’s �ooding (Fig. 2e, f) because Lake Ulaan is a terminal lake of the Ongi River. These
giant pulses of sedimentations in the eastern part of the lake imply that this part of the lake has received
precipitation-derived river water in addition to the glacier and permafrost meltwaters, whereas the western
part of the lake may have been fed only by glacier meltwater via groundwater (Figs. 9, 10).

The sharp division of the eastern and western parts (Fig. 3) seems to be enhanced by the spit's presence
separating the two areas by obstructing the free �ow of surface water from the Ongi River. As strongly
represented by the western part of the Lake Ulaan (Orkhonselenge et al. 2018b), the area in the late Holocene
(Table 4, see Section 5.2) is characterized by increased aridity and decreased humidity (Orkhonselenge et al.
2018a), and consequently, the lake decreased in size (Holguin and Sternberg 2016) after 4.0 cal. ka BP
(Felauer et al. 2012) as indicated by reduced �uvial processes and increased aeolian processes (Lee et al.
2011; 2013). This pattern is consistent with other lacustrine evidence from lakes in the Govi region (Felauer et
al. 2012; Grunert et al. 2000).

5. Discussions
5.1 Sedimentation dynamics

The sedimentation rate in the eastern part of Lake Ulaan just near the downstream of Ongi River is
remarkably higher than that of the western part (Fig. 8b) because the presently dried out Ongi River (Fig. 2g,
h) may intermittently feed the lake with high meltwater discharge transporting sands (Fig. 9). The spits may
block the sand transportation and water discharge, and it may slow down the �uvial sedimentation rate in the
western part, where the �lling by water is more signi�cantly delayed than the eastern part (Figs. 3, 10). The
eastern part tends to be covered with the water from the Ongi River and the groundwater for more extended
periods and consequently have less aeolian de�ation (Figs. 9, 10). The possibility of sand transport across
the ice covering the lake in the Depression of Great Lakes in western Mongolia during the long winter (Stolz et
al. 2012) when most of the sand storms caused by strong west and northwest winds (Hempelmann 2010)
may support the aeolian sedimentations (i.e., deposition) in the Lake Ulaan area in winter and spring.

Lakes in the Depression of Great Lakes and the Valley of Lakes �nd high stands due to increased snowfall
caused by a more humid climate resulting in a considerable glaciation at high elevations (Lehmkuhl and
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Lang 2001; Lehmkuhl et al. 2018b). This snow accumulation may contribute to the meltwater runoff in spring
and early summer and the �uvial sedimentations in the lake’s eastern part (Fig. 9). However, the climate in the
Lake Ulaan region still stays under the arid climate throughout the year (Figs. 11, 12) and permits de�ation of
the lake depression and strengthened aeolian sedimentation (Figs. 9, 10), probably increased by high wind
velocities of up to 34–40 m/s (Amarjargal 2016) passing through the Valley of Lakes. The near-surface
sediments of Lake Ulaan down to 3.9 m depth correspond to wind deposits (Lee et al. 2011) and are
interpreted to be the lake terrain (Badarch et al. 2002). According to Lehmkuhl et al. (2018a), the silts
deposited in Lake Ulaan during the humid middle Holocene may have been exposed to wind activity when the
lake is dried out as a playa bed. The early to late Holocene sediments in the Lake Ulaan basin indicate the
aeolian dominant sediment-transport mechanism (Lee et al. 2011). Moreover, the sediments in the Lake Ulaan
basin were transported by local westerly winds blowing along the Valley of Lakes during the last 11.2 ka BP
(Lee et al. 2013).

In general, the aeolian sedimentations predominated in the Lake Ulaan basin since the early Holocene. For
instance, the �ne aeolian sand at 4.2 m depth in a 6 m high terrace of Ongi River 55 km northeast of Lake
Ulaan indicated that the deposition had already started during the late Glacial period (Lehmkuhl et al. 2018a).
However, the �uvial sedimentation strengthened in the middle Holocene, and aeolian sedimentation increased
during the late Holocene (Fig. 9). Some large alluvial fans or deltas may have formed around the Lake Ulaan
basin in the past that are now buried by wind-derived surface sediments (Sternberg and Paillou 2015). The
aeolian de�ation in the Lake Ulaan basin during the Anthropocene (Figs. 9c, 10) had intensi�ed since the
1950s because of the historical records of water coverage of Lake Ulaan (Table 4). Continuous de�ations
occurred in the Lake Ulaan basin in winter, spring, and autumn since that time, except for summer when the
lake was �lled due to rainfall in 1960, 1970, and 2013–2014 (Table 4, Fig. 2b, d). The lake has been an end-
transfer base �oor for aeolian sedimentations blown from the Depression of Great Lakes in the northwest
through the Valley of Lakes, and also a continuous source for dust storms and suspension transport of silts
towards the Paci�c Ocean in the southeast.

5.2 Lake evolution history

Like other lakes in the Govi region, Lake Ulaan experienced signi�cant changes in water level and coverage
area during the late Quaternary. Historical analysis of changes in lake level and size (Table 4) shows that
Lake Ulaan is highly sensitive to ongoing climate changes of precipitation, air temperature, and wind velocity.
Lake Ulaan has experienced dramatic �uctuations of its extent over several thousand years. A giant paleolake
of ~43 m depth might have existed at OSL-dated 162±13 ka, i.e., the paleolake formed after the Marine
Isotope Stage (MIS) 6 (Lehmkuhl et al. 2018a; Table 4). The early time of a large lake covering an area of
19,000 km2 being associated with wetter climates corresponded to a water level at 1285 m a.s.l. (Sternberg
and Paillou 2015; Table 4). Then the lake was de�ned as an intermediate-sized lake covering a surface of
~6,900 km2 at a water elevation of 1150 m a.s.l. (Sternberg and Paillou 2015; Table 4); however, the precise
ages of such extended lakes are still unclear.

In the Holocene, the lake reduced to 1,700 km2 in the area, corresponding to a water level at 1070 m a.s.l.
(Sternberg and Paillou 2015; Table 4) occurring as the stage of the lake before the present-day dry basin (Fig.
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9). In the middle Holocene (Fig. 9a), Lake Ulaan occupied an area of approximately 500 km2 in size
(Lehmkuhl et al. 2018a; Table 4). In the late Holocene (Fig. 9b), Lake Ulaan may have been exposed aerially
for the �rst time. It coincides with the desiccated Lake Bayan Tukhum at 3.5 cal. ka BP (Felauer et al. 2012),
~105 km south from Lake Ulaan. If the remobilized and redeposited sediments are taken into account, the
lake has been re-exposed to wind de�ations at 0.6–1.3 cal. ka BP for the sites LU18-1, 2, 4, except for deep
sediments at 2.4 cal. ka BP for the site LU18-3 (Table 2, Fig. 9c).

In the Anthropocene, Lake Ulaan may still have been a permanent lake (Table 4, Fig. 9c). The most recent high
stand before the 1960s was when the lake level was maintained 2–3 m above the present dry lake bottom
(Lehmkuhl et al. 2018a). The lake condition in addition to the former lakes determined by Murzaev and
Bespalov before the 1950s (Table 4) is in accordance with the climate condition of the wettest epoch from the
1940s to the 1950s, reconstructed by Fang et al. (2010). Recently, Lake Ulaan has abruptly dried out and
shrunk with sharply dropped areas (e.g., Davaa, 2015; Orkhonselenge et al. 2018a, b), and the former lake
�oor is partly covered by sedge plants (Fig. 2c). Once the largest lake in the Govi, Lake Ulaan was identi�ed in
1991 but did not appear in the Landsat images since 2000 (Kang et al. 2015). According to Davaa (2015),
Lake Ulaan disappeared in 2010 and recovered an area of 20.9 km2 in 2013 (Table 4). The frequent shrinkage
of the lake since the 1950s has contributed to the aerial exposition of the lake �oor to wind de�ation and
rapid redeposition (Figs. 9c, 10).

Although Lake Ulaan has experienced �uctuations of shrinking and/or �lling depending on the annual
precipitation and temperature (Orkhonselenge et al. 2018a) since the 1950s, the lake has �nally shifted to
become a playa (Fig. 9c). This was due to the strong westerly wind effects exceeding 20–25 m/s (Amarjargal
2016) and extreme over usage of groundwater by mining operation in the basin in addition to the rapidly
rising air temperature (Orkhonselenge et al. 2018a). The playa condition (Fig. 9c) is re�ected in intensi�ed
aeolian sedimentations (Lehmkuhl et al. 2018a), chemical weathering (Fig. 7b), and the climate change from
semiarid to arid conditions (Fig. 11).

Although the eastern part of the lake is occasionally �lled by the pulsating sedimentations by Ongi River
during the heavy rainfalls, the lake basin has been thoroughly exposed to the westerly wind de�ations (Figs.
9, 10). When the eastern part of the lake �lls with water by Ongi River, it feeds the western part temporarily
through the only channels C2 and C3 in the spit (Figs. 3, 10). Ongi River may �ll only the eastern part, but due
to the spit's presence, the lake water needs to reach the spit height before the two systems start connecting to
each other fully. It implies that the �lling of the western part should be delayed even though the groundwater
feeds it (Fig. 10). The present playa condition of Lake Ulaan (Fig. 9c) is consistent with numerous other
observations showing that most lakes in the eastern Govi have been exposed aerially and dried out entirely
due to the recent rapid rise in air temperature and evaporation during the last two decades (Orkhonselenge et
al. 2019).

5.3 Holocene climate changes

In Mongolia, there is a common trend with the warm and humid early Holocene, the humid early to middle
Holocene, the arid middle Holocene, and the humid late Holocene reconstructed paleoclimate records (An et
al. 2008). However, the Holocene climate change has differed in each region of Mongolia. For instance, the
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middle Holocene climate was recorded as humid in southern Mongolia and as arid in western Mongolia with
well-developed ~9 m deep Lake Bayan Tukhum in southern Mongolia and a younger shallow Lake Ereen in
western Mongolia (Grunert et al. 2009; Table 5). Moreover, the late Holocene climate in Mongolia was found
as humid in northern Mongolia, and as an arid in southern Mongolia started since ~3.2 cal. ka BP and
strengthened since 1.5 cal. ka BP (Orkhonselenge et al. 2018b; Table 5). The late Holocene climate in
southern Mongolia at 1.5 cal. ka BP is more comparable with the results from northern China, while the
paleoclimate pattern in northern Mongolia is much closer to the records from southern Siberia
(Orkhonselenge et al. 2018b). In terms of the Holocene climate change in Mongolia, the climate in northern
Mongolia has been remarkably in agreement with the paleoclimate changes in the East Asian winter
monsoon (EAWM) and the mid-latitude westerlies dominated regions, whereas the climate in southern
Mongolia has been coincident with the East Asian summer monsoon (EASM) and the westerlies dominated
areas. For instance, the Holocene climate in the Govi region in southern Mongolia, including the Lake Ulaan
area, coincides with the paleoclimate records from the EASM areas (Chen et al. 2008), showing a humid early
Holocene and a drier late Holocene.

During the early Holocene, the paleoclimate in the Govi region is described relatively well (Table 5, Fig. 12). In
the early Holocene, a humid and warm climate was recorded in lakes of southern Mongolia (e.g., Felauer et al.
2012; Lehmkuhl et al. 2018a). For example, Lake Ulaan contained an extensive network of paleohydrological
complex (Holguin and Sternberg 2016) with a large area of 1,700 km2 in the early Holocene (Sternberg and
Paillou 2015). This coincided with the most humid time in the Lake Ulaan area because the EASM occurred in
the north of Lake Ulaan at that time (Lee et al. 2013; Fig. 12). Since the beginning of the Holocene, there had
been a reduction in sediment yield due to vegetation cover in the lakes within the Valley of Lakes (Lehmkuhl
and Lang 2001), where �uvial sands were in dominant production (Lehmkuhl et al. 2018a). Around ~8.5 ka
BP lakes in the Valley of Lakes were extended (Lehmkuhl and Lang 2001) and held high water levels in the
early Holocene (Komatsu et al. 2001).

In the middle Holocene, the paleoclimate in the Valley of Lakes in southern Mongolia is shown as a
continuation of the humid early Holocene (Table 5, Fig. 12), i.e., it was humid between 11.0 and 4.0 cal. ka BP
(Felauer et al. 2012). The humid climate at 6.0–2.7 cal. ka BP caused the high sedimentation rate of 4.6
cm/ka in the lake's margin for the western part of Lake Ulaan (Orkhonselenge et al. 2018b; Figs. 9a, 12). It
matched with the wet climate predominated at 8.6–4.7 cal. ka BP in the Lake Ulaan area (Lee et al. 2013).
Lake levels in the Valley of Lakes were high (Grunert et al. 2009; Lehmkuhl et al. 2018a) because the northern
limit of the EASM around the north of Lake Ulaan was close to the southern Khangai Mountain Range, and it
ended at 4.0 ka BP (Lee et al. 2013; Fig. 12). The presence of the EASM around the Lake Ulaan area is
consistent with the stronger EASM system during the middle Holocene contributed to the high precipitation,
high water tables, and the halophytic desert vegetation growing around saline ponds in the Ikh Nart area
(Rosen et al. 2019), locating at the higher latitude than that of Lake Ulaan. The humid middle Holocene
revealed at Lake Ulaan coincided with the evidence of relatively higher lake levels during the middle Holocene
recorded at Lakes Dood, Khuvsgul and Gun (Dorofeyuk and Tarasov 1998) in northern Mongolia, and Lakes
Uvs and Bayan (Grunert et al. 2000) in the northern margin of the Depression of Great Lakes in western
Mongolia (Orkhonselenge et al. 2018b). The high lake levels throughout most of arid Central Asia, recorded at
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8.5 and 6.0 cal. ka BP (Li and Morril 2010) may have been related to the high precipitation associated with
the westerlies increased from the early to middle Holocene (Chen et al. 2008).

The late Holocene climate in the Govi region is recorded from lakes as arid (Table 5, Figs. 9b, 11, 12). The dry
climate is shown by numerous studies in southern Mongolia (e.g., Felauer et al. 2012; Szumińska 2016). The
dry climate since 3.2–2.7 cal. ka BP in the Lake Ulaan basin may have induced the slow sedimentation rate
of 1.6–1.8 cm/ka in the western part of Lake Ulaan (Orkhonselenge et al. 2018b) and strengthened the recent
shrinkage of the shallow lake (Fig. 9b, c), a phenomenon seems to be continuing up to the modern time. The
dry climate in the Lake Ulaan basin (Figs. 9b, c, 11, 12) coincides with the weakened EASM after 4.3 cal. ka
BP contributed to the vegetation changing into an increase of steppe grasses in the Ikh Nart area (Rosen et al.
2019) in the northeastern Govi. Moreover, the late Holocene dry climate in the Govi region (Table 5, Figs. 11,
12) has contributed to have the lakes to be dried out and exposed to wind de�ations (Grunert et al. 2009), and
the arid and warm climate after 4.0 ka BP has in�uenced aeolian activity and dune remobilization (Felauer et
al. 2012). The reactivation in the Khongor sand dune�eld of the Govi region during the late Holocene
representing the ongoing aridity (Hülle et al. 2010). In the arid late Holocene (Table 5, Fig. 12) Lake Ulaan may
have been exposed to wind erosion since 3.2–2.7 cal. ka BP (Fig. 9b), and aeolian de�ation has strengthened
particularly since 0.6–1.3 cal. ka BP (Fig. 9c). The phenomena in the Lake Ulaan basin is in agreement with
the desiccation of Lake Bayan Tukhum at 3.5 cal. ka BP (Felauer et al. 2012) and dried-out Lake Juyan in
northern China during the last 2.0 ka BP (Chen et al. 2008). The strengthened arid climate in the Govi region
since 1.5 cal. ka BP (Orkhonselenge et al. 2018b) prevailed during the periods before and after the time of
high-standing lakes in the Valley of Lakes at 1.4–1.5 ka BP (Lehmkuhl and Lang 2001), and the more arid
climate conditions during the late Holocene might have enhanced dust emission (Lehmkuhl 2015).

In the Anthropocene, the Govi region’s climate is indicated as a dry (Table 5, Figs. 9c, 11). The trend in air
temperature of the Govi region between 1961 and 2014 shows that the minimum air temperature in January
was warmer than -21oC in 1961–1987 and -19oC in 1988–2014, whereas the maximum air temperature in
July increased by 2–3oC (Dulamsuren 2016). A drought record from 1970 to 2006 across the Govi region
using the Standard Precipitation Index (SPI) showed cyclical �uctuations with broadly wetter conditions in the
1970s and 1990s, a notably drier period in the 1980s and alternating wet-dry episodes in the 2000s, and an
arid year in 2006 (Sternberg et al. 2011). The intense dryness or aridi�cation causes the rapid shrinkage of
lakes and a decrease in lake levels in the Govi regions (Figs. 2, 3, 9c, 11). The recent abrupt rising air
temperature since 1995 and decreasing precipitation since 1987 in the Lake Ulaan area (Orkhonselenge et al.
2018a; Fig. 11) has caused the playa lake condition observed today (Fig. 9c). The trend is con�rmed by a
distinct tendency towards drier conditions since the 1980s reconstructed for the eastern central High Asia
(Fang et al. 2010), and a statistically signi�cant increase in the annual surface thawing index at a rate of
29°C-days/yr in Mongolia during the past 19 years, which is far greater than that in the high latitudinal
regions of the Northern Hemisphere during recent decades (Wu et al. 2011).

By the end of this century, potential evaporation will rise by 200–300 mm/yr, with an increase in annual
average surface temperature by 5–6oC, and the Govi region will extend 600 km toward the north (Dulamsuren
2016). This means that the present arid Govi region will shift into the dry desert, and the semiarid steppe
regions will become arid Govi regions. This trend has been previously noted by Davi et al. (2015), showing
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that the current drought conditions in Mongolia associated with annual average temperature increase by
~2°C over the last 60 years have resulted in the expansion of desert areas from the warm and arid southern
Mongolia towards central and northern regions of the country. The dry climate in the Govi region may rapidly
contribute to the playa environments covering the semiarid steppe in a few years and result in a shortage of
surface water resources, especially lakes and rivers. This trend has been con�rmed by Lake Ulaan sediments
showing the climate around the lake basin has been signi�cantly shifted from the semiarid into the arid (Fig.
11).

Conclusions
Late Holocene sedimentation records in Lake Ulaan at the eastern end of the Valley of Lakes at the northern
border of the Govi region, southern Mongolia, show a higher sedimentation rate of 11.8–22.7 cm/ka in the
eastern part of the lake and a lower sedimentation rate of 3.3–5.8 cm/ka in the western part of the lake. The
lake has historically experienced a long-term evolution of a large lake since the initial formation after MIS 6
(Lehmkuhl et al. 2018a), and around that time, the lake reached the maximum size. In the context of lake
retreats, the lake started to drop in the area before the early Holocene, strengthened the decreasing trend since
the middle Holocene, and faced exposure to wind de�ation in the late Holocene. The �rst aerial exposure
occurred at 2.7–3.2 cal. ka BP and frequently exposed at 0.6–1.3 cal. ka BP. At the present time, the
substantial westerly wind-induced aeolian de�ation occurs throughout the lake bank even though the eastern
part of the lake receives the pulsating �uvial sedimentations during heavy rainfall, and both parts receive
aeolian air fall sedimentations. Today, Lake Ulaan has been remarkably reduced in extension and has rapidly
shifted into a playa lake in the last �ve to six decades, and it has become an open-source area of dust
generation blown out by the westerly winds.
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Figure 1

(a) Geographical location of Lake Ulaan in the northern margin of the Govi region in southern Mongolia. (b)
Spatial changes in lake and marsh areas in the Lake Ulaan basin in 1970 and 2014. Modi�ed from
Orkhonselenge et al. (2018b) Note: The designations employed and the presentation of the material on this
map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the
legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries. This map has been provided by the authors.
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Figure 2

Temporal views of Lake Ulaan (LU) and Ongi River (OR) in the last decade except for a record in 1980. (a) The
exposed �oor of LU viewing toward the southwest on 25 October 2015. (b) LU in August 2016. (c) Exposed
vegetated �oor of LU viewing toward the south on 18 June 2018. (d) LU on 23 June 2019. (e) OR in 1980. (f)
OR on 14 June 2012. (g) A dried-out channel of OR viewing toward the east on 25 October 2015. (h) A dried-
out channel of OR viewing toward the northwest on 18 June 2018. The arrows in g and h show the �ow
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direction of Ongi River. Photos a, c, g, h by A. Orkhonselenge. Photo b by Holgium and Sternberg (2016).
Photo d by E. Suvdaa. Photos e, f by Ongi River Movement Non-Governmental Organization

Figure 3

Sampling sites on Landsat images of Lake Ulaan in (a) 2014 and (b) 2019 Note: The designations employed
and the presentation of the material on this map do not imply the expression of any opinion whatsoever on
the part of Research Square concerning the legal status of any country, territory, city or area or of its
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authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the
authors.

Figure 4

(a) The lithology of sediment cores collected in 2018 and (b) the sedimentation rates in Lake Ulaan
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Figure 5

(a) Discriminant function (F1 and F2) diagram for the four types of provenance signatures of Lake Ulaan
sediments using major element compositions, and (b) tectonic setting diagram for the Lake Ulaan sediments:
oceanic island arc (ARC), active continental margin (ACM) and passive margin (PM) settings
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Figure 6

(a) Geochemical classi�cation of the Lake Ulaan sediments based on the log[SiO2/Al2O3] vs.
log[Fe2O3/K2O] diagram. (b) A-CN-K (Al2O3-CaO+Na2O-K2O) ternary diagram showing the weathering trend
of the Lake Ulaan sediments with Ka (Kaolinite), Ch (Chlorite), Gb (Gibbsite), Il (Illite), Ms (Muscovite), Kf (K-
feldspar), Sm (Smectite), Pl (Plagioclase), To (Tonalite), Gd (Granodiorite), Gr (Granite), and Ga (Gabbro)
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Figure 7

Sedimentation dynamics in Lake Ulaan with (a) a cross-section of the lake, (b) Holocene sedimentation rate,
and (c) Linear regressions of the sedimentation rate in the late Holocene for cores UN15 in the west and LU18
in the east of the lake
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Figure 8

The age to depth model in (a) Lake Ulaan, speci�ed with (b) the eastern and western parts of the lake, (c) the
center and margin in the eastern part of the lake, and (d) the center and margin in the western part of the lake
in Orkhonselenge et al. (2018b)
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Figure 9

Schematic diagrams illustrating the historical evolution of Lake Ulaan in the (a) middle Holocene, (b) late
Holocene, and (c) Anthropocene
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Figure 10

A hypothesized model on how the western part of Lake Ulaan is fed by spillover through the channels (C1 to
C3) over the spit after the eastern part is �lled by water through Ongi River

Figure 11
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Chemical maturity of Lake Ulaan sediments by a plot of SiO2 vs. Al2O3+K2O+Na2O

Figure 12

The dominant sedimentations and paleoclimate changes in the Lake Ulaan basin since the late Pleistocene: 1
– Lee et al. (2011), 2 – Lee et al. (2013), 3 – Orkhonselenge et al. (2018b), 4 – Lehmkuhl et al. (2018a), 5 –
This study, and 6 – Synthesized trend


