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Abstract
Background: In�ammation and DNA methylation have been reported to play key roles in intracerebral
hemorrhage (ICH). The proposed study intended to investigate new diagnostic biomarkers associated
with in�ammation and DNA methylation through comprehensive bioinformatics approaches.

Methods: GSE179759 and GSE125512 were sourced via the Gene Expression Omnibus (GEO) database,
and 3222 in�ammation-related genes (IFRGs) were downloaded from the Molecular Signatures Database
(MSigDB). Key differentially expressed methylation-regulated and in�ammation-related genes (DE-
MIRGs) were achieved by overlapping methylation-regulated differentially expressed genes (MeDEGs)
between ICH patients and control samples, module genes from Weighted Correlation Network Analysis
(WGCNA), and the IFRGs. The functional annotation of DE-MIRGswas performed by Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) resources. A protein-protein interaction (PPI)
network was further constructed to clarify the interrelationships between the different DE-MIRGs. The key
genes were categorized by Least Absolute Shrinkage Selection Operator (LASSO), and support vector
machine recursive feature elimination (SVM-RFE), and subsequently performed Gene Set Enrichment
Analysis (GSEA).

Results: A number of 22 DE-MIRGs were acquired among 451 MeDEGs, 3222 IFRGs and 302 module
genes, and they were mainly enriched in GO terms of wound healing, blood coagulation and hemostasis;
KEGG pathways of PI3K-AKT signaling pathway, Focal adhesion, and Regulation of actin cytoskeleton. A
PPI network with 22 nodes and 87 edges was constructed based on the 22 DE-MIRGs, and 11 of them
were selected for the following key gene selection. Moreover, 2 key genes (SELP and S100A4) were
obtained according to LASSO and SVM-RFE. Finally, SELP was mainly enriched in Cell morphogenesis
involved in differentiation, Cytoplasm translation, and Actin binding of GO terms, and the KEGG pathway
including Edocytosis, Focal adhesion, and Platelet activation. S100A4 was major enriched in GO terms
including Mitochondrial inner membrane, Mitochondrial respirasome, and Lysosomal membrane;
Oxidative phosphorylation, Regulation of actin cytoskeleton, and Chemical carcinogensis-reactive oxygen
species in KEGG pathways.

Conclusion: 22 DE-MIRGs were identi�ed associated with in�ammation and DNA methylation between
ICH patients and normal controls, and 2 key genes (SELP and S100A4) were obtained and regarded as
the biomarker for ICH, which could provide the research foundation for the further pathological
mechanism investigation of ICH.

Highlight
In this study, we observed the differential expression of methylation regulation and in�ammation related
genes of key genes in patients with intracerebral hemorrhage, indicating that when intracerebral
hemorrhage occurs, the methylation modi�ed gene pattern can activate multiple in�ammation regulated
related pathways, and abnormal methylation and dysregulation of in�ammatory pathways jointly
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participate in the occurrence of intracerebral hemorrhage.The purpose of this study is to study the
changes of DNA methylation patterns in patients with cerebral hemorrhage and healthy people with the
involvement of in�ammation related genes by integrating genes of patients with cerebral hemorrhage,
control samples and in�ammation related pathways, so as to obtain key gene differences and activated
in�ammation pathways. The purpose of this study is to obtain the key genes of in�ammation and DNA
methylation modi�cation as potential biomarkers, and provide basic research for the diagnosis and
treatment of cerebral hemorrhage in genetic genetics.

1. Introduction
Intracerebral hemorrhage (ICH) is one of the common diseases of stroke, and its incidence rate is
considered to be the second cerebrovascular disease subtype of stroke. It mainly refers to the
hemorrhage caused by non-traumatic rupture of blood vessels in brain tissue, including primary ICH and
secondary ICH[1].Relevant research reports show that the incidence rate of cerebral hemorrhage in
developing countries is much higher than that in developed countries in Europe and America[2].At present,
stroke disease in China is at a high incidence segment. According to the epidemiological survey, the
mortality rate caused by cerebrovascular diseases in China in 2018 was 149.49/100000, accounting for
about 22% of the national resident mortality rate.The incidence rate of patients with ICH was 14.9%, and
the proportion of patients with ICH who died in hospital / left hospital without medical advice was 19.5%
[3] Additionally, Nearly half of patients with ICH died within 30 days after onset, and only 12% ~ 39% of
patients could live independently for a long time[4–5]. With the continuous in-depth study of the
pathogenesis of ICH, it has been identi�ed that cerebral atherosclerosis and arteriolaregeneration caused
by hypertension are the main risk factors of ICH. Therefore, effective control of hypertension in the early
stage can signi�cantly reduce the occurrence of ICH[6]. The injury of ICH to the body mainly includes
primary injury and secondary injury. The incidence of primary cerebral hemorrhage accounts for about
10% − 20% of all strokes[7]. It mainly refers to the space occupying effect of blood clot, hematoma
increasing intracranial pressure, compressing brain tissue, causing cerebral ischemia and even cerebral
hernia[8]. Secondary injury is mainly caused by hematoma pressing the brain tissue, resulting in the body
releasing a large amount of thrombin, in�ammatory reaction, complement reaction, released components
of blood clot, free radicals and other waterfall reactions[9]. Head computed tomography (CTH) can clearly
diagnose the volume of hemorrhage and the location of nerve injury, but it fails to improve the clinical
symptoms after ICH. Therefore, how to accurately prevent ICH and more effectively improve the repair of
injured nerves are particularly important. It has been reported that genetic factors account for 37.9% of
the stroke pathogenesis. Other studies have shown that genes in the brain may change in expression
after ICH[10–11]. However, the mechanism by which ICH causes these changes remains unknown[12].

The formation of in�ammation is a complex process, which is mediated by cellular and molecular
components. The cellular components mainly include leukocytes, macrophages, astrocytes, T cells and
microglia, while the molecular components include prostaglandins, chemokines, cytokines, extracellular
proteases and reactive oxygen species.After the occurrence of intracerebral hemorrhage, the hematoma
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forms, and then the secondary damage after the hemorrhage produces a large number of cytokines and
plasma proteins. When these substances are released into the brain tissue, the human complement is
activated, the body's stress function is generated, hemostasis and immune system are activated, causing
in�ammation. In�ammation runs through the whole process of brain tissue damage and repair after
intracerebral hemorrhage[13].After intracerebral hemorrhage, the in�ammatory reaction can be regarded
as a "double-edged sword". On the one hand, it can clear the necrotic brain cells and their metabolic
components, and provide a good self-healing environment for the repair of brain tissue. On the other
hand, a large number of in�ammatory factors are produced to induce immune response and further
aggravate the damage of brain tissue. Therefore, the in�ammatory response has become a research
hotspot of the pathological mechanism of secondary injury after intracerebral hemorrhage[14–15].

DNA methylation is an important epigenetic modi�cation, the selective hypermethylation or
demethylation of genes to regulate gene expression. DNA hypermethylation can directly inhibit
transcription or indirectly inhibit gene expression through transcriptional silencing[16]. DNA methylation
changes are associated with cardiovascular and cerebrovascular diseases[17]. RNA sequencing (RNA
SEQ) is a powerful transcriptome analysis method that can provide global unbiased transcriptomic
analysis with high sensitivity and speci�city. Compared with other methods to characterize gene
expression, it can identify more overall differentially expressed genes (DEGs)[18]. Weighted gene
coexpression network analysis (WGCNA) is a powerful method for identifying coexpressed genomes from
large heterogeneous messenger RNA expression datasets[19]. It is widely used to elucidate some
transcriptomic alterations[20]. Therefore, this study integrates the whole gene expression pro�le and DNA
methylation data for analysis, and obtains the key genes regulated by DNA methylation through
differential analysis, WGCNA analysis, machine learning and functional enrichment analysis, providing a
theoretical basis for exploring potential biomarkers of cerebral hemorrhage.

2. Materials And Methods
2.1 Data Source

GSE179759, including the DNA methylation pro�les of peripheral blood samples from 30 ICH patients
and 34 normal controls, were acquired from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo). GSE125512 containing genome-wide expression pro�les of 11 pairs
of peripheral blood samples, which were draw within 24 hours of symptom onset and 72 hours after the
initial collection from 11 ICH patients, were obtained from the GEO as well. Additionally, 3222
in�ammation-related genes (IFRGs) were downloaded from the Molecular Signatures Database (MSigDB)
(https://www.gsea-msigdb.org/).

2.2 Screening of DMPs and DEGs

The raw data of GSE179759 were imported into ChAMP (version 2.24.0)[21] to conduct quality control and
standardization. Moreover, clustering, multidimensional scaling (MDS), and methylation distribution



Page 5/20

density analyses were employed based on the beta values on the methylation probes.

In the next phase, the site-level analysis was utilized based on the ChAMP to screen the differentially
methylation probes (DMPs) between ICH and matched control samples, with adj. p ≤ 0.05 as thresholds,
and the results were visualized into a volcano map by ggplot2 (version 3.3.5) and a heat map by
pheatmap (version 1.0.12). In addition, the screened DMPs were separated into hypomethylation (Hypo-
DMPs) and hypermethylation (Hyper-DMPs) according to whether the delta beta was greater than 0.
RIdeogram (version 0.2.2) [22]was used to present the most signi�cant Hypo- and Hyper-DMPs (|delta
beta|>0.1), and UpSetR (version 1.4.0) was employed to visualize the number of genes located in different
functional regions in DMP.

In terms of the gene expression dataset (GSE125512), the raw data were introduced into DESeq2 (version
1.32.0) to obtain differentially expressed genes (DEGs) between cases and controls (control: blood �rst
draw from the 11 ICH patients; case: blood draw from the 11 ICH patients 72 hours after �rst collection)
with the criteria of |log2FC|  >  0.5 and adj.p  <  0.05.

2.3 Overlap and Functional Enrichment Analyses 

VennDiagram package was used to investigate overlapping genes between DMPs and DEGs, which were
considered as differentially expressed methylation-regulated genes (DEMGs). In speci�c, hyper-
methylation-low expression genes were acquired based on the intersection of Hyper-DMPs and
downregulated DEGs. Similarly, hypo-methylation-high expression genes were the superimposition of
hypomethylated genes and upregulated genes.

Functional enrichment of DEMGs was evaluated by Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) through clusterPro�ler (version 4.2.2) based on the gene set in org.Hs.eg.db
package, with p adj.< 0.05 and count > 2 as cutoff values, and the results were visualized by enrichplot
(version 4.2.2).

2.4 Identi�cation and Functional Enrichment Analyses of Key DE-
MIRGs
Firstly, a sample clustering tree map of all the genes in GSE125512 was constructed to detect and
eliminate outliers. In order to identify the module genes highly associated with ICH, genes whose
expression level were lower than 1 were removed from GSE125512, and the remained genes were
selected and grouped to WGCNA (version 1.7-3)[23] based on ICH or normal as the trait. In network
construction processes, soft thresholding power β was selected as the lowest power. The tree was cut
into different modules by the dynamic cutting method. The minimum module size was set to 100, and
modules with similar gene expressions were clustered and displayed in a tree diagram. To identify
modules associated ICH, a heat map of module-feature relationships with correlation coe�cients and p-
values was drawn. Modules with a strong correlation with the phenotypes were identi�ed as modules of
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interest. Genes in the selected module were considered as module genes. Furthermore, the overlap
analysis was applied to DEMGs, module genes, and 3222 IFRGs, and the intersected genes were regarded
as key differentially expressed methylation-regulated and in�ammation-related genes (DE-MIRGs).

The clusterPro�ler (version 4.2.2)[24] was used on key DE-MIRGs to perform functional enrichment based
on the gene set in org.Hs.eg.db package again, with p adj.< 0.05 and count > 2 as signi�cant thresholds.

2.5 Construction of a Protein-Protein Interaction (PPI) Network

STRING (https://string-db.org/)[25] was employed to explore interactions between the DE-MIRGs and plot
the interactions was a PPI network with the setting of Con�dence = 0.15, and the interaction network was
visualize by Cytoscape (version 3.8.2). Then Cytoscape and MCODE subnetwork discovery algorithm
were applied to cluster the protein interaction network graphs and predict the subclusters.

2.6 Identi�cation of Key Genes

GSE125512 was used as the training set to build the Lasso regression model. In order to reduce the
feature dimension, glmnet package (version4.0-2)[26]in R was performed with the set of parameter famil =
binomial and type.measure = Class, to achieve Lasso logistic regression. Further, 10 fold cross validation
was �nally performed to calculate the error rate under different genes. The corresponding genes were
selected according to the minimum ramada (λmin) and de�ned as Lasso-feature genes.

Simultaneously, in the SVM-RFE model of R package e1071 (version 1.7-9)[27] , the key DE-MIRGs in
cluster 1 were ranked by the SVM algorithm, and the importance and ranking of each gene were obtained
using the RFE method, and the error rate and accuracy rate of each combination of iterations were also
obtained. The lowest error rate and the highest accuracy were selected as the optimal combinations, and
the corresponding genes were taken as candidate feature genes. After that, cross-tabulation analysis was
used to extract the common genes in the Lasso-candidate feature and SVM-RFE-candidate feature genes,
which were deemed as key genes.

2.7 Gene Set Enrichment Analysis (GSEA) on Key Genes

The correlations between key genes and other genes in GSE142153 were computed based on the default
background gene set in “org.Hs.eg.db” package, and the correlation sequencing list L of key genes and
other genes was obtained. GSEA was performed on the key genes with the thresholds of |NES| > 1, p <
0.05, q < 0.2.

3. Results
3.1 Identi�cation of DMPs and DEGs

At the beginning, the DNA methylation levels of the data in GSE179759 were plotted, and it can be found
that the levels of most data were around 0.9 (Figure 1A). After quality control and standardization,
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746333 out of 844668 probes were �ltered out, and the beta values of the 746333 samples were all
around 0.1 or 0.9, and there were no abnormal samples, indicating that the methylation degrees of the
samples were similar (Figure 1B, 1C).

Moreover, 90089 Hypo-DMPs and 116900 Hyper-DMPs were identi�ed between 30 ICH patients and 34
controls, as shown by the volcano plot (Figure 1D). 

The top 1000 Hypo-DMPs and Hyper-DMPs CpG positions are shown by the heatmap in Figure
1E. Furthermore, the locations of the most signi�cant Hypo- and Hyper-DMPs were shown in Figure 1F,
and the majority of both Hypo-DMPs Hyper-DMPs located in the Body region (Figure 1G, 1H). Additionally,
456 upregulated DEGs and 183 downregulated DEGs were identi�ed between 11 pairs of samples in
GSE1255125 (Figure 1I, 1J).

3.2 Identi�cation and functional Enrichment analyses of MeDEGs

Venn diagrams showed a total of 451 MeDEGs, containing 340 hyper-methylation low-expression gene
and 111 hypo-methylation high-expression genes, were identi�ed (Figure 2A, 2B).

The GO enrichment results revealed that MeDEGs were signi�cantly enriched in 134 GO terms, including
101 in BP, 27 in CC, and 6 in MF. For instance, wound healing, coagulation, blood coagulation,
hemostasis, etc. were the signi�cant enriched terms in BP category. In view of the CC, collagen-containing
extracellular matrix, secretory granule lumen, cytoplasmic vesicle lumen, and vesicle lumen were the
major enriched terms. In terms of the MF, heparin binding, lipopolysaccharide binding, actin binding,
cytokine binding, growth factor binding, platelet-derived growth factor receptor binding were the 6
enriched terms (Figure 2C). Moreover, MeDEGs were mainly enriched in 3 KEGG pathways including PI3K-
Akt signaling pathway, Regulation of actin cytoskeleton, and Malaria (Figure 2D).

3.3 Identi�cation and Functional Enrichment Analyses of Key DE-
MIRGs
A number of 12130 genes in GSE122512 were screened out based on their expression levels. After
clustering the genes in the data set, no outliers were detected, and subsequently, a sample clustering tree
was drawn (Figure 3A). The soft threshold was set to 12 (R^2 = 0.8) to construct a scale-free network
(Figure 3B). In addition, 17 modules were identi�ed based on the setting of minimum module size =
150 (Figure 3C). The cluster of genes in the modules were shown in the dendrogram (Figure 3D). The
lightyellow module was the most relevant module to ICH (cor = 0.52 and P = 0.01; Figure 3E), and
therefore the 302 genes in this module were identi�ed as module genes. Further, 22 intersection genes
were acquired among 451 MeDEGs, 3222 IFRGs and 302 module genes by the overlap analysis (Figure
3F), which were de�ned as key DE-MIRGs, namely F13A1, MGLL, ITGB3, ITGB5, PDGFA, SPARC, PDGFRA,
IGFBP2, MMRN1, CD9, PDLIM1, SIGLEC10, S100A4, LRRC32, CLU, PPBP, TFPI, SELP, JAM3, CDKN1A,
PRKAR2B, and GNG11.
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From the perspective of functional enrichment analyses, key DE-MIRGs were signi�cantly enriched in 105
GO terms, (67 in BP, 18 in CC, 20 in MF) and 12 KEGG pathways. For instance, wound healing,
coagulation, blood coagulation, and hemostasis were the signi�cant enriched terms in BP category, which
were similar with MeDEGs. In view of the CC, platelet alpha granule, platelet alpha granule lumen,
secretory granule lumen, cytoplasmic vesicle lumen, vesicle lumen, etc.. In terms of the MF, integrin
binding, platelet−derived growth factor receptor binding, growth factor binding, etc. were the mainly
enriched terms (Figure 3G). Besides, key DE-MIRGs were mainly enriched in KEGG pathways of PI3K-Akt
signaling pathway, Focal adhesion, Regulation of actin cytoskeleton, Human cytomegalovirus infection,
MicroRNAs in cancer, etc.. (Figure 3H).

The 22 key DE-MIRGs were uploaded to the STRING, after removing discrete nodes, a PPI network of
these 22 DE-MIRGs were plotted, which included 22 nodes and 87 edges. Moreover, a rank chart of the
node Degree was plotted, which revealed that ITGB3, SELP, and SPARC were the top 3 Degree score DE-
MIRGs (Figure 4A). Next, the PPI network was divided into 2 clusters by Cytoscape and MCODE
subnetwork discovery algorithm, which can be observed that the cluster 1 included 11 nodes and 46
edges, and there were 4 nodes and 5 edges in cluster 2 (Figure 4B). The 11 DE-MIRGs in cluster 1 (ITGB3,
SELP, S100A4, SPARC, PDGFRA, CD9, ITGB5, PDGFA, CLU, IGFBP2, CDKN1A) were included in the
subsequent analyses.

3.5 Identi�cation of Key Genes

LASSO and SVM-RFE were performed to further downsize the dimensionality of the 11 DE-MIRGs in
cluster 1, and integrated them with the characterized variables to �lter the key genes. The LASSO results
showed that 2 feature genes were screened out based on λ min = 0.1001, namely SELP and S100A4
(Figure 5A). Meanwhile, in the SVM-RFE model, 10-fold cross-validation ensured that the combination of
SELP and S100A4 was equipped with high accuracy (accuracy = 0.745), and both of the two genes were
with the average rank of 2 (Figure 5B).Subsequently, the Venn graph highlighted that SELP and S100A4
were the overlapped feature genes in both algorithms, and they were regarded as the key genes (Figure
5C).

3.6 Functional Analysis of the 2 Key Genes

The GSEA results demonstrated that in GO enrichment, both SELP and S100A4 were enriched in focal
adhesion. Beside focal adhesion, SELP was mainly enriched in actin binding, actin �lament organization,
cell cortex, cell morphogenesis involved in differentiation, etc., and S100A4 was mostly enriched in
electron transfer activity, generation of precursor metabolites and energy, lysosomal membrane,
mitochondrial electron transport, NADH to ubiquinone, etc.. Furthermore, SELP and S100A4 were both
enriched in KEGG pathways of Herpes simplex virus 1 infection. To be more speci�c, SELP was enriched
in Axon guidance, Endocytosis, Focal adhesion, Pathways in cancer, Platelet activation, Proteoglycans in
cancer, etc.. In terms of S100A4, Alzheimer disease, Chemical carcinogenesis − reactive oxygen species,
Diabetic cardiomyopathy, Huntington disease, Oxidative phosphorylation, and Parkinson disease were the
major enriched pathways (Figure 6A-6B).
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4. Discussion
In recent years, some scholars have explored the pathogenesis and prevention of ICH from the regulation
of DNA methylation in epigenetics. Yufeng GAO found that the up-regulation of dock1 expression after
ICH may be related to its DNA hypomethylation by analyzing the gene database of patients with ICH and
combining with clinical veri�cation[28]. Zhang con�rmed that the sites modi�ed by DNA methylation after
ICH were different from those of normal people[29]. After ICH, the blood vessel rupture, hematoma
formation, and brain parenchyma damage, lead to the primary and secondary brain injury. Hypertension
and body decline are the maifactors of cerebral hemorrhage[30].  The occurrence of ICH not only causes
damage to the limb function and psychological function of the patients, but also brings a heavy burden
to the patients' families, nursing staff and society. However, with the development of medicine, the
prognosis has not been effectively improved.In recent years, with the development of epigenetics, a new
idea has been found for the early prevention and treatment of cerebral hemorrhage. DNA methylation can
change chromatin structure, DNA conformation, stability and protein interaction without changing DNA
sequence. At present, it has been con�rmed in biological research such as transcriptional regulation,
transposition factor silencing, gene imprinting and X chromosome inactivation. However, little is known
about the involvement of DNA methylation in the pathogenesis of intracerebral hemorrhage. How to
explore the pathogenesis of ICH from the perspective of epigenetics and how to prevent and treat the
occurrence of ICH at an early stage also provide new ideas for clinical and experimental research in the
future.

In this study, the enrichment analysis of GO and KEGG of 451 intersecting genes showed that the GO
terms such as wound healing, blood coagulation and hemostasis were mainly enriched; PI3K Akt signal
pathway, malaria, actin cytoskeleton regulate KEGG pathway.Some researchers observed the release of
in�ammatory factors and the damage of brain nerve cells in the brain tissues of patients with cerebral
hemorrhage, which con�rmed that the in�ammatory reaction and the damage of nerve cells after cerebral
hemorrhage play an important role in the formation of secondary injury[31].Therefore, inhibition of
in�ammation and anti apoptosis of nerve cells after intracerebral hemorrhage may be the key to prevent
and treat the disease.PI3K/Akt is a transduction protein of intracellular phosphorylation process. This
signal pathway can protect brain tissue by regulating apoptosis protein and apoptosis gene[32].Bao
con�rmed through research that after intracerebral hemorrhage, PI3K and p-Akt increased in brain tissue
of rats, and reached the peak at 24 hours. After 3 days, the expression of PI3K and p-Akt decreased,
indicating that PI3K/Akt signal pathway participated in the pathological process of intracerebral
hemorrhage.It has also been con�rmed that PI3K/Akt signaling pathway is involved in the repair and
metabolism of nerve cells after middle cerebral artery injury, and GSK-3 is an important downstream
target of the pathway β It is the convergence point of cell protection signals and plays a positive role in
brain protection, cell repair, growth, survival and recovery of neural function after intracerebral
hemorrhage[33].At present, some researchers use recombinant human erythropoietin (rhEPO) to intervene
in the rat model of intracerebral hemorrhage. They found that after treatment, the expression levels of
PI3K and p-Akt in the brain tissue of intracerebral hemorrhage rats increased. The activation of PI3K/Akt
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signal pathway can inhibit the apoptosis of neural cells and reduce the damage to neurons after
hemorrhage[34].In addition, some researchers also activated PI3K/Akt signal pathway through
progesterone to reduce the degree of neuroin�ammatory reaction, blood brain barrier damage and lipid
peroxidation, thus protecting neurons[35].Although more and more researchers have found that PI3K/Akt
signaling pathway is involved in the pathogenesis of cerebral hemorrhage, and related drug research has
been carried out, its speci�city in cerebral hemorrhage remains to be further con�rmed.

The long arm of chromosome 1 (1q21-24) of SELP locus is a 50kb DNA sequence, which contains 17
exons and 16 introns.There are many kinds of gene polymorphisms in SELP. So far, 13 kinds of gene
polymorphisms have been detected[36].SELP is a component of resting platelet granular membrane and
endothelial cell Weibel Prade body. There are about 10000 SELP on activated platelet surface, which is a
disease with multiple causes.The complex genetic and environmental factors can be used as the
pathogenic factors of stroke, and atherosclerosis is the basis of its pathological changes[37].In recent
years, the role of SELP gene in in�ammatory response and the pathogenesis of atherosclerotic plaque
has become a hot spot in the study of stroke. As a member of the selectin family of adhesion molecules,
SELP is mainly involved in the recognition and adhesion between cells, especially in mediating the
adhesion of platelets, endothelial cells and white blood cells, and the movement of white blood cells to
in�ammatory sites, and participating in thrombosis, accelerating the generation of atherosclerosis, It is
closely related to the destruction of body immunity and tumor metastasis[38].Studies have shown that
when vascular endothelium is damaged, the expression of SELP in platelets increases rapidly, and the
expression of SELP in endothelial cells also increases. The combination of SELP and PSGL-1 on the
surface of leukocytes can activate signal transduction in leukocytes, make leukocytes release
in�ammatory factors, aggravate in�ammatory reaction, and induce cardiovascular and cerebrovascular
diseases[39].Wang con�rmed through research that when cerebral infarction occurred in rats, the level of
SELP in peripheral blood increased, and the expression of SELP in plaque endothelial cells
increased[40].Some researchers also mentioned that the polymorphism of SELP gene can also be one of
the risk factors for preventing and treating stroke[41]. 

S100A4 belongs to the S100 protein family. Studies have shown that S100B can re�ect the severity of
brain injury, which is of certain value for the evaluation of the condition of patients with cerebral
hemorrhage[42].S100A4 has a protein molecule expressed by 4 effective coding sequences and contains
101 amino acid units. It has a strong binding ability to calcium ions and plays an important role in
in�ammatory reaction, �brosis, tumor metastasis and autoimmune diseases.S100A4 was �rst found in
tumor cells and highly expressed in metastatic cancer cells[43].However, some studies have shown that
S100A4 can play a protective role in myocardial damage, and even some studies have proved that it
lacks speci�city in cardiac remodeling and �brosis, and its role in the heart is still controversial[44].Liu
found that the serum S100A4 protein level in patients with stroke was highly expressed, which was
signi�cantly related to the severity of stroke and short-term prognosis[45].Wang alleviates oxidative
damage of vascular endothelial cells induced by oxidized low density lipoprotein (ox LDL) and inhibits
apoptosis by targeting S100A4 expression with Mi R193a-3p[51].S100A4 is also considered as an alarm
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element, a ligand with multiple receptors. In the past many years, S100A4 has been considered as a
�broblast speci�c marker, participating in the �brosis process of liver, lung, kidney and other organs[46].
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Figure 1

Methylation data processing. (1A The sample methylation level.(1B)The MDS diagram of methylation
sample. (1C) The density map of beta value of methylated samples

Analysis of differential methylation sites. (1D)The volcano map of differential methylation sites. (1E) The
differential methylation site Heatmap. (1F) The differential DMP (| logfc |> 0.1) chromosome coordinates.
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(1G)The differential DMP (| logfc |> 0.1) chromosome coordinates. (1H) The different methyl site genes
of hypo DMR.

(1J)Each dot in the volcano map represents a gene, and blue and red dots represent signi�cantly
differentially expressed genes. Red dots indicate that the basal expression level is up-regulated (disease
samples vs. control samples), blue dots indicate that the gene expression level is down regulated
(disease samples vs. control samples), and black dots indicate that there is no signi�cant difference
between these genes. (1K) Each small square in the heat map represents each gene, and its color
represents the expression amount of the gene. The higher the expression amount, the more red the color
is, and the lower the expression amount, the more green the color is. The �rst row indicates the sample
grouping, the blue indicates the disease sample, and the red indicates the control sample. Each row
represents the expression of each gene in different samples, and each column represents the expression
of all differential genes in each sample. The tree on the left shows the results of clustering analysis of
different genes from different samples.
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Figure 2

(2A, 2B) 340 genes were obtained from high methylation low expression genes, 111 genes were obtained
from low methylation high expression, and 451 differentially methylated genes were obtained in total

(2C, 2D):Through go analysis, 134 terms were enriched, including 101 BD terms, 27 CC terms and 6 MF
terms. The main terms are wound healing, blood coagulation and hemostasis.2C:Medeg is mainly
enriched in 3 KEGG pathways, including PI3K Akt signaling pathway, regulation of actin cytoskeleton and
malaria.
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Figure 3

(3A) The clustering and phenotypic information of merged data samples. Left �gure: the horizontal axis
of the above �gure represents the weight

(3C) Construct a coexpression network to obtain 21 modules, of which the genes in the grey module
cannot be classi�ed into a certain class according to the similarity between genes. Choose not to merge
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the modules, and use 21 modules to continue the analysis. (3D) Module gene identi�cation. (3E) The
heatmap of correlationb etween modules and clinical traits. (3F) The key module genes and differentially
expressed methylation genes intersected with in�ammation related genes, and a total of 22 differentially
methylated genes related to cerebral hemorrhage were obtained.

(3G) The histogram of go enrichment of differentially methylated genes in intracerebral hemorrhage.
(3H)The bubble Diagram of KEGG enrichment of differentially methylated gene in intracerebral
hemorrhage.

Figure 4

(4A) The degree ranking chart. (4B) The protein interaction network of differentially methylated genes.
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Figure 5

(5A) Each curve in the left �gure represents the change trajectory of each independent variable coe�cient,
the ordinate is the coe�cient value, and the upper abscissa is the number of non-zero coe�cients in the
model at this time. The abscissa in the right �gure is log (lambda), and the ordinate represents the error
of cross validation. Red dots represent the mean square error and the upper and lower standard deviation.
The smaller the mean square error, the better the model; The number above indicates the number of
independent variables that still exist in the model (not necessarily monotonically decreasing). The �rst
dashed line indicates the minimum value of mean square error; The second dashed line marks the
position of the double standard deviation of the lowest point, indicating the simplest model that can be
obtained at the expense of the double standard deviation. As the penalty coe�cient lambda changes, the
coe�cients of most variables are �nally compressed to 0, and the best lambda value is selected when the
cross validation error of 10 fold is the smallest, as well as the error rate of the model. (5B) The accuracy
of support vector machine model. (5C) The wayne diagram of Characteristic Genes.


