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Abstract

The West Africa region (5◦ to 20◦N and 10◦E to 20◦W) is partic-
ularly vulnerable to climate change due to a combination of unique
geographic features, meteorological conditions, and socio-economic fac-
tors. Drastic changes in precipitation (e.g., droughts or floods) in the
region can have dramatic impacts on rain-fed agriculture, water avail-
ability, and disease risks for the region’s population. Quantifying these
risks requires localized climate projections at a higher resolution than
is generally available from global climate models. Using Self-Organizing
Maps, we produce station-based downscaled precipitation projections
for medium and high-emission climate scenarios for this region. We
find slight increases in precipitation in the coastal areas, and decreases
in the interior Sahel region by an average of 10% by 2100 under the
high greenhouse gas-emission scenario of Shared Socioeonomic Path-
way 5-8.5. Precipitation decreases in the Sahel are primarily driven
by reductions in the number of rainy days during the wet season,
rather than by consistent decreases in the magnitude of the precipi-
tation amounts or decreases in the average length of the wet season.

Keywords: Climate Change, West Africa, Downscaling, Self-Organizing Maps
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1 Introduction

Sub-Saharan Africa is home to more than one billion people, a number that is

projected to double by 2050 (World Bank, 2020). The Intergovernmental Panel

on Climate Change (IPCC) identifies Africa as one of the most vulnerable

regions to climate change (Niang et al, 2014). This vulnerability is due to both

large risks due to climate change, including increasing water stress, reduced

crop yields, and increased range and incidence of vector-borne diseases, as well

as a limited ability of many individuals and government agencies in the region

to adapt to the rapid forthcoming changes (Sultan and Gaetani, 2016). The

confluence of these factors means understanding the impact of climate change

at the local level in the region is imperative for the planning of adaptation

strategies for a resilient future.

To fully quantify these risks, accurate, local projections of climate scenar-

ios are needed. Statistical downscaling can provide a computationally efficient

method for bridging the gap between the resolution of Global Circulation Mod-

els (GCMs) and the scale needed for understanding climate change impacts

(Maraun et al, 2010). Regional downscaling for precipitation is of particular

importance, given the large impacts of climate change on people and their

livelihoods. However, most global-scale models do not accurately represent pre-

cipitation at local scales (Stephens et al, 2010; Sillmann et al, 2013; Koutroulis

et al, 2016). These challenges are especially acute in West Africa, where GCMs

are particularly poor in their representations of precipitation (Paeth et al,

2011; Diallo et al, 2012; Ajibola et al, 2020), as a result of the complex dynam-

ics driving precipitation processes in the region. The combination of the West

African Monsoon and African Easterly Jet (AEJ) creates a sharp north-south

gradient in total precipitation, with the vast majority of precipitation occur-

ring during the convectively active wet season (Cook, 1999). The combination
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of poor representation and hi gh vulnerability to climate change make the West

Africa region an especially important area for research focused on improving

future climate projections.

Crop yields for the current principal crops in the region are expected to

decrease with climate change, and the inter-annual variability is expected to

increase, significantly reducing food security in the region (Paeth et al, 2008;

Schlenker and Lobell, 2010; Ahmed et al, 2015). The vast majority of agricul-

ture in the region is rain-fed (Ewansiha and Singh, 2006), meaning changes in

the amount and timing of precipitation can significantly impact crop yields,

threatening food security in the region (Sultan and Gaetani, 2016).

In addition to agricultural concerns, water availability (Lebel et al, 2009;

Badou et al, 2018), flooding (Di Baldassarre et al, 2010; Maranan et al, 2019;

Panthou et al, 2014), and mosquito-borne diseases (Parham and Michael, 2010;

Ermert et al, 2011; Mera et al, 2014) will be affected by changes to precipita-

tion in the region. Planning to adapt to all of these forthcoming changes will

require accurate, localized projections for the climate-change driven changes to

precipitation in the region. Given these factors, the goals for this research are:

• Determine what variables can be used to realistically represent the synoptic

meteorology of this region, to provide a suitable basis for downscaling of

precipitation in the study region.

• Develop station-based downscaled projections for the West Africa region.

• Project key climate changes, such as variations in the length of growing

season and shifts in average precipitation in the region.

1.1 Climatology of West Africa

West Africa is bounded by the Atlantic Ocean to the south and west, and

the Sahara Desert to the north. These factors combine with the movement of
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the Inter-Tropical Convergence Zone (ITCZ) to form the African Monsoon,

creating distinct wet and dry seasons across the region (Sultan and Janicot,

2003). For the Sudano-Sahel region, from approximately 7◦ to 15◦N, the wet

season runs from June to September, during the Northern Hemisphere boreal

summer (Janicot et al, 2008; Thorncroft et al, 2011). During this period, the

ITCZ shifts north of the Equator, and moves across this region. A primary

rain band, located well south of the line of surface level convergence, shifts

from over the Atlantic Ocean during the winter months, coming onshore in

early April, before moving north, reaching its furthest extent around 10◦N in

late June or early July (Thorncroft et al, 2011; Nicholson, 2013). This band of

heaviest precipitation shifts back across the region at the end of the wet season,

creating a ”double peak” pattern in the annual precipitation for the coastal

region. Similar to Thorncroft et al (2011), we refer to a “Coastal phase” in

May and June, when the precipitation is heaviest at the coast, and a “Sahelian

phase” from July to September, when the heaviest rain occurs over the inland

region.

In the southern part of West Africa, there is a distinct coastal climate,

characterized by increased rainfall and more moderate temperatures (Nguyen

et al, 2011). Rainfall in this region peaks twice throughout the year, with an

initial peak between April and June, and a secondary, smaller peak in the fall

(Nicholson, 1993; Issa Lélé and Lamb, 2010). There is a sharp north-to-south

gradient in the amount of precipitation that falls across the region, with totals

ranging from up to 2000 mm per year along the coast of the Gulf of Guinea,

to near 0 mm about 1000 km north in the Sahara Desert (Fig 1).

The strong heating over the Sahara and the relative cool air to the south

create a significant north-to-south temperature gradient. The resultant ther-

mal wind balance creates the AEJ, a mid-level jet typically lying between 13◦
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Fig. 1 Average daily precipitation in the study region from the ERA5 reanalysis from 1979
to 2015.

and 17◦N, and peaking around the 650 hPa level (Thorncroft and Blackburn,

1999). The AEJ is strongest during the summer months, when the tempera-

ture gradient is maximized by the heating of the Sahara. The AEJ supports

the development of African Easterly Waves (AEWs), which play a significant

role in development of convection in the region (Núñez Ocasio et al, 2020;

Hamilton et al, 2020).

The AEWs are a critical synoptic feature in the region (Kiladis et al,

2006). These waves typically form over the highlands of Eastern Africa, and

propagate along the AEJ through baroclinic-barotropic instability (Berry and

Thorncroft, 2005; Thorncroft et al, 2008; Hamilton et al, 2020). Convection

triggered by these waves produces a significant portion of the total precipita-

tion in much of the region (Berg et al, 2013). Strong convection has also been

shown to strengthen the waves, creating a feedback loop between the waves and

the Mesoscale Convective Systems (MCSs) (Núñez Ocasio et al, 2020). Real-

istic downscaled climate projections, especially of precipitation, will require
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predictors and methods that can capture the interactions between the AEWs

and MCSs development.

In West Africa, MCSs are the primary driver of precipitation (Mathon et al,

2002; Lebel et al, 2003). As a result, the precipitation tends to come in large,

concentrated bursts, rather than gradually distributed over many days. For

the inland regions, nearly all of the annual precipitation falls during the wet

season. MCSs are particularly important for extreme rainfall events, with the

potential to cause serious flooding (e.g., Di Baldassarre et al (2010); Maranan

et al (2019)). West African trends in rainfall indicate that precipitation events

were decreasing in frequency, but increasing in intensity during the past 40

years (Panthou et al, 2014). Projecting the frequency of extreme rainfall events

in future climates is necessary for developing strategies to cope with increased

flooding risks in the region.

The topography of West Africa is mostly flat, with only moderate changes

in elevation. The exception is the area around the Guinea Highlands, near the

southwest coast of the study region. The highlands create an orographically

enhanced rainfall maximum along the coast in this region (Fig. 1). Hamilton

et al (2017) found that reductions in the size of the topography, such as those

caused by moving to the coarse resolution of the GCMs, reduce the size of the

precipitation maximum. Unfortunately, there is a paucity of station climate

records in this region, so it is absent from our downscaling analysis (Fig. 2).

The region, particularly in the Sahel, is prone to extended periods of

drought (Dai et al, 2004). From 1970 to 1990, the region on average experi-

enced a decrease of rainfall between 20 and 30% compared to the preceding

30-year period (Lebel and Ali, 2009). This drought had dramatic consequences

for those living in the region, causing shortened growing seasons, migration,

and increased mortality (Mortimore, 2010).
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1.2 Precipitation Projections for West Africa

Climate modeling in tropical regions poses significant challenges compared to

the same task in the mid-latitudes. Weaker synoptic controls, increased fre-

quency and strength of convection, and greater small-scale variability combine

to produce patterns, especially of precipitation, that are not well described

by global scale models (Crétat et al, 2014; Akinsanola et al, 2018). While the

GCMs simulate many variables relevant to synoptic processes well, their repre-

sentation of precipitation is generally poor. Downscaling can use the variables

that are well simulated to better represent poorly simulated variables on the

local scale and to project likely changes in future climate scenarios.

Regional dynamic downscaling, particularly on the scales required to

adequately resolve mesoscale convection, is computationally expensive. Past

dynamical downscaling efforts in the region of West Africa found improved

characterization of precipitation compared to the direct GCM precipitation,

running at a resolution of 0.44◦ × 0.44◦ (Endris et al, 2013; Giorgi and

Gutowski Jr, 2015; Dosio et al, 2015). However, this resolution is still too coarse

to accurately capture convective-type precipitation, which produces the major-

ity of rainfall in the region (Mathon et al, 2002). At coarse resolutions, past

studies showed a wide range of projected changes across much of Africa, partic-

ularly in Central and West Africa, with many regional models disagreeing even

on the sign of the changes (Vizy et al, 2013; Dosio et al, 2019, 2020). These

differences raise significant uncertainties for the impacts of climate change on

health, agriculture, and the development of tropical cyclones across Africa and

the Tropical Atlantic.

Even in the higher resolution regional models, there were sizeable differ-

ences in the changes between the different GCMs used to drive the regional

models, especially over West Africa (Dosio et al, 2019). This result indicates
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that even higher resolution modeling is needed for accurately characterizing

convective precipitation in the region. Statistical downscaling can fill this need

without excessive computational requirements.

At the scale of GCMs, there has been limited improvement in precipitation

projections in the tropics between Coupled Model Inter-comparison Project

Phases 3 and 6 (CMIP3, CMIP6) (Fiedler et al, 2020), with large ranges in pro-

jections of temperature and precipitation in the West Africa region (Roehrig

et al, 2013). These factors combine to create a challenging environment for

statistical downscaling, which relies on the connections between the large scale

features and the local conditions. In this study, we demonstrate that despite

these challenges, statistical downscaling can still provide useful improvements

to projections of precipitation in the region, and serve as a valuable tool for

projecting the impacts of climate change in West Africa.

2 Data and Methods

2.1 Observational Data

Downscaling in West Africa is challenging due to the limited availability of long

and continuous observational records across much of the region. The Global

Summary of Day (GSOD) dataset provides daily observations for numerous

stations across the region, but many of these stations have records too short

to be used for statistical downscaling (National Climatic Data Center, 2020).

To have a sufficiently larger number of stations, we use all stations with

observation data for at least 5000 days between 1979 and 2014.

To ensure that the missing data do not bias the result (i.e., disproportion-

ately missing rainy-season days would produce an average rainfall that was too

low), the average temperature of the nearest reanalysis grid cell is compared
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for the all days and those days with observations. Stations where the temper-

ature averages are significantly different are excluded from the downscaling

process. This process yields 84 stations spread across West Africa (Fig. 2).

There are large areas with no stations that meet the criteria, but the stations

are spread throughout the different climate regions of the study area. The lack

of coverage limits the results of our downscaling to those areas where stations

with suitable data are present.

Fig. 2 Locations of the 84 GSOD stations with at least 5000 daily observations of precip-
itation between 1979 and 2014 in West Africa. The number of daily observations available
for each station is color coded.

2.2 Global Climate Data

Global reanalysis data from the European Centre for Medium-Range Weather

Forecasts (ECMWF) Reanalysis v5 (ERA5) are used to train the downscaling

models (Hersbach et al, 2020). The data are regridded using a bilinear process

from the original 31 × 31 km2 grid to a 1 degree × 1 degree to better match

the resolution of the GCMs (Zhuang et al, 2020).
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The GCM data sets are drawn from CMIP6. Eight models are chosen

from a range of modeling centers, to provide an ensemble for use in exploring

the future projections (Table 1). Where needed, outputs from each model are

regridded from their original resolution using a bilinear process to a common

1-degree × 1-degree grid to perform the downscaling process (Zhuang et al,

2020).

Table 1 List of CMIP6 models used for downscaling

Model Modelling Center Horizontal
Resolution

Vertical
Levels

CESM2-WACCM National Center for
Atmospheric Research
(USA)

0.9x1.25 60

EC-Earth3 EC-Earth Consortium
(Europe)

0.7x0.7 91

GFDL-CM4 Geophysical Fluid
Dynamics Laboratory
(USA)

1x1 33

INM-CM5-0 Russian Academy of
Science (Russia)

1.5x2 73

IPSL-CM6A Institut Pierre Simon
Laplace (France)

1.25x2.5 79

MIROC6 Japan Agency for
Marine-Earth Sci-
ence and Technology
(Japan)

1.4x1.4 81

MPI-ESM1-2-HR Max Planck Institute
for Meteorology (Ger-
many)

0.94x0.94 95

MPI-ESM1-2-LR Max Planck Institute
for Meteorology (Ger-
many)

1.8x1.8 47

The ERA5 and CMIP6 data are standardized as Z-scores. The CMIP6

values for the future periods are standardized using the mean and standard

deviation values from the training period (1979-2006) to preserve the modeled

climate changes. The data are also normalized by multiplying by the cosine

of the latitude to account for differences in the size of grid boxes across the

domain.
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2.3 Downscaling Methods

We use the Self-Organizing Map (SOM) downscaling method introduced by

Hewitson and Crane (2006) to downscale precipitation. This method has been

used successfully for precipitation downscaling in other regions, including

Florida (Sinha et al, 2018), the Midwest US (Polasky et al, 2021), and South

Africa (Hewitson and Crane, 2006). The SOM method works by creating clus-

ters of similar patterns of synoptic conditions, based on a training dataset. In

this study, the training data set is drawn from the ERA5 for the period of 1979

to 2006. As the SOM is trained, it identifies a grid of patterns that cover the

range of major weather types observed in the region. Using that trained grid,

we compare each day in the CMIP6 projections to those synoptic patterns,

and find the one that is most similar. Using that most similar pattern, we take

the set of days in the training period matching the pattern, and sample from

the distribution of precipitation values from those days to get a downscaled

value for that day. A more complete description of the SOM method can be

found in Polasky et al (2021).

In order to train the SOM method, we determine the size of the SOM grid

using the quantization and topographical error (Kiviluoto, 1996). Identifying

the “elbow” in grid size, while also minimizing the topographic error, we use

5× 7 as the optimal grid size (Fig. 3).

2.4 Evaluation Metrics

We report changes to the precipitation-based ClimDEX indices for the region

(Karl et al, 1999). These metrics provide a set of descriptive values to capture

both amount and intensity of rainfall. A full list of the metrics and their

definitions can be found in Table 5. In addition, we explore the changes to the

length and timing of the wet season for the inland portions of the region. The
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Fig. 3 Quantization error for training SOMs of different sizes. Based on these results,
identifying the elbow in quantization, we use a 5x7 grid for the final downscaling.

monsoon wet season, particularly in the semi-arid inland portions of the region,

represents the key crop growing season (Stern et al, 1981; Akinseye et al, 2016).

Predicting changes to the start and length of this season is therefore key for

understanding climate impacts in this region.

Defining an objective standard for the start and end of the wet season is

difficult, due to the nature of rainfall in much of the region, which tends to

come in the form of large, semi-frequent MCSs, rather than more consistent

daily precipitation events (Evans and Jaskiewicz, 2001; Mathon et al, 2002;

Núñez Ocasio et al, 2020). A number of different criteria for defining wet

seasons have been proposed, including absolute approaches using fixed precip-

itation values (Stern et al, 1981; Todorov, 1985), relative approaches based of

a percentage of the rainfall at the location (Gregory, 1983; Liebmann et al,

2008), and more complex methods, factoring in additional factors, such as
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Table 2 ETCCDI ClimDEX Indices and definitions

Index Definition
TxMean Average Daily Maximum Temperature
TxMin Average Minimum Daily Maximum temperature per year
TxMax Average Maximum daily maximum temperature per year
Su25 Number of ”Summer Days” above 25C
ID0 Number of ”Icing Days” where maximum temperature is below 0C
Tx90p Days per year above the 90th percentile of maximum temperature in the training data
Tx10p Days per year below the 10th percentile of maximum temperature in the training data
WSDI Warm Spell Duration Index: The number of days with at least 6 consecutive days above the
TnMean Average daily minimum temperature
TnMin Average minimum daily minimum temperature per year
TnMax Average maximum daily minimum temperature per year
Tn90p Days per year above the 90th percentile of minimum temperature in the training data
Tn10p Days per year below the 10th percentile of minimum temperature in the training data
CSDI Cold Spell Duration Index: The number of days with at least 6 consecutive days below the
FD Frost Days, number of days with minimum temperature below 0C
TR Tropical Nights, number of days with minimum temperature above 20C
PrcpMean Average precipitation per day
Rx1Day Maximum 1-day precipitation
Rx5Day Maximum consecutive 5-day precipitation
R95p Annual Total Precipitation when daily rainfall is above the 95th percentile
R99p Annual Total Precipitation when daily rainfall is above the 99th percentile
SDII Simple Precipitation Intensity Index
CDD Consecutive Dry Days, maximum length per year
CWD Consecutive Wet Days, maximum length per year
R10mm Days per year with precipitation above 10mm
R20mm Days per year with precipitation above 20mm

evapotranspiration (Hulme, 1987; Boyard-Micheau et al, 2013). In the interest

of selecting a single and simple method that will work across the study region,

we follow the method used by Liebmann et al (2008), based on the daily pre-

cipitation anomaly. An anomaly accumulation value (A) is calculated for each

day of the year, using:

A(day) =

n∑

i=1

Pi − P (1)

Where P is the average daily precipitation, Pi is the average precipitation on

day i, and i is the day of the year. The wet season is then defined as the period

between the minimum and maximum values of A throughout the year. Since

the wet seasons in this region occur during the Northern Hemisphere summer,

we use January 1st to start the calculation of the anomaly accumulation.
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3 Results

3.1 Downscaling Validation

We split the historical data into a training (1979-2006) and test (2007-2014)

periods, in order to test the skill of the downscaling method on an independent

data set. The SOM model is trained using the ERA5 reanalysis data for the

training period, and then evaluated using both the reanalysis and GCM data

for the test period.

3.1.1 Predictor Selection

Downscaling, particularly for precipitation, in West Africa is made more dif-

ficult by the complexity of the observed weather features in the region. The

seasonal cycle of the region is dominated by the monsoon cycle, creating dis-

tinct wet and dry seasons across the region (Le Barbé et al, 2002; Xue et al,

2010; Nicholson, 2013). The monsoon, being a large scale circulation, can be

easily seen on the scale of the climate models, in variables such as specific

humidity and meridional wind (Fig. 4). These variables provide a useful basis

for downscaling, as the circulation is both large enough to show up in the

GCMs, and critical for determining the likelihood of precipitation.

Much of the precipitation in the region is convective in nature (Evans and

Jaskiewicz, 2001). This precipitation occurs as small-scale convection along

the coast, as well as larger and more organized MCSs further inland (Mathon

et al, 2002; Núñez Ocasio et al, 2020). Due to their reliance on simulation of

the strength of the boundary layer inversion, variables directly measuring the

convective environment (i.e. convective available potential energy (CAPE) and

Convective Inhibition (CIN)) are not skillfully predicted by the global models

(Eden et al, 2012), limiting their utility in statistical downscaling approaches.
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Fig. 4 Averaged 850 hPa meridional wind (top) and specific humidity (bottom) for the full
year, coastal monsoon phase (Late May - Late June), and Sahelian monsoon phase (July-
September) for the ERA5 and CMIP6 models. In the Sahelian phase, particularly near the
coast, there are sizeable differences between the ERA5 and CMIP6 models.

Selecting variables that serve as proxies for the commonly observed weather

features, and are better represented in the global models, allows the down-

scaling methods to capture the range of synoptic conditions in the region, and

produce more realistic distributions of events at the station level. To begin this

process, we select a range of variables available in the reanalysis data, includ-

ing temperature, wind components, vertical motion, geopotential height, and

specific humidity at pressure levels from the surface to upper troposphere.

Of these variables, vertical motion should be a strong predictor of pre-

cipitation (Rose and Lin, 2003). However, especially in the tropics, the skill

of the GCMs for vertical motion at the scales needed for local precipitation

is limited (Rybka and Tost, 2014). We find a correlation between the ERA5

vertical motion and ERA5 precipitation, but not between the vertical motion

and the station level precipitation, indicating that while the ERA5 reanaly-

sis is internally consistent, the vertical motion variable does not represent the
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station’s reality to the extent, or on the scale, needed to predict observed pre-

cipitation. This result was borne out in testing downscaling models with and

without vertical motion as a predictor, finding no improvement in skill when

it was added as an input variable. Other variables, such as specific humidity,

are generally better represented in the global scale models (Flato et al, 2014),

and can still be used to represent the synoptic environment near the weather

stations. These variables form the basis for our predictor set (Table 3).

From this set of variables, we train a number of SOM models using different

sets of these predictors, and calculate the Probability Density Function Skill

Score (PDFSS) across the 84 stations. The set of variables that perform best

on this test and are selected for the final downscaling model are listed in Table

3. Using these predictors, we train a final SOM downscaling model on the

ERA5 data, and evaluate it on the set of CMIP6 results provided by the chosen

GCMs (Table 1).

Table 3 Final set of predictors that are used for the downscaling. All variables are daily
averages taken from the ERA5 and CMIP6 data, standardized as z-scores and
cosine-normalized for use in the downscaling models.

Variable Pressure Level (hPa)
Temperature 850
Specific Humidity 850, 500
Meridional Wind 850
Zonal Wind 700
Sine of Day of Year N/A

3.1.2 Distribution Tests

To asses the skill of the downscaling models, we primarily use the PDFSS

metric, which provides a non-parametric comparison of the similarity between

two distributions (Perkins et al, 2007). The PDFSS is calculated using the

formula:

Sscore =

n∑

1

min(Zm, Zo) (2)
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where Sscore is the skill score, Zm and Zo are the observed and modeled fre-

quency values falling in each bin used to calculate the PDF. The PDFSS

provides a simple and interpretable metric for comparing climate statistics,

where the focus is on recreating the distribution of events, rather then matching

the individual weather events that are occurring on a specific day.

There is significant variation in the PDFSS across the stations used in this

study. The largest single portion of this variability can be explained by the

number of observations available for a given station (Fig. 5), with an r2 value

for the correlation between the number of observations and a station’s skill

score of 0.3. This result indicates that these methods would benefit from an

increase in training data.

Fig. 5 The PDFSS for the stations averaged across the eight CMIP6 models used for
the downscaling for the test period. Downscaling skill increases with number of available
observations.
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3.1.3 Seasonality

An important test for the downscaling method is the ability to capture the

seasonality of precipitation across the region, both to ensure that projections

of changes to the seasons are well supported, and to check that the SOM

is able to distinguish between weather patterns of different seasons. Plotting

the average precipitation by the day of year for each individual station, we

find that the downscaling does improve the representation of the seasonality,

especially for inland stations (Fig. 6). However, for stations along the coast,

the downscaling does not completely capture the dual-peak nature of the wet

season or the decrease in precipitation as primary rain bands move further

inland during the months of June, July, and August.

The downscaling based on the ERA5 data (Fig. 6, blue) provides superior

results than the ones based on the CMIP6 GCMs (Fig. 6, red). Examining some

of the key variables in the CMIP6 and ERA5 data, we detect some differences

that help to explain the discrepancy. In particular, the 850 hPa meridional

wind during the Sahelian phase of the monsoon shows a sign difference between

the ERA5 data and the CMIP6 results between 0◦ and 7◦N, in the region

along the coastal boundary. The ERA5 data set has an average offshore flow

at this level (850 hPa) during this stretch of time, while the CMIP6 values

are mostly positive (Fig. 4c). This condition would have the effect of bringing

more moist air in to the coastal region in the CMIP6 results. This assertion

is supported by the generally higher values of specific humidity near the coast

during this time period (Fig. 4f).

To assess the skill of the downscaling models across all the stations, we

calculate the PDFSS for each station for the wet season, using the method

for determining wet season described in Section 2.4 (Table 4). We define the

coastal stations as those between 5◦ and 7 ◦N (10 stations), and the Sahel
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Fig. 6 Average daily precipitation by day of year for a station near the coast (Cadje-
houn , Benin), and one in the Sahel (Gaya, Niger). Observations (black), downscaled ERA5
(blue), and downscaled GCM (red) are shown for the test period of 2006-2015. For both sta-
tions, the downscaling of the reanalysis does a good job of capturing the seasonality of the
observed precipitation, while the GCM downscaling struggles at the coastal station during
the Sahelian phase of the monsoon.

stations are located between 8◦ and 15◦N (44 stations). Downscaling skill

is generally higher during the dry season, which is unsurprising, given that

the variability in precipitation during that season is much lower. On average,

results for the Sahel stations show higher skill than the ones for the coastal

stations. The overall average skill score is pulled down by some lower skill

stations near the edge of the region, especially in the South-East portion, in

parts of Cameroon. The climatology of this region is quite different compared

to most of the rest of the region, and would most likely require adjustments

to the downscaling approach to produce reasonable skill in that region.

Table 4 PDFSS by season for all 84 stations, Coastal stations (10) and Sahel stations
(44). The wet season for each season is defined using the method described in section 2.4.

All Year Wet Season Dry Season
All Stations 0.82 0.78 0.83
Coast Stations 0.84 0.81 0.84
Sahel Stations 0.86 0.82 0.85
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3.1.4 SOM Patterns

The SOM method provides an opportunity to interrogate the areas where

the downscaling generates results that do not realistically match the observed

record. During the Sahelian phase of the Monsoon (July-September), the down-

scaled projections for the stations along the coast significantly overestimate

the observed rainfall (Fig. 6). To understand the causes of this discrepancy, we

plot the SOM heat map for this season for the ERA5 data, and for the results

of each of the GCMs (Fig. 7). For the example station shown in Fig. 7, there

is a consistent under-representation of SOM nodes in the upper left of the

grid, including a number of nodes with low average precipitation values. The

GCM downscaling shifts days away from these nodes, especially (0,1), (1,1),

and (1,2), and over estimates the number of days in the lower left of the grid,

such as nodes (0,5) and (1,5) during this season. When comparing the patterns

associated with these nodes, the largest difference is observed for the specific

humidity at the 500-hPa level, with the nodes in the upper left (with high fre-

quency in the reanalysis) showing significantly drier conditions, especially in

the southern portion of the study region (Fig. 8).

Comparing the specific humidity values between the ERA5 data and the

GCMs during this season, we find a consistent pattern of the peak in the GCM

specific humidity remaining too far to the south during these months (Fig. 9,

right). One potential explanation is that the GCMs are producing an over-

abundance of vertical motion near the coast during this season, most likely

due to a poorly resolved boundary layer inversion, leading to both increased

precipitation and increased humidity at the 500-hPa level. This interpreta-

tion is consistent with the averaged vertical velocity over the region (Fig. 9,

left) in the GCMs and ERA5 data. In particular, most of the GCMs show

average ascent further south than is present in the reanalysis, indicating that
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these models are over-representing convection near the coast. The GFDL-CM4

model provides more realistic results in moving the air ascent north during

this season, and does the best of the GCMs used in this study at recreating

the drop off in precipitation at the coastal stations during the Sahelian phase

of the monsoon. If this is the root cause, the difference between the reanalysis

and GCM data in specific humidity at the 500-hPa level is likely a symptom

of the difficulties representing near-coast phenomena in GCMs. In particular,

the parameterization of convection or the representation of sea-breeze inter-

actions are areas that have been shown to have limited skill in GCMs (Eden

et al, 2012; Stefanova et al, 2012; Birch et al, 2015).

Fig. 7 Heat map showing the frequency of each SOM node during the Sahelian monsoon
phase in the historical period for the ERA5 reanalysis, and three selected CMIP6 models for
an example station along the coast (Kotoka Airport, Accra, Ghana). The annotation on each
node of the heat map is the mean and standard deviation of precipitation for the observed
days that fall on that SOM node. The GCMs tend to have fewer days in the upper left, and
more in the lower left of the map, than the reanalysis. The remaining CMIP6 models can
be found in appendix A.



Springer Nature 2021 LATEX template

22 Statistical Downscaling for Precipitation Projections in West Africa

Fig. 8 The pattern of 500 hPa specific humidity in the region around the same example
station as in Fig. 7. The upper left nodes (under represented in the GCMs) show a significant
area of drying to the south of the region compared to the lower left nodes (over represented
in the GCMs). This indicates that the GCMs are not accurately capturing the changes in
mid-level moisture during the inland phase of the monsoon, leading to the over-production
of precipitation in both the GCM and the downscaling.

3.2 Projections of Near- and Far-Future Scenarios

There is significant uncertainty around the effects of climate change on West

Africa, particularly with regard to precipitation (Niang et al, 2014). Even

relatively small differences to the monsoon circulation could result in large

changes in the timing and the amount of precipitation in many parts of the

study region. Projections for change in precipitation for the region in GCMs

range from -30% to +30% (Sylla et al, 2016).
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Fig. 9 Zonal (10◦E to 10◦W) average vertical velocity (left) and specific humidity (right)
for the wet season (June 1 to September 30) for the ERA5 reanalysis (a,b), and three selected
global models. The GFDL-CM4 (e,f) model does the best job of the three at moving the
core of the upward motion north of the coast (located around 5N).

We explore two contrasting scenarios from the Shared Socio-Economic

Pathways (SSP), SSP2-4.5 and SSP5-8.5 (Gidden et al, 2019). The first sce-

nario, SSP2-4.5, has global emissions peaking by 2050 then declining, leading

to a global average temperature increase of 2.5-3.0◦C by 2100. The SSP5-

8.5 scenario represents high fossil-fuel use with emissions continuing to rise

throughout the century, and temperatures increasing by 4.5-5.0◦C by 2100

(Gidden et al, 2019). With these two scenarios, we project changes for two

periods, near future (2021-2050) and far future (2071-2100).
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Overall, averaging across all the stations in the study region, we find a

decrease in the number of days with precipitation. This decrease is accompa-

nied by a small decrease in the Simple Precipitation Intensity Index (SDII),

indicating that the average amount of precipitation per rainy day is decreas-

ing (Table 5, row 6) for both scenarios. These two effects combine to produce

a decrease in the overall average precipitation decreasing, with the bulk of the

change coming from the decrease in the rainy days. Breaking out the results by

region, we find that precipitation will generally decrease in the central latitudes

of the region (roughly 8-15◦N), with average precipitation falling from 1.78

mm day−1 in the historical period to 1.65 mm day−1 in the far future period

under the SSP 5-8.5 scenario (Fig. 10). For the same scenario, precipitation

increases along the coast (from 2.87 to 3.06 mm day−1) and in the northern-

most extent of the region (from 0.49 to 0.71 mm day−1) (Fig. 10). This pattern

appears generally consistent in both the near future and far future periods,

though the magnitude of the changes in the near future are relatively small.

Table 5 ClimDEX indices averaged over the 84 stations, and over all years in each
period. There is an overall decrease in average precipitation in the far future period, which
is more pronounced in the SSP5-8.5 scenario (rightmost column).

Index Hist Obs Test Obs Hist
Down-
scaled

Test
Down-
scaled

Near
SSP2-4.5

Far SSP2-
4.5

Near
SSP5-8.5

F
8.5

Mean 1.99 2.41 1.83 1.87 1.79 1.45 1.88 1.77
Rx1day 85.02 83.76 82.82 83.43 83.45 75.35 82.39 79.57
Rx5day 107. 119.39 115.6 117.21 113.69 99.68 114.53 109.46
R95p 80.43 69.43 69.35 68.23 70.35 69 69.17 68.24
R99p 150.37 114.22 116.9 112.1 120.26 117.5 119.06 115.8
SDII 13.3 12.49 12.35 12.27 12.43 12.02 12.38 12.35
CDD 50.59 60.71 90.38 87.84 89.76 95.72 92.38 90.45
CWD 1.42 1.53 1.13 1.1 1.11 1.09 1.12 1.11
R10mm 15.88 21.31 20.01 20.55 18.99 15.46 20.3 19.28
R20mm 9.16 12.52 11.03 11.34 10.5 8.46 11.17 10.57
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Fig. 10 Change in precipitation between the training period and test (top), near (middle),
far(bottom) periods for the two climate scenarios, averaged over the eight CMIP6 models.
Hatched area represents areas greater than 150km from a downscaling station, which are
excluded from our analysis. By the far future period, we see a more consistent pattern
emerge, with increased precipitation along the coast and in the far north of the region, with
decreased precipitation in the central portion of the region.

3.2.1 Change in Wet Season

One potentially important feature for climate projections for the region is the

length of the wet season, especially in the semi-arid Sahel region. The rainy

period provides the primary growing season for crops, and recharges aquifers,

rivers, and hydrological basins, providing the water resources for the dry sea-

son. Currently, this season typically runs from late June through September.

In both scenarios for the Sahel stations, our results indicate a shift to generally

later dates for the wet season: with the average start date in the Sahel moving

8 days later under SSP2-4.5, and 15 days later under SSP5-8.5 in the far future

period (Fig. 11). We generally see a decrease in the wet season length for the
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region just to the north of the coast, then an increase in length for the central

region, from about 10-15◦N (Fig. 12). The delay is consistent with other studies

of GCM projections, which have generally found a delayed start under warm-

ing climate scenarios (Biasutti and Sobel, 2009; Ibrahim et al, 2014). While

we find a similar delay in the onset of the wet season, we do not see the corre-

sponding decrease in the length of the wet season in the Sahel region. Rather,

the wet season shifts later in the year, and on average increases in length by

7.8 days in for SSP2-4.5, and 5.2 days for SSP5-8.5 in the far future period.

In the Sahel, the form of the seasonal change of the wet season can be

examined in more detail by analyzing the frequency or occurrence of the SOM

nodes (Fig. 13). In the historical period, there is a distribution of days across

the lower portions of the SOM map (rows 5 and 6 especially). In the far

future period, we get a general decrease in frequency from some of the central

nodes (e.g. 5,2 and 5,3), and increases in the lower left and lower right. These

two areas represent lower precipitation (left, averaging 1.7 mm day−1) and

higher, more variable precipitation (right, averaging 9.8 mm day−1) compared

to the nodes with the largest decrease in frequency, which average 5.3 mm

day−1. These changes match what we see in the ClimDEX values for the Sahel

stations, with a decrease of around 10% in the average precipitation (from 1.94

to 1.74mm day−1), while metrics of extreme precipitation stay near constant

(e.g., the 99th percentile goes from 110 to 113 mm). Coupled with Fig. 11, this

result indicates fewer days with precipitation (from 55 to 47 days) despite the

increase in the overall length of the wet season.

4 Summary and conclusions

Preparing for climate changes in West Africa will require accurate, local infor-

mation on likely changes in precipitation amounts and intensity throughout
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Fig. 11 Average precipitation by day of year for an example station in the Sahel (Senou,
Mali) for the observed (black), historical downscaled (dark blue), and far future period (light
blue) under the SSP5-8.5 scenario. The vertical lines show the assessed start and end of the
wet season, using the method described in section 2.4.

the region. The current generation of GCMs does not provide this informa-

tion at the scales needed for many adaptation decisions such as predictions of

crop yields and flooding potential. In this study, we demonstrate how SOM-

based downscaling can be used to produce station-scale projections for climate

change scenarios to provide the necessary downscaled data for modeling of

important resources such as crops and water availability. While there are a

limited number of available stations with long enough periods of record that

can be used for statistical downscaling, there are enough to provide reliable

estimates for much of the West Africa region, especially in the Sahel. The

meteorology of West Africa poses several challenges for downscaling, due to the

convective nature of the majority of the precipitation, and the poor represen-

tation of several key processes in the region in GCMs. Using the SOM method,

we are able to identify areas where the GCMs are failing to capture the under-

lying dynamics, leading to significant errors in the projected precipitation. By
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Fig. 12 Difference in wet season length calculated for the historical period downscaling
and the test (top), near future (middle), and far future (bottom) periods.

selecting variables that are both meteorologically relevant and better captured

in the GCMs, we demonstrate that the SOM downscaling method can produce

projections that capture a more realistic distribution of precipitation for the

inland portions of the region, and greatly improve on the GCMs’ precipitation.

Near the coast, the SOM downscaling struggles to capture the seasonal vari-

ability as a result of differences between the GCM and ERA5 data, especially

in the 500 hPa humidity values.

Using these methods, we project significant changes in precipitation dis-

tribution across the region in both emissions scenarios, with the largest signal

in the SSP5-8.5 high-emission scenario. Along the south coast of West Africa,

precipitation is likely to increase slightly, but these values are uncertain. In the

Sahel, precipitation may decrease by an average of about 10% by the end of the
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Fig. 13 The difference in frequency of hits on each SOM node during the wet season for
an example station located in the Sahel (Senou, Mali, same as in figure 11). The text within
each SOM node represents the average and standard deviation of precipitation for historical
days that fall on that node. The upper left panel shows the frequency for each node in
the reanalysis for the training period, while each other panel shows the difference between
the training and far future period under the SSP5-8.5 scenario for each respective model.
Consistently across the models, there is a decrease in the nodes in the lower center of the
SOM map, and a shift towards both right and left edges. This indicates a shift away from
the more moderate monsoon precipitation days, and towards more dryer days (left) and
extreme precipitation days (right).

century. This decrease in precipitation is driven by changes in the number of

precipitation days, falling from 55 to 47 in an average year, while the frequency

of extreme rainfall events stays close to constant. The decrease in precipitation

in the Sahel is especially worrying, as this region is already frequently water

stressed, and relies heavily on rain-fed agriculture.

These changes are likely to produce significant stressors for a region that is

expected to see large increases in population during the coming century. Devel-

oping adaptation strategies for these forthcoming changes is an important step
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to overcome the challenges created by climate change and thus create environ-

mental resilience in the region. Planners in the region will need robust, localized

projections for precipitation to address the challenges posed by the changing

climate, especially with regards to agriculture and water management.
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Appendix A Additional SOM Figures

In this appendix, we expand on the work that was done to determine the

best input variables for the downscaling method, and to understand the what

changes in the synoptic pattern contribute to the changes in the downscaling

projection, as well as the patterns for the additional CMIP6 models used in

the analysis (Figs. A1 and A2).

Fig. A1 As in Fig. 7, but for all eight CMIP6 models, showing the frequency for each SOM
node during the Sahelian phase of the monsoon for a coastal station Kotoka Airport, Accra,
Ghana).
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A.1 Sahel

In the Sahel region, from roughly 8-15◦N, the SOM downscaling is generally

able to match the seasonality of the observed precipitation (Fig 6). In addition

to determining the seasonality, the SOM also distinguishes between wet season

days with low and high typical precipitation. Among SOM nodes with high

frequency during the wet season, the average precipitation for the nodes ranges

from 1.5 to 10.9 mm day−1. This provides an indication that the downscaling

is able to identify days likely to produce convective precipitation. Comparing

those high and low precipitation SOM nodes, we find that the largest differ-

ences in the 850 hPa specific humidity, particularly to the north of the station

(Fig. A3). In addition, there is a consistent pattern in the 700 hPa Zonal wind,

where the higher precipitation days occur when the easterly wind is stronger

to the north of the region, while on the lower precipitation days, the gradient

is reversed (Fig. A4). This aligns with other studies of the role of the AEJ in

the formation of MCSs, which provide much of the precipitation in the region

(Thorncroft and Hoskins, 1994).

A.2 Coast

Along the Coast of the region, we observe an inability for the downscaling

to capture the seasonality of the precipitation (Sec. 3.1.3. In addition to the

500 hPa humidity discussed in that section, the meridional wind also reveals

some aspects of where the GCMs are struggling to capture the key dynamics.

During the Sahelian phase of the monsoon, we see the ERA5 reanalysis hitting

a significant number of times on nodes (0,2) and (1,2), much more than in

most of the GCMs (Fig. 7). In addition to the differences in 500 hPa specific

humidity discussed in section 3.1.3, These nodes show a difference in 850 hPa

meridonal wind, with the nodes that are over represented in the GCMs having
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Fig. A2 As in Fig. 8, but for all 8 CMIP6 models, showing the change in node frequency
between the historical and far future period under the SSP5-8.5 scenario for a station in the
Sahel (Senou, Mali).

a stronger southerly (onshore) flow (Fig. A5). This likely plays a role in the

over-production of precipitation in the GCMs during this season, bringing in

additional moisture and unstable air from the Gulf of Guinea.
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Issa Lélé M, Lamb PJ (2010) Variability of the intertropical front (ITF)

and rainfall over the West African Sudan–Sahel zone. Journal of Climate

https://doi.org/https://doi.org/10.1002/qj.3803
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
{https://arxiv.org/abs/https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3803}
{https://arxiv.org/abs/https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3803}
https://doi.org/10.1002/joc.1314
https://doi.org/10.1002/joc.1314
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.1314
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.1314
{https://arxiv.org/abs/https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.1314}
{https://arxiv.org/abs/https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.1314}


Springer Nature 2021 LATEX template

40 Statistical Downscaling for Precipitation Projections in West Africa

23(14):3984–4004

Janicot S, Thorncroft CD, Ali A, et al (2008) Large-scale overview of the

summer monsoon over West Africa during the AMMA field experiment in

2006. In: Annales Geophysicae, Copernicus GmbH, pp 2569–2595

Karl TR, Nicholls N, Ghazi A (1999) Clivar/GCOS/WMOworkshop on indices

and indicators for climate extremes workshop summary. In: Weather and

climate extremes. Springer, p 3–7

Kiladis GN, Thorncroft CD, Hall NMJ (2006) Three-dimensional structure and

dynamics of African Easterly Waves. Part I: Observations. Journal of the

Atmospheric Sciences 63(9):2212–2230. https://doi.org/10.1175/JAS3741.

1, URL https://doi.org/10.1175/JAS3741.1, https://arxiv.org/abs/https://

doi.org/10.1175/JAS3741.1

Kiviluoto K (1996) Topology preservation in self-organizing maps. In: Pro-

ceedings of International Conference on Neural Networks (ICNN’96), IEEE,

pp 294–299

Koutroulis AG, Grillakis M, Tsanis I, et al (2016) Evaluation of precipitation

and temperature simulation performance of the CMIP3 and CMIP5 histori-

cal experiments. Climate Dynamics 47(5):1881–1898. https://doi.org/https:

//doi.org/10.1007/s00382-015-2938-x
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