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Abstract
Liquid-liquid phase separation (LLPS) is a process that underpins the formation of membrane compartments and regulates
various biological processes in cells. Intrinsically disordered proteins and regions (IDPs/IDRs) play a signi�cant role in LLPS as
they are a class of proteins that undergo monomeric and heterotypic interactions, driving phase separation. Although many
computational methods are available to study the sequences that determine phase separation, the quantitative amino-acid
(AA) contribution remains poorly understood. To address this issue, we have developed BERTIG, a novel, interpretable deep
learning framework that predicts the LLPS capability of IDRs with a high level of accuracy. The framework utilizes the
Integrated Gradients (IG) algorithm and Bayesian optimization, while incorporating prediction probability (Proba), attribution
score (AS), and model score (MS) to produce quantitative interpretations of both wild and mutated forms of IDPs. BERTIG has
been shown to accurately identify and validate key AAs and motifs responsible for LLPS in disordered proteins, with
performance comparable to experimental results and superior to other methods. Thus, BERTIG is a versatile, powerful, and
interpretable model that will greatly enhance characteristics understanding of the increasing number of proteins, including
prion-like proteins.

Introduction
The advancement of computational methods for interpreting phase separation of proteins from protein sequences has
proceeded along two distinct yet complementary approaches. One approach focuses on the stickers-and-spacers framework1–

4, which takes into account the multivalence of interactions. The other approach focuses on the conformational entropy
framework5, which considers the free and binding states.

The stickers-and-spacers model, based on the a priori identi�cation of stickers and spacers, can be utilized to describe
branched or linear associative polymers, such as multivalent protein and RNA molecules. In the context of intrinsically
disordered regions (IDRs), stickers are believed to be short linear motifs (SLiMs) of 1-10 residues, while spacers are the
intervening residues in the IDR2. The open-source computational engine LASSI can be utilized to calculate full phase diagrams
for coarse-grained representations of multivalent proteins on simple cubic lattices1.

The stickers-and-spacers framework incorporates our understanding of molecular driving forces into thermodynamic or kinetic
simulations of protein physics or statistical approximations thereof. However, this framework is limited to prion-like low-
complexity domains (PLCDs) and it can be challenging to identify the stickers versus spacers, determine the strengths of
different types of stickers, and assess the effects of spacers6.

The conformational entropy framework, a complementary approach, is based on the idea that the droplet state is stabilized by
the large conformational entropy resulting from nonspeci�c side-chain interactions upon binding5,7,8. This entropy can be
predicted from the amino acid sequences. A tool named FuzDrop5 was developed to predict the droplet-promoting propensity
of proteins and their droplet-promoting pro�les using the conformational entropy of their free states (probabilities of pD) and
binding states (probabilities of pDD).

While the conformational entropy framework has a strong theoretical foundation, it has limitations in practice. Speci�cally, it
fails to produce a quantitative value for the contribution of amino acids to liquid-liquid phase separation (LLPS), which
restricts its utility for further biological applications. Additionally, both the stickers-and-spacers framework and the
conformational entropy framework are unable to account for the effects of genetic variations on proteins.

Previous studies have generated several important questions that require further investigation: (1) How can the contribution of
amino-acid-resolution to phase separation in disordered and ordered regions be evaluated? (2) What are the key regions and
motifs that most signi�cantly contribute to phase separation? (3) How can the effects of genetic variations on phase
separation be assessed?
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To address these questions, we have developed a new and innovative deep learning framework called BERTIG. BERTIG
consists of two main components: BERT and IG (Integrated Gradients). BERT is an LLPS prediction model that is constructed
using a pretrained-�netuned approach, while IG is a powerful quantitative interpretation model based on the integrated
gradients algorithm. A key feature of BERTIG is the integration of prediction probability direction (Proba), attribution score (AS),
and model score (MS), which makes the integrated gradients algorithm accurate and reliable.

We demonstrate the capabilities of BERTIG on two related tasks: the LLPS prediction of IDR proteins and the amino-acid-
resolution interpretation of proteins. BERTIG predicts the LLPS of IDRs with higher AUC and AP compared to existing
computational methods. When applied to datasets of transcription factor (TF) proteins, BERTIG is able to identify the key
amino acids and motifs driving phase separation. We also apply BERTIG to mutated proteins, speci�cally TDP-43 and FUS, to
derive total attribute scores for phase separation that are in close agreement with experimental results from published studies.

Results

The BERTIG framework
The results of the BERTIG framework demonstrate signi�cant improvement in the accuracy of LLPS prediction and amino-acid-
resolution attribution interpretation. This is achieved by incorporating the state-of-the-art pretrained-�netuned language model
and the IG method, which is restricted by the direction of Proba, AS, and MS.

Furthermore, the results highlight the importance of properly exploring the parameters of steps and batch size in the
approximation of the integral, which is crucial for accurate amino-acid-resolution attribution interpretation. This aspect has
received limited attention in the literature.

The BERTIG framework predicts both LLPS and attribution for a protein using the primary amino acid sequence as input. The
complete architecture and training procedure are outlined in Fig. 1a.

The BERTIG framework consists of two key components. Firstly, a pre-trained BERT model (ProtBert-BFD10 with 30 blocks) is
�ne-tuned (Fig. 1a) using protein sequences from four public datasets (LLPSdb11, PhaSePro12, FuzDrop5, OpenCell13) (training
data in Supplementary Data 1) as inputs. This stage outputs a prediction probability for the likelihood of liquid-liquid phase
separation (LLPS). In the second stage, Bayesian optimization is used to determine the optimal parameters for the Integrated
Gradients (IG) algorithm, which calculates an amino-acid-resolved attribution score for the LLPS prediction. The results are
expressed as the loss score (denoted as error_score_neg_reciprocal) and delta (the difference between the model score and
attribution score).

Key innovations in the framework include well-de�ned loss function restricted by the direction of 3 metrics (Proba, AS, MS), the
usage of Bayesian optimization to explore the best step and batch size, and the SOTA paradigm of pretrained-�netuned
language model. We reinforce the notion of iterative parameters re�nement of steps and batch size that contributes markedly
to accuracy of AA attribution and the integration of 3 metrics to the reliability of the interpretation.

Bayesian Optimization Of Ig
The central component of the BERTIG framework is the integration of three indicators: Proba, AS, and MS. To improve the
accuracy and reliability of interpretation, these indicators are binarized to either 1 or -1. The binarization process is performed
as follows: if Proba is greater than 0.5, it will be binarized to 1; otherwise, -1. If AS or MS is over 0, it is assigned the value of 1,
denoted as ASb or MSb; otherwise, -1. The direction coef (DC) is then determined by checking if Proba, ASb, and MSb have the
same direction. DC is de�ned as 1 if Proba = ASb = MSb and − 1 otherwise.

The Integrated Gradients (IG) approach, which is employed in the BERTIG framework, is de�ned as the path integral of
gradients along a straight-line path from the baseline  to the input  (Fig. 1b; see Methods for details). This path integral canx′ x
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be approximated using Riemann Sum or Gauss Legendre quadrature rule. To optimize the steps and batch size in the
framework, a well-de�ned loss function is employed, which is de�ned as

where the parameters are described as above. As a guideline, we suggest a cut-off value of L = -10 for mutated proteins and L
= -5 for natural proteins.

To understand how BERTIG interpreted the proteins, we estimate the relative importance of key components by evaluating
several ablation models on 21 mutated proteins (Supplementary Data 2; Supplementary Figs. 2–4) in a fp16 half-precision
setting with the label-agnostic fashion. Our results, presented in Fig. 1c, indicated that a combination of multiple factors
contribute to the accuracy of the model. Our analysis of 12 mutated TDP-43 proteins demonstrated that accuracy improved
progressively from the baseline model to the Step-Batch-AS_MS-Proba model, emphasizing the need to explore both step size
and batch size along with AS, MS, and Proba. For the 9 mutated FUS proteins, maximum accuracy was achieved by the Step-
AS_MS and Step-AS_MS-Proba models, highlighting the signi�cance of step size and suggesting that the default batch size
may be suitable in some cases. The comparison of Step-AS_MS with Step-AS_MS-Proba showed an increase in accuracy from
0.17 to 0.25 for TDP-43 proteins, indicating the importance of the direction of Proba. The comparison of Step-AS_MS-Proba
with Step-Batch-AS_MS-Proba demonstrated an increase in accuracy from 0.25 to 0.50, which emphasized the signi�cance of
batch size. For the FUS proteins, the comparison of Step-AS_MS_size with Step-AS_MS showed an increase in accuracy from
0.22 to 0.78, revealing the crucial role played by the direction of AS and MS. In conclusion, the direction of Proba, AS, and MS,
as well as step size and batch size, play a crucial role in the interpretation of proteins by the BERTIG framework. Further details
on each ablation model are provided in the Methods section.

High Accuracy Of Llps Prediction
To construct a Liquid-Liquid Phase Separation (LLPS) model, we assembled a total of 4,583 Intrinsically Disordered Proteins
(IDPs) from four datasets, LLPSdb, PhaSePro, FuzDrop, and OpenCell (see distribution in Supplementary Fig. 1). The
proportion of IDPs undergoing LLPS was 1211 to 3372 (LLPS: non LLPS = 1211: 3372). A small curation was performed to
determine if a protein could undergo phase separation independently (see Methods for details of datasets process; see
Supplementary Fig. 1 for the datasets visualization).

The BERT architecture was trained with supervised learning on the LLPS dataset and its performance was evaluated using
AUC for hyperparameter exploration. The best model achieved an AUC of 0.95 (as shown in Fig. 2a1) and an average precision
(AP) of 0.86 on the test set (20% of the LLPS dataset) (as shown in Fig. 2a2).

In comparison with other Phase-Separation Predictors, such as DeePhase14, PSAP15, LLPhyScore16, and PScore17, the
performance of our BERTIG model was found to be superior on two evaluation sets, LLPSDB-v2 (Figs. 2b1 and 2b2) and
PhaSePro (Figs. 2c1 and 2c2). Notably, the �rst-generation predictor, PScore, which is based solely on planar pi–pi interactions,
showed impressive performance, highlighting the crucial role of pi–pi interactions in IDRs phase separation. Our results also
indicated that DeePhase, which combines physical features and word2vec features and is ranked second, showed comparable
AUC and AP values with BERTIG, as a phase-separation predictor based on protein sequence embeddings. DeePhase was
evaluated using a pre-trained word2vec model on the Swiss-Prot database, creating 200-dimensional embedding vectors for
every 3-gram. The comparable results of BERTIG and DeePhase suggest the effectiveness of protein sequence embeddings for
predicting LLPS. However, BERTIG outperformed Dee Phase, highlighting the advantage of using a massive pre-trained
language model. Additionally, the other two models, which rely on traditional methods of extracting physiochemical features,
also showed good performance.

In conclusion, the comparison of models highlights that phase separation can be predicted based purely on protein sequence
embeddings, and the pretrained-�netuned language model could be served as a general framework.

L = DC ×
−1

|AS − MS|
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Aa Interpretation
The performance of BERTIG in interpreting the contribution of each amino acid (AA) to liquid-liquid phase separation (LLPS)
was tested using two well-studied proteins, TDP-43 and FUS.

TDP-43 is comprised of an N-terminal domain (NTD; residues 1-103), two RNA recognition motifs (RRM1 and RRM2; residues
104–176 and residues 191–262), and a C-terminal domain (CTD; residues 274–414) 18 (Fig. 3a1). The NTD contains a
ubiquitin-like fold with one alpha-helix and six beta-sheets that promotes TDP-43 self-oligomerization in a concentration-
dependent manner19,20. The C-terminus of TDP-43 has prion-like domains that are known to be involved in TDP-43 phase
separation and aggregation21–23.

The results of the BERTIG analysis showed that two major regions (1-150 and 250–400) of TDP-43 played a positive role in
LLPS (Fig. 3b1). These regions align with the main regions of linear interacting peptides (LIP) as identi�ed in the Mobidb
database24 (positions 80–102 and 263–414) (Fig. 3c1), and the main regions of binding modes (positions 376–395 and 403–
414) (Fig. 3d1). This supports the conclusion that both the NTD and CTD of TDP-43 contribute positively to LLPS and is
consistent with experimental results25–28.

Note

LIP (Residues interacting with another molecule that preserve structural linearity in the bound state. Also called short linear
motifs (SLiMs), molecular recognition features (MoRFs), protean segments (ProS)).

FUS is composed of 526 amino acids and several conserved domains, including the prion-like domain (PrLD), an RNA-
recognition motif (RRM), two arginine-glycine rich regions (RGGs), a zinc �nger (ZnF) domain, and a PY-nuclear localization
signal18 (PY-NLS) (Fig. 3a2). These domains govern the assembly of FUS through inter- and intramolecular interactions, with
the PrLD forming homotypic cross-β interactions30–32, the R residues in RGG domains forming intramolecular interactions33,
and the Y residues in the PrLD forming intermolecular interactions34. The PY-NLS interacts with importins, which regulate FUS
condensation35,36.

According to the BERTIG interpretation, two major regions (140–270 and 420–500) were identi�ed as making important
contributions to LLPS (Fig. 3b2). This conclusion is supported by consensus from the mobidb database, which identi�es the 4
main regions in linear interacting peptide (LIP) as positions 34–150, 285–370, 432–443, and 507–526 (Fig. 3c2), and the two
main regions in binding mode as positions 1-277 and 391–506 (Fig. 3d2). The results of the BERTIG analysis are highly
consistent with the experimental results40–42 reported and the consensus from the mobidb database. Particularly, the AAs at
positions 150–250 in the pi-pi interaction region showed greater contributions to LLPS37 (Fig. 3b2).

Key Aas For Llps
To determine if the crucial amino acids (AAs) responsible for phase separation could be identi�ed, we analyzed AA sequences
of motifs (sequences of more than 2 consecutive AAs with either positive or negative attributes) in different proteins. Our �rst
examination focused on the well-studied PLCDs of 112 proteins. We analyzed the AA compositions of paired groups with
opposite attributions and applied loss threshold �ltering, which resulted in a remaining 90 proteins (Supplementary Data 3;
Supplementary Figs. 6, 10, 11). In the PLCD regions (Fig. 4a, shown in green), the most in�uential AAs for LLPS were YHWNG,
with YWNG being validated in previous literature6,33. In contrast, for the entire protein (Fig. 4a, shown in orange), the top 5 AAs
were YWFGV, with a slight variation where V replaced H.

Then, we analyzed 308 TF proteins (Fig. 4a blue color) assembled from 3 sources (see details of data process in Methods;
Supplementary Data 4; Supplementary Figs. 5–6, 12–13): human transcription factor effector domain41 (Supplementary Data
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5; Supplementary Figs. 8–9), Low-complexity Aromatic-Rich Kinked Segments (LARKS)30 (Supplementary Data 6;
Supplementary Figs. 8–9) and the eukaryotic linear motif (ELM)42 (Supplementary Data 7; Supplementary Figs. 8–9).

The top 5 AAs were found to be YWKNC (Fig. 4a blue color) in TF proteins, which differed signi�cantly from the results for the
prion-like proteins. Y was, however, always the most important AA for LLPS.

In comparison to the paired groups (positive score vs negative score) (Fig. 4b) in the PLCDs region, the top 5 AAs found to be
favorable for phase separation were GQSNA in terms of total number and GQYAS in terms of total score. V was found to be the
most unfavorable for phase separation (p < 0.05). Meanwhile, for the entire set of 90 prion-like proteins, the top 5 signi�cant
AAs were GSPQT in total number and GSPTQ in total score (Extended Data Fig. 1a). When comparing the 90 prion-like proteins
with the 308 TF proteins (Extended Data Fig. 1b), the top 5 signi�cant AAs in TF proteins were found to be PASGT in both total
number and score, displaying a high level of consistency (common in PSGT).

Our �ndings provide important insights into the AAs driving LLPS across a diverse range of protein classes.

Motif Discovery
To further evaluate the important functional regions for liquid-liquid phase separation (LLPS), we employed BERTIG to analyze
308 transcription factor (TF) proteins (Supplementary Data 4; Supplementary Fig. 7c) with con�rmed motifs. The results
showed that a remarkable 85% of the motifs were consistent. Our analysis revealed MEF2D to be the top 1 gene in terms of
common motifs (Fig. 5a).

In the case of MEF2D, the newly predicted motifs were the following (Fig. 5b): {'19–21': 'VTF', '26–30': 'FGLMK', '32–35': 'AYEL',
'37–38': 'VL', '42–50': 'EIALIIFNH', '52–55': 'NKLF', '57–58': 'YA'}. As Fig. 5c showed, the regions 38–49 was LIP that could
interact with another molecule predicted by ANCHOR43, which was also in our newly predicted motifs. The region 10–57, highly
consistent with our newly predicted motifs regions, was the domain of “transcription factor, MADS-box” (Fig. 5d), that may play
an import role in LLPS.

In the case of the ARX gene, our analysis revealed that the region 60–350 made a great contribution to the phase separation
(Extended Data Fig. 2a), which was in consistency with LIP (Extended Data Fig. 2b).

Overall, these results demonstrate the accuracy of BERTIG in predicting new motifs and important functional regions for LLPS
in TF proteins.

Additionally, we identi�ed several LLPS-favorable motifs that were statistically signi�cant, such as PP, AA, SS, GG, KK, QQ, RR,
TT, AAAA, PPPP, EEEE, QQQQ, among others. The top 10 signi�cant (p < 0.05) motifs of different lengths for the 308 TF
proteins are shown in Fig. 5e:

For 2 amino-acid lengths: PP, AA, AP, SS, PA, SP, PG, PS, GG, TS;

For 3 amino-acid lengths: PPP, AAA, SSS, PAA, PPA, AAG, AAP, APP, PSS, PAP;

For 4 amino-acid lengths: AAAA, PPPP, CGKA, GGAG, AAAG, AAGG, APPA, APPP, PPPA, QNRR.

In the case of the 90 PLCDs proteins, the top 10 signi�cant motifs, when only the PLCDs regions were considered, are listed in
Extended Data Fig. 3a:

2 amino-acid lengths: YN, GN, NG, QP, TA, NY, FG, PS, AS, MN;

3 amino-acid lengths: GGY.
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However, the top 10 signi�cant motifs when considering the whole PLCDs proteins are different, as shown in Extended Data
Fig. 3b:

2 amino-acid lengths: GG, SS, TS, AS, AP, GP, GA, PP, PG, SP;

3 amino-acid lengths: GGG, GGY, GGR, AAA, NSS, PPG, PSS, PTT, QQA, TGS.

It can be observed that only AS and GGY were the same signi�cant motifs when comparing PLCDs regions to PLCDs proteins.
On the other hand, there were 9 common signi�cant motifs between TF proteins and PLCDs proteins: GG, SS, TS, AP, PP, PG, SP,
AAA, PSS.

To summarize, the comparison of 308 TF proteins and 90 PLCDs revealed that a high variability in the distribution of motifs
may be a hallmark of the diversity of proteins.

Effects Of Mutations On Llps
In this study, we focused on the examination of two well-studied proteins, TDP-43 and FUS. TDP-43 fragments containing the
C-terminal PLCDs are known to be a pathological hallmark of ALS and FTD, with the majority of TDP-43 mutations associated
with ALS located within the PLCDs 44,45. Mutations in the nuclear localization sequence (NLS) in the NTD have also been
shown to cause cytoplasmic localization and aggregation of TDP4346,47. Similarly, mutations in FUS have been linked to both
sporadic and familial cases of ALS and are associated with the accumulation of FUS-positive inclusions in the cytoplasm of
degenerating neurons and glia, as well as decreased nuclear FUS48–50.

In order to predict the phase behavior of these mutated proteins, a set of validated mutations were assembled, curated, and
analyzed. For TDP-43, 12 mutated proteins were obtained from the literature: G294V51, G298S52, N319G53, P320G53, A321G22,
A321V22, A324G53, A326P54, Q327G53, G335A54, M337P54, M337V55, with only 3 of these mutations (A321G, A326P, and
M337P) being weaker than the natural protein according to the published literature. For FUS, 9 mutated proteins were tested:
G156E59, R216C52, G230C60, R244C59, G399V61, R521C52, R521G61, R521H52, P525L62, with only 1 (G399V) being weaker than
the natural protein.

The ability of LLPS to accurately predict the phase behavior of these mutated proteins was assessed based on the attribution
score (AS) in a fp32 setting with double-�oat precision. Results showed that 11 of the 12 mutated TDP-43 proteins were
correctly interpreted (A326P misinterpreted), with an accuracy of 92% (Fig. 6a1). Similarly, 7 of the 9 mutated FUS proteins
were correctly interpreted (G156E and R521C misinterpreted), with an accuracy of 78% (Fig. 6a2).

The assessment of the effect of mutated proteins on LLPS requires a comprehensive evaluation of the entire protein and its
functional regions, rather than focusing solely on the mutation loci. In the case of TDP-43, the impact of the A321 residue was
thoroughly analyzed (Fig .6b1). The 321–340 region is a crucial helical structure that contributes to LLPS through self-
interaction. Research has shown that the A321G mutation decreases phase separation, resulting in decreased helical
population and shorter helical segments22. Our results, as shown in Fig. 6c1, con�rm this conclusion. The A321G mutated
TDP-43 (AS = 1.5590) was weaker than the natural TDP-43 protein (AS = 1.9313), and the surrounding AA scores were mostly
negative, indicating a reduction in LLPS. On the other hand, the A321V mutation (AS = 2.6680) was found to enhance phase
separation, with bigger AA scores than the natural TDP-43 (AS = 1.9313), which indicates increased hydrophobicity22.

Similarly, the impact of the R521 residue in the PY-NLS of the FUS protein was studied. The R521 residue is crucial in the
binding of FUS to the chaperone protein Kapβ2, which facilitates its localization within the nucleus56. Mutations R521G and
R521H result in altered conformation, decreased binding to RNA, and formation of large condensates, which can lead to
aberrant tra�cking and cytoplasmic retention. Our results, as shown in Fig. 6c2, reveal that both R521G (AS = 0.6485) and
R521H (AS = 1.0399) mutated FUS proteins were stronger than the natural FUS protein (AS = 0.6306), but with different
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patterns. In R521G mutated FUS, AA scores were generally small, with more positive values emerging, whereas R521H had
more big positive values.

These results indicate that BERTIG can effectively predict the phase separation ability of mutated proteins.

Interpretations Of Different Models
To compare the ability of different models in interpreting of mutated proteins, we selected the M337P-mutated TDP-43 and the
G230C-mutated FUS. These mutations were chosen to demonstrate the differing effects they have on the phase behavior of
the proteins.

The M337P mutation in TDP-43 weakens its ability to undergo liquid-liquid phase separation due to disruption of the CR helix-
helix interactions and the extension of the helical region. This results in a nearly complete loss of TDP-43's autoregulatory
capacity54.

In contrast, the G230C mutation in FUS protein improves its ability to undergo liquid-liquid phase separation. This is because
glycine, which is classi�ed as a "spacer," plays an important role in controlling the �uidity of FUS condensates33. The G230C
mutant displays a range of interactions with RNA and exhibits signi�cantly more dynamic Förster resonance energy transfer
(FRET) �uctuations57.

We then compared the predictions of BERTIG with those of other models, namely FuzDrop5, LLPhyScore16, and PScore17.

As depicted in Fig. 7, BERTIG demonstrated the greatest differentiation power and model interpretation ability. The 321–340
region of TDP-43 is a crucial helical structure for LLPS and the M337P mutation caused most of the scores in the region
predicted by BERTIG to shift from positive to negative (Fig. 7a1). This shift was not observed in the other models (FuzDrop in
Fig. 7b1, LLPhyScore in Extended Data Fig. 4a1, and PScore in Extended Data Fig. 4b1).

Similarly, the G230C mutation in FUS enhanced its LLPS ability, as BERTIG showed the PLCDs (residues 1-239) to have more
positive scores compared to the natural FUS, particularly in the main PLCDs regions with residues 1 to 100 (Fig. 7a2). However,
no such improvement was observed in the other models (FuzDrop in Fig. 7b2, LLPhyScore in Extended Data Fig. 4a2, and
PScore in Extended Data Fig. 4b2).

While the sticker-spacer framework is also useful for interpreting IDRs, it is only applicable to PLCDs and it is challenging to
identify stickers and spacers, as well as their strengths and effects. Thus, no comparison to BERTIG was performed in this
study.

In conclusion, BERTIG is the most superior tool currently available for the distinguishability of quantitative AA interpretation.

Discussion
Intrinsically disordered proteins (IDPs) play a crucial role in biomolecular condensation7, 58–60. However, detecting IDPs
through comparative modeling is challenging due to the lack of knowledge of their invariants, or the set of function-preserving
sequence perturbations. To address this challenge, we combined a prediction model based on BERT with a novel interpretation
method, direction-restricted IG, to uncover the quantitative AA contribution and key motifs involved in phase separation. While
IG has been used in the interpretation of protein-DNA/RNA binding sites61, protein-ligand binding62 and protein sequence–
function relationships63, no optimization was conducted before, thus our work represents the �rst optimization of the IG
algorithm for interpretable protein predictions.

We optimized the IG algorithm by introducing a direction-restriction method to ensure that the interpretation results are
meaningful. The interpretation would not be valid if the attribution score of a protein is positive while the model score is
negative, regardless of the small delta value. Likewise, if the prediction probability is over 0.5, but the attribution score is
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negative or the model score is negative, the interpretation would also be invalid. To address these issues, we utilized Bayesian
optimization to �nd the best parameters for the steps and batch size for a more accurate and reliable interpretation.

Our results showed that BERTIG outperforms feature-based methods and word2vector-based deep learning models in
predicting the liquid-liquid phase separation (LLPS) of proteins. This is demonstrated through a comprehensive comparison of
different models on well-established LLPS datasets. Overall, our �ndings highlight the importance of optimizing interpretable
algorithms, such as IG, for accurate and reliable predictions of IDPs. Hence, the optimization of IG is undoubtedly necessary.
Generally, the optimization of any of the interpretable algorithms that returns delta is important and inevitable, such as
DeepLift, GradientShap, DeepLiftShap and so on.

In terms of interpretation, our results showed, through a thorough comparison of various models on mutated TDP-43 and FUS
proteins, that BERTIG was the only tool capable of deciphering the impact of mutations on the liquid-liquid phase separation at
the amino acid level. The existing sticker-spacer framework is limited to prion-like proteins3,6,64 only, while BERTIG has the
potential to be applied to a wider range of intrinsically disordered proteins and facilitate the understanding of their phase
separation behavior. Furthermore, BERTIG offers a more insightful interpretation of mutated proteins compared to the sticker-
spacer framework as it considers the interactions between stickers in a more nuanced manner, whereas the latter treats such
interactions in a general sense.

Our �ndings highlight the diversity of phase separation mechanisms among different types of proteins and demonstrate the
versatility of BERTIG as a tool for providing insights into a diverse set of proteins. This will signi�cantly accelerate the study of
liquid-liquid phase separation in an increasing number of proteins.

Methods

BERTIG �netuned dataset for LLPS prediction
All data in the present study were downloaded from public datasets. There were totally 5777 proteins (LLPS : non LLPS = 1333:
4444) (Dataset S1) assembled from 4 sources separately: 109 proteins in the PhaSePro database (https://phasepro.elte.hu),
589 proteins in the LLPSDB-v2 dataset (http://bio-comp.org.cn/llpsdb), 882 proteins labeled manually in the OpenCell
dataset13 (https://opencell.czbiohub.org/), 4197 proteins in the FuzDrop dataset from the paper5.

A small curation was performed to determine if a protein could undergo phase separation independently. For the PhaSePro
dataset, only spontaneous phasing or DNA/RNA-dependent proteins were included in the positive set. In the LLPSdb-v2 set,
only one protein system per item was included. The LLPSDB-v2 dataset was �ltered based on both in vivo/in cell and one
component experiments. The OpenCell dataset is a human protein localization resource generated from 1,311 CRISPR-edited
cell lines harboring �uorescent tags. In accordance to the original annotation of “nuclear punctae”, all the 1311 raw cell images
were analyzed with the software of CellPro�ler65, and labelled with “positive”, “negative” and “unknown”. Only 882 “positive”
and “negative” proteins were retained. The FuzDrop dataset included the entire 445 LLPS and 3911 non-LLPS proteins. All the
4 datasets were merged and then de-duplicated according to the sequence based on the order of priority: PhaSePro > LLPSDB 
> FuzDrop > OpenCell. Finally, we constructed the most comprehensive protein phase-separation dataset from nearly all the
main data sources of LLPS.

All the proteins were then �ltered out by the cut-off 0.05 in IDR score that originated from the mobidb database24

(https://mobidb.bio.unipd.it/) based on the order of priority: curated-disorder-priority > prediction-disorder-alphafold > 
prediction-disorder-mobidb_lite > 1 - homology-domain-pfam. Please take care that if the IDR score > 1 - homology-domain-
pfam, the �nal IDR score will shift to the last one. We �lled the IDR score with 1.0 for the mutated proteins that did not exist in
the mobidb database. Finally, only 4583 proteins (LLPS: non-LLPS = 1211: 3372) were left to construct the models.

These 4583 training proteins were randomly split into training, validation, and testing sets in a ratio of 0.64:0.16:0.20 (Dataset
S1).
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Bertig Dataset For Interpretation
In this study, three datasets were utilized for interpretation purposes: (1) a collection of 12 mutated TDP-43 proteins and 9
mutated FUS proteins sourced from the literature (Dataset S2), (2) 112 prion-like proteins from the Iglesias database66, and (3)
a merged dataset of 385 TF proteins sourced from three different databases, including human transcription factor effector
domains41, Low-complexity Aromatic-Rich Kinked Segments (LARKS)30 and the eukaryotic linear motif (ELM)42 .

The 21 mutated proteins were carefully curated and veri�ed through a manual process. The set of 112 prion-like proteins was
sourced from Iglesias and �ltered by a loss threshold of -5, resulting in 90 proteins (Dataset S3). The merged dataset of 385 TF
proteins was �ltered by a loss threshold of -5, resulting in 308 proteins (Dataset S4).

The human transcription factor effector domain database contains 924 effector domains across 594 human TFs, which are
classi�ed into activator domains (ADs), repressor domains (RDs), and bifunctional (Bif) domains. The database was �ltered by
activity and con�dence level, resulting in 219 proteins, which were further �ltered by a loss threshold of -5, resulting in 208
proteins (Dataset S5). The Low-complexity Aromatic-Rich Kinked Segments dataset consists of 400 functional regions
characterized by the formation of kinked β-sheets. The dataset was �ltered by TF, resulting in 59 proteins, which were further
�ltered by a loss threshold of -5, resulting in 56 proteins (Dataset S6). The Eukaryotic Linear Motif database provides a
comprehensive repository of manually curated and experimentally validated short linear motifs. The latest version of the
database consists of 2390 proteins and was �ltered by TF, resulting in 188 proteins, which were further �ltered by a loss
threshold of -5, resulting in 172 proteins (Dataset S7).

Bertig Framework
We developed a �netuned model for the prediction of Liquid-Liquid Phase Separation (LLPS) from the pre-trained BERT model
named ProtBert-BFD10 with 30 blocks using the four public datasets (LLPSdb11, PhaSePro12, FuzDrop5, OpenCell13). This
model takes protein sequences as input. The HuggingFace package (version 4.20.1) was utilized to �netune the model, with
parameters set to a maximum sequence length of 512 amino acids, a learning rate of 5e-5, a batch size of 8, gradient
accumulation steps of 20, and a weight decay of 0.01. The model was trained on a single Nvidia Tesla V100 GPU with 32 GB
graphics memory, using an early stop strategy where the training would terminate if the validation loss did not decrease for 10
consecutive epochs. The performance of the model was evaluated using the Area Under the Curve (AUC) metric, computed
using the scikit-learn package (version 1.1.1).

To perform amino-acid-wise interpretation, we adopted the Integrated Gradients (IG) algorithm. IG is an axiomatically justi�ed
model that assigns an importance score to each input feature by approximating the integral of gradients of the model’s output.
The method calculates the path integral of the gradients along the straight-line path from the baseline  to the input :

Here,  is the gradient of F(x) along the  dimension, and α is the scaling coe�cient.  indicates the input protein

sequence,  indicates the baseline �lled with zero for the corresponding protein sequence. The integral of integrated
gradients can be e�ciently approximated via a summation using a Riemann Sum or Gauss Legendre quadrature rule.

To ensure accurate and reliable interpretation, the direction of prediction probability (proba), attribution score (AS), and model
score (MS) were included in the IG algorithm. The total approximated integrated gradients are denoted as AS, while the total
true integrated gradients are denoted as MS. The direction coe�cient (DC) was de�ned as 1 if the direction of Proba, AS, MS is
the same, and − 1 otherwise. The binarized process was performed such that when the proba was greater than 0.5, it was

x′ x
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∂xi
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binarized as 1, and − 1 otherwise. The same was applied to AS and MS, denoted as ASb and MSb, respectively. The �nal result
was de�ned as DC = 1 if Proba = ASb = MSb, and − 1 otherwise. The loss function (L) for optimization of steps and batch size
was de�ned as

The point to note in the formula is that AS and MS are both the original scores, not the binarized values.

In practice, we used the Captum package (version 0.5.0) on a single Nvidia Tesla A100 GPU of 80 GB graphics memory
capacity to make the interpretations of amino acids. Our results showed that steps between 50 and 2000 and batch size
between 2 and 50 were su�cient to approximate the integral. Based on our experience, we recommend a cut-off value of -10
for the mutated proteins and − 5 for the natural proteins. We also used the HyperOpt package (version 0.2.7) to automate the
search for optimal hyperparameter con�guration using Bayesian Optimization and the Sequential Model-Based Global
Optimization (SMBO) methodology. The HyperOpt package is an open-source python package that uses the Tree-based Parzen
Estimators (TPE) algorithm to select the optimal hyperparameters that maximize a user-de�ned objective function. By de�ning
the functional form and bounds of each hyperparameter, the TPE algorithm e�ciently searches through the complex
hyperspace to �nd the optimums.

Ablation Test
To understand the workings of BERTIG, we trained and evaluated various ablation models of 21 mutated proteins
(Supplementary Data 2) in a label-agnostic manner on an Nvidia A100 GPU with 80 GB of graphics memory. The following
ablation models were used to estimate the relative importance of key components of the architecture:

1. Baseline Model: This model uses the default step size of 50 and batch size equal to the protein length as speci�ed in the
Captum package. All other ablation models are compared to this baseline.

2. Step-AS_MS-Size Model: This model was trained with step sizes ranging from 50 to 2000, without considering the
direction of AS and MS, and using the default batch size of the protein length.

3. Step-AS_MS Model: This model was trained with step sizes ranging from 50 to 2000 and includes the direction of AS and
MS in the loss function. The batch size used is the default value.

4. Step-AS_MS-Proba Model: This model was trained with step sizes ranging from 50 to 2000 and includes the direction of
AS, MS, and Proba in the loss function. The batch size used is the default value.

5. Step-Batch-AS_MS-Proba Model: This model was trained with step sizes ranging from 50 to 2000 and batch sizes ranging
from 5 to 50, and includes the direction of AS, MS, and Proba in the loss function. Both the step size and batch size were
explored in this model.

Comparison Between Bertig And Other Models On Llps Prediction And
Interpretation
The PhaSePro and LLPSDB-v2 datasets were employed to evaluate various models for their capacity in predicting liquid-liquid
phase separation (LLPS) of proteins. The PScore model, which was developed with the aim of exploring the relationship
between planar protein-protein contacts and phase separation, can only be applied to protein sequences that are longer than
140 amino acids. As a result, only 109 proteins in PhaSePro (Dataset S8) and 498 proteins in LLPSDB-v2 (Dataset S9) that
met the length requirement were considered.

The PScore17 model: It provides a single score per protein sequence and has been validated to accurately differentiate between
known phase separating proteins and other proteomic sequences. The authors trained a statistical potential for predicting pi-
contact frequency in proteins using the non-redundant crystal structure subset of the PDB (80% of 17388 proteins used for

L = DC ×
−1

|AS − MS|
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training and 20% for testing). The �nal predictor operates by averaging frequencies of sp2 groups in speci�c sequence
contexts and comparing them to distributions of sp2 groups with the same sequence identity. The authors also developed a
predictor for phase separation propensity of a protein sequence based on the pi-contact predictor and a set of 11 proteins
known to phase separate in vitro. The phase separation predictor was trained using a stochastic optimization process to
maximize the score difference between the lowest scoring member of the 11-member training set and the highest scoring 1%
of the PDB training set. The AUC values for the predictor were estimated using bootstrap with 10,000 iterations against the test
and human sets.

The DeePhase14 model: It is a more comprehensive approach, which predicts LLPS by combining physical features and
word2vec features, resulting in 200-dimensional embedding vectors for every 3-gram. The pre-training was performed on the
Swiss-Prot database using 3-grams as words and a context window size of 25. The skip-gram pretraining procedure was used
with the gensim library and created 200-dimensional embedding vectors for every 3-gram. The �nal 200-dimensional protein
embeddings were obtained by summing all the constituent 3-gram embeddings. The classi�ers were built using the Python
scikit-learn package with default parameters and no hyperparameter tuning was performed. The dataset was split into a
training and validation set in a 1:4 ratio and 25-fold cross-validation was used to estimate the performance of the model. The
�nal prediction score was calculated as the sum of the probability of the sequence belonging to the LLPS + and half of the
probability of it belonging to the LLPS − dataset.

The PSAP15 model: The model used literature curation to determine a total of 90 high-con�dent phase separating proteins,
which were then subjected to various sequence analysis techniques to extract various features. These features were then used
to train a Random Forest Classi�er to predict the score of each protein in the proteome. The performance of the classi�er was
evaluated using various metrics, including the area under curve (AUC) of the receiving operating characteristics (ROC) and
precision and recall. The results were based on 10-fold cross-validation and the �nal model was trained on the full training set.

The LLPhyScore16 model: The model, a novel predictor of IDR-driven phase separation, is based on a comprehensive set of
physical interaction features and is trained on a curated set of phase-separation-driving proteins with various negative training
sets, including the PDB and human proteome. The features included Pi-Pi contacts, hydrogen bonding terms, water/carbon
contact counts, secondary structure, disorder, charge, cation-pi, and kinked beta. This model outputs residue-level scores in a
protein sequence, which are smoothed over a window of 50 neighboring residues. Further details can be found in the original
paper.

The FuzDrop5 model: This model is designed to predict droplet-promoting regions and proteins that undergo spontaneous
phase separation, based on the idea that the droplet state is stabilized by the large conformational entropy resulting from
nonspeci�c side-chain interactions. FuzDrop outputs the probability of each residue being involved in spontaneous phase
separation using a binary logistic model. Further details can be found in the original paper.

Statistical analysis
In the analysis of key amino acids and motifs discovery, we established a criterion for determining an appropriate region of a
protein by requiring that it contain more than two consecutive amino acid scores greater than 0.02 or less than − 0.025, which
is the default value in the Captum package (Captum version 0.5).

The Scipy (version 1.9.0) was utilized to compare changes in each residue and motif in two paired groups (plus and minus) for
statistical analysis. The plus group represents the attribution score of each amino acid that is greater than 0.02, and the minus
group represents the attribution score of each amino acid that is less than − 0.025. The scores for each of the 20 amino acids
were tallied separately, and the scores were summed in the corresponding regions of the protein, both in the plus and minus
groups. If the normal distribution was con�rmed (as determined by the Shapiro-Wilk test), a two-tailed, paired T-test was
performed, otherwise, the Wilcoxon signed-rank test was used.  was considered statistically signi�cant.

Declarations
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Figure 2

Model performance. ROC: receiver operating characteristic curves plotting the true positive rate and the false positive rate for a
predictive model using different probability thresholds. AUC: the area under the ROC curve. PR (Precision-Recall): PR curves
plotting the true positive rate and the positive predictive value for a predictive model using different probability thresholds. AP
(Average Precision): summarizes a precision-recall curve as the weighted mean of precisions achieved at each threshold, with
the increase in recall from the previous threshold used as the weight.

a1-a2, ROC and PR curves of BERTIG on the test dataset. b1-b2, ROC and PR curves of BERTIG and other methods on the
LLPSDB-v2 dataset. c1-c2, ROC and PR curves of BERTIG and other methods on the PhaSePro dataset.
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Figure 3

BERTIG produces highly accurate AAs attributions. a1-a2, schematic representation of the structure in TDP-43 and FUS. b1-b2,
AAs attributions by BERTIG (green: promote phase separation, red: inhibit phase separation) in TDP-43 and FUS. c1-c2, linear
interacting peptide (LIP) colored in purple from Alphafold229 and mobidb24 in TDP-43 and FUS. d1-d2, binding mode (red:
disorder-to-disorder binding mode (DD), blue: disorder-to-order binding mode (DO)) from Alphafold229 and mobidb24 in TDP-43
and FUS.
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Figure 4

key AAs for LLPS. a, Mean score in each type of 20 AAs from 308 TF proteins, 90 PLCDs proteins and PLCDs regions. If an AA
is in the region where more than 2 consecutive AAs scores are separately bigger than 0.02 (default positive score in the
Captum package), mean score in each type of 20 AAs is derived.

b, AA comparison in 90 PLCDs regions. count plus: If an AA is in the region where more than 2 consecutive AA scores are
separately bigger than 0.02, sum of counts in each type of 20 AAs is derived. count minus: If an AA is in the region where more
than 2 consecutive AA scores are separately smaller than -0.025 (default minus score in the Captum package), sum of counts
in each type of 20 AAs is derived. score sum plus: If an AA is in the region where more than 2 consecutive AA scores are
separately bigger than 0.02, sum of attribution scores in each type of 20 AAs is derived. score sum minus: If an AA is in the
region where more than 2 consecutive AA scores are separately smaller than -0.025, sum of attribution scores in each type of
20 AAs is derived. Signi�cance was tested with paired T-test38 if the normal distribution is satis�ed (Shapiro-Wilk test39);
Otherwise, Wilcoxon signed-rank test40. Reported p values are for the paired plus-minus AA score comparisons in each protein
(*p < 0.05).
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Figure 5

Motifs comparisons. If there were more than 2 consecutive AAs in the region where their scores were separately bigger than
0.02 (default plus score in the Captum package), the region was de�ned as motif. The predicted motifs were counted for
different length. a, Top 10 genes in 308 TF proteins based on all motifs. b, AAs attributions by BERTIG (green: promote phase
separation, red: inhibit phase separation) in MEF2D. c, Linear interacting peptide (LIP) residues interacting with another
molecule in MEF2D from the mobidb database. d, Structured residues in MEF2D from the mobidb database. e, Motifs with the
positive score in 308 TF proteins.

Signi�cance was tested with paired T-test38 if the normal distribution is satis�ed (Shapiro-Wilk test39); Otherwise, Wilcoxon
signed-rank test40. Reported p values are for the paired plus-minus AA score comparisons in each protein (*p < 0.05).
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Figure 6

Effect of mutated proteins on LLPS. a1-a2, AS based LLPS ability of mutated TDP-43 and FUS proteins. Mutations with the “*”
were misinterpreted, such as: A326P in TDP-43; and G156E, R521C in FUS. b1-b2,Residue A in the position 321 in the helical
segment of TDP-43 and R in the position 521 of FUS protein. c1-c2, The amino-acid-resolution contribution plots of mutated
TDP-43 and FUS proteins.
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Figure 7

Interpretations of different models on the M337P mutated TDP-43 (left) and G230C mutated FUS (right). a1-a2, BERTIG. b1-b2,
FuzDrop. Note: bottom: wild protein, top: mutated protein.
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