Comparative transcriptome analysis of astaxanthin accumulation difference between non-motile cells and akinetes of Haematococcus pluvialis

DOI: https://doi.org/10.21203/rs.3.rs-25722/v1

Abstract

Background: Nature astaxanthin is mainly derived from Haematococcus pluvialis. H. pluvialis has four kinds of cell morphology. Based on sequential heterotrophy-dilution-photoinduction (SHDP) technology, photoinduction using non-motile cells as seeds could result in a higher astaxanthin production than that of using brown akinetes as photoinduction seeds. To have a comprehensive understanding of this phenomenon, transcriptome analysis was conducted in this study.

Results: Though most of photosynthesis genes expression were down-regulated during the SHDP culture process. Comparing with the group using brown akinetes as photoinduction seeds, the genes expression involved in astaxanthin biosynthesis, lipid biosynthesis and photosynthesis were up-regulated in the non-motile cells group. Especially, chyb gene improving the conversion of β-carotene into astaxanthin was up-regulated by 2.6-fold. The acaca gene enhancing the carboxylation of acetyl-CoA to malonyl-CoA was up-regulated by 1.4-fold.

Conclusions: Astaxanthin synthesis mechanism of non-motile cells with higher astaxanthin accumulation ability than brown akinetes was attributed to the up-regulation of astaxanthin metabolism, lipid metabolism and photosynthesis-related genes expression. The results are expected to guide the optimization of astaxanthin production in H. pluvialis by improving lipid content or photosynthesis.

Full Text

This preprint is available for download as a PDF.