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Abstract
We describe the results of the autoPET challenge, a biomedical image analysis challenge aimed to
motivate and focus research in the �eld of automated whole-body PET/CT image analysis. The challenge
task was the automated segmentation of metabolically active tumor lesions on whole-body FDG-PET/CT.
Challenge participants had access to one of the largest publicly available annotated PET/CT data sets
for algorithm training. Over 350 teams from all continents registered for the autoPET challenge; the seven
best-performing contributions were awarded at the MICCAI annual meeting 2022. Based on the challenge
results we conclude that automated tumor lesion segmentation in PET/CT is feasible with high accuracy
using state-of-the-art deep learning methods. We observed that algorithm performance in this task may
primarily rely on the quality and quantity of input data and less on technical details of the underlying
deep learning architecture. Future iterations of the autoPET challenge will focus on clinical translation.

Introduction
Recent advances in computational medical image analysis – in particular the introduction of deep
learning methods – have led to substantial progress in numerous medical image analysis tasks including
segmentation, regression and classi�cation tasks. As part of this rapid development, medical image
analysis challenges have played a crucial role by identifying relevant tasks, motivating and coordinating
engagement, de�ning benchmarks and – perhaps most importantly – providing publicly available labeled
data for algorithm development.

Several prominent examples of medical image analysis challenges, such as The Medical Segmentation
Decathlon1, the BRATS challenge2 or the RSNA Pediatric Bone Age Challenge3 illustrate the immense
impact of such initiatives on their respective �elds of research and application.

Most medical imaging challenges focus on the analysis of normal anatomy or the analysis of
pathologies in de�ned anatomic regions, limiting the scope and complexity as well as the amount of
required training data. In comparison, computational analysis of whole-body oncologic examinations, as
acquired by PET/CT, is associated with higher complexity due to the multimodal nature of the underlying
data, the large anatomical coverage, and the high morphological variability of oncologic pathologies.
Furthermore, the generation of training labels on oncologic whole-body examinations requires a high level
of clinical expertise and can only be performed by experienced medical imaging specialists. These
factors contribute to delayed progress in the �eld of computational whole-body oncologic image
processing, speci�cally regarding whole-body PET/CT imaging. Few studies have reported the
development and application of automated PET/CT analysis – speci�cally automated tumor lesion
segmentation – in the past. In these studies, a variety of methodological approaches have been proposed
ranging from simple, threshold-based segmentation algorithms4 to state-of-the-art deep learning
methods5 or combinations thereof6. While these studies clearly demonstrate the technical feasibility of
automated PET/CT image analysis, the comparison and reproducibility of methods is limited due to the
use of proprietary data and algorithms. A recent medical image analysis challenge (HECKTOR
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challenge)7 on automated PET/CT lesion segmentation in the head/neck region demonstrated in an
anatomically restricted scenario, how combined efforts by the research community can advance this �eld
in a speci�ed direction.

Automation of the image analysis process in oncologic whole-body PET/CT data is of high interest.
Quantitative analysis of PET/CT data requires segmentation of tumor lesions which is time-consuming
and labor-intensive, thus associated with high effort and cost. This prevents wide-spread clinical
adoption of quantitative image analysis beyond study settings. Automation of this process can thus
potentially allow for integration of quantitative PET/CT analysis in routine clinical work�ow supporting
diagnostic and therapeutic decisions.

To advance the �eld of automated oncologic PET/CT analysis and to address the existing shortcomings
in this area, we conducted the autoPET challenge. The primary challenge task was the automated
segmentation of metabolically active tumor lesions in whole-body FDG-PET/CT. To this end, a multi-
center database of 1164 oncologic whole-body PET/CT datasets (1014 public training samples and 150
private test samples) with manually segmented tumor lesions was composed. The training dataset is
publicly available at The Cancer Imaging Archive (TCIA)8 and has been previously described in detail9.

In this work we present the content and results of the autoPET challenge that was conducted as part of
MICCAI 2022 aiming to (1) motivate and focus research in the �eld of automated PET/CT image analysis
(2) provide a platform for algorithm comparison and reproduction and (3) document the current state-of-
the-art in this �eld. In addition, we provide analysis on the importance of composition and size of
available training data for successful algorithm development.

Results
In the following, we describe the challenge preparation, organization and evaluation following the
guidelines for biomedical image analysis challenge reporting (BIAS guidelines)10. The public challenge
training data set was drawn from the University Hospital Tübingen (UKT). The private challenge test set
was partly drawn from the same source (UKT) and partly from the University Hospital of the LMU Munich
(LMU).

Challenge Participation
A total number of 359 teams registered for the autoPET challenge including teams from all continents
(Fig. 1) with clear geographic concentrations on Asia (61%, mainly China: 41%), Europe (20%) and North
America (16%, mainly USA: 13%). As far as disclosed, most participants were a�liated to academic
institutions (75%), followed by a smaller group of company employees (12%).

37 teams submitted at least one algorithm to the preliminary challenge phase amounting to 253 total
submissions in this phase. In the �nal challenge phase 18 teams contributed a total of 67 algorithms.
The best-performing submission by each team was considered for the challenge leaderboard. The seven
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best performing teams were identi�ed as challenge winners – their contributions are described in greater
detail as part of this work.

As expected, all �nal contributions were based on deep learning models. The majority of submitted
algorithms relied on a 3D U-Net backbone in combination with a Dice loss. A minority of participants
deployed transformer-based architectures or combinations of different architectures (2D and 3D) or used
more uncommon loss functions11 (e.g., focal loss, TopK Dice loss, Lovasz loss, Tversky loss), mostly in
combination with a conventional Dice loss. An overview of the technical details is depicted in Fig. 2.

Best performing algorithms
In the following, we provide brief descriptions of the seven best-performing contributions in the order of
the �nal leaderboard followed by individual performance reports. The code for all contributions is publicly
available – details are available in the technical papers published by the participating teams and cited
below. Overall, the use of a U-Net backbone was a common feature of the best contributions. The
additional implementation of rule-based post-processing of algorithm outputs (e. g. threshold-based
removal of small connected components from the output segmentation mask) distinguished the top four
contributions from the rest of the �eld. All top-performing teams used both, the PET and CT image
volumes as algorithm inputs.

Team Blackbean
The best-performing team chose a deliberately simple approach by using a vanilla U-Net backbone and
focusing on ablation studies to identify the best combination of input shape (crop size) and step size
during sliding window inference. In addition, a post-processing step was used to minimize the false-
positive volume by removing small connected components from the initial algorithm output12.

Team BDAV
Team BDAV used a combination of self-supervised pre-training (via contrastive learning) and a multi-
stage U-Net architecture. The multi-stage U-Net architecture utilized a global segmentation module to
conduct coarse tumor segmentation, which was then fed into a local re�nement module to reduce the
false positives. The multi-stage U-Net model was ensembled with a standard nnUNet model to generate
the �nal prediction13.

Team FightTumor
This contribution was based on a slightly modi�ed nnUNet model using DiceTopK loss and enhanced
data augmentation. In addition, post-processing of the model output was performed by removing small
connected components (< 10 voxels) and segmentations in areas with low CT Houns�eld Units (< -1,000
HU)14.

Team UIH-FL
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Team UIH-FL trained a combined 2D and 3D nnUNet model. In addition, they performed post-processing
of the model output by removing small connected components (< 4 voxels) and all connected
components on the three bottom slices of the predicted pet mask15.

Team Heiligerl
This contribution was based on an ensemble of an nnUNet-based model and a Swin UNETR. In addition,
a classi�cation model was trained to identify negative PET/CT scans without metabolically active
lesions, based on maximum intensity projections (MIP), inspired by reading procedures of physicians 16.

Team SM
Team SM proposed a cascaded architecture consisting of a stacked ensemble of low-resolution U-Net
models and a subsequent re�ner U-Net for high-resolution predictions17.

Team Flemings
Team Flemings proposed a cascaded architecture consisting of an initial inpainting model to detect and
generate lesion-free images, followed by a U-Net-based segmentation, with the residual inpainting image
as additional input18.

nn-Unet (baseline model, out of competition)
To provide a baseline model, the widely used and standardized nn-UNet framework19 was used with the
default settings using PET and CT volumes as input. The trained baseline model is publicly available
under https://github.com/lab-midas/autoPET.

Ensemble model (out of competition)
Based on the predictions of these above-described best performing algorithms, including the baseline
model, an ensemble model output was computed by pixel-wise majority voting.

Overall, the performance metrics of the best performing teams were slightly different with respect to all
three metrics (Fig. 3, A): Dice score (capturing consistency between foreground predictions and manual
masks), false negative volume (capturing total volume of missed lesions), and false positive volume
(capturing false-positive segmentations of physiologic tracer uptake). The mean Dice score ranged
between 0.74 and 0.79, the mean false negative volume between 0.5 and 1.5 ml and the false positive
volume between 2.1 and 9.5 ml. When assessing algorithm performance separately for the two data
sources (UKT and LMU) of the multicentric training set, we observed that mean Dice scores were overall
markedly higher for UKT test data (ranging between 0.8 and 0.88) compared to LMU test data (ranging
between 0.6 and 0.7). Mean false negative volumes and false positive volumes were slightly higher for
LMU data compared to UKT data (false negative volumes UKT: 0.3 to 1.7 ml, false negative volumes
LMU: 0.9 to 2.3 ml; false positive volumes UKT: 1.5 to 5.4 ml, false positive volumes LMU: 3.2 to 20.3 ml).
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The best performing team (Blackbean) ranked �rst regarding the mean dice score and the mean false
negative volume and second regarding the mean false positive volume. Interestingly, the provided
baseline nnUNet model showed a good overall performance ranking – out of competition – second with
respect to the mean Dice score and seventh with respect to the mean false positive and false negative
values (Fig. 3, A).

The ensemble prediction (out of competition) based on the top performing contributions and the baseline
model showed a superior performance compared to all participating teams with the highest overall mean
Dice score (0.81), the second lowest mean false negative volume (0.71 ml) and the lowest mean false
positive volume (1.6 ml) (Fig. 3, A).

Typical qualitative examples of model performance and error cases are given in Fig. 4. In general, false
positive segmentations mainly occurred in areas of atypical physiological tracer uptake (e. g. unusually
large urinary bladder, brown adipose tissue) while tumor lesions adjacent to physiological tracer uptake
were more often missed.

Impact of training data composition on algorithm
performance
To better understand external factors in�uencing algorithm performance in general we performed
additional ablation studies using the baseline model with different sizes and compositions of training
data.

As could be expected, we observed an overall increase in segmentation performance with increasing
numbers of training data re�ected by increasing Dice scores and decreasing false positive and false
negative volumes (Fig. 3, B). Interestingly, in contrast to this overall tendency, Dice scores on LMU test
data showed no increase and even slightly decreased with higher numbers of training data, probably as a
sign of over�tting to the UKT training data distribution.

In addition, we assessed the impact of the input data composition on algorithm performance. In addition
to PET and CT volumes that were also used within the challenge, we added CT-based anatomical organ
labels as a potential third input.

Regarding the composition of training data, we observed the highest segmentation performance in terms
of Dice scores when using all three inputs (PET, CT and anatomical labels) on both, UKT and LMU data
(Fig. 3, B). On UKT data, using all three inputs also gave lower false positive and false negative volumes.
On LMU data, the results regarding composition of data and false positive/negative volumes were
inconclusive; however, using only PET data resulted in markedly higher false positive volumes on LMU
test data.

Figure 5 provides qualitative examples of test data sets and associated segmentation results for test
data drawn from UKT and LMU. In agreement with the quantitative results, we qualitatively observed a
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larger mismatch between manual and automated tumor lesion segmentation on LMU data (Fig. 5). In
general, tumor volumes were locally overestimated on LMU test data explaining the lower Dice scores on
LMU test data compared to UKT test data. Also agreeing with the quantitative results, with respect to
false positive and false negative volumes, we did not observe any obvious qualitative differences
between LMU and UKT test data.

Discussion
In this work we introduce the autoPET challenge on automated PET/CT lesion segmentation – organized
as a MICCAI challenge in 2022 – and present its results as well as the results of further analyses to pave
the way for a clinical adoption of automated PET/CT image analysis.

The main technical scope of this challenge was the automated segmentation of metabolically active
tumor lesions in whole-body FDG PET/CT scans. The best performing contributions demonstrated that
this basic and important task can be performed using state-of-the-art deep learning methodology with
high overall accuracy.

Interestingly, algorithm performance did not depend in a relevant way on technical details of the deep
learning architecture, and the provided nnUNet-based baseline model already performed among the top
contributions. Furthermore, an ensemble model of the top-performing algorithms showed the best overall
performance. These observations are in line with more general results from machine learning challenges
indicating that ensembling of many different algorithms can be superior to optimization of a single
algorithm 20.

In contrast, the size and composition of training data had a substantial effect on algorithm performance.
First, we observed a slight but relevant increase in lesion segmentation accuracy when using PET and CT
data as input compared to a PET-only input indicating that anatomical and morphological information is
useful for lesion segmentation. Overall, segmentation accuracy also increased with increasing the size of
the training set. However, this effect was not uniform between test data from UKT (same as training
distribution) and test data from LMU (different from training distribution): On UKT test data, the increase
in training data resulted in marked increase in Dice scores and decrease in false negative volumes with a
plateau at around 800-1,000 training samples. On LMU test data however, while false negative volumes
also increased with increasing training examples, no improvement and even a slight decline in Dice
scores was observed. False positive volumes were relatively low in both test data sets independent of the
size of the training set. These results indicate that the generalizability of algorithms trained in a single
institution is limited and that a reduction in segmentation performance can be expected when applied to
data from different sources, e.g., different scanners of hospitals. This drop in performance is not
catastrophic but rather related to different localization of the tumor margins – false positive and false
negative volumes were interestingly not worse on the external test data. These results motivate us to
place our focus on the topics of robustness and generalization for the next iteration of the autoPET
challenge.
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The autoPET 2022 is the �rst, important step towards a long-term goal of fully automated, quantitative
oncologic PET/CT image analysis. A number of tasks – beyond lesion segmentation in FDG-PET – need
to be addressed. For the near future we identify mainly two: (i) generalization of PET lesion segmentation
to different tracers and to different environments (tumor types, scanners, hospitals etc.) and (ii)
segmentation of lesions that are only visible on CT due to low or missing tracer uptake. We aim to include
these tasks as part of the next iterations of the autoPET challenge.

Materials and Methods

Challenge Mission and Task
The mission of the autoPET challenge is to motivate and focus research in the �eld of automated
PET/CT image analysis, to provide a platform for algorithm comparison and reproduction and to
document the current state-of-the-art in this �eld.

The autoPET challenge task – fully automated segmentation of metabolically active tumor lesions – is a
crucial �rst step towards objective and quantitative oncologic diagnosis, staging and therapy response
assessment in whole-body FDG-PET/CT. This task can be performed manually in principle but –
depending on tumor spread – can be associated with enormous effort by experts. As a result, lesion
segmentation is not performed routinely in clinical settings. Automation of this task will strongly support
clinical implementation of PET/CT lesion segmentation and quantitative analysis.

We consider the autoPET challenge 2022 to be the �rst part of a series of challenges aiming to gradually
address increasingly complex aspects of automated PET/CT analysis including detection and
segmentation of tumor lesions on CT data, extension to other PET tracers, lesion phenotyping and the
analysis of longitudinal imaging studies.

Challenge Organization and Infrastructure
The autoPET Challenge was conducted in 2022 as a MICCAI (Medical Imaging Computing and Computed
Assisted Intervention Society) - registered challenge and in cooperation with the European Society of
Hybrid, Molecular end Translational Imaging (ESHI-MT). The organizing team consisted of radiologists
and medical data scientists from the University Hospital Tübingen (UKT) in Tübingen, Germany and the
Ludwig-Maximilian-University (LMU) Hospital in Munich, Germany.

The challenge proposal was submitted to MICCAI in December 2021 and – after undergoing a peer-review
process – was approved in February 2022. The �nal challenge proposal is publicly available 21. The
challenge and its results were presented in a Satellite Event at the 25th International Conference on
Medical Imaging Computing and Computed Assisted Intervention in September 2022.

The challenge was opened on April 1st, 2022, with the release of all related information and the public
training set. During a �rst submission phase, starting May 3rd, 2022, participants were able to submit
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their algorithms to perform technical sanity checks on a small, preliminary private test data set consisting
of 5 representative test samples. The second and �nal submission phase was launched August 1st, 2022,
with the activation of the �nal, private test data set consisting of 150 test samples (Fig. 1).

The technical realization of autoPET 2022 was conducted on the dedicated Grand Challenge platform
(grand-challenge.com, Diagnostic Image Analysis Group, Radboud University Medical Center, The
Netherlands) as a type-II challenge (i.e., submission of algorithms by participants to run on a private test
set) under the URL https://autopet.grand-challenge.org/. Due to the private nature of the test data set,
algorithms were submitted to and deployed on the Grand Challenge computing platform via Docker
containers. A time limit of 20 minutes per test sample was set for algorithm execution on the available
computation resources (1 TPU with 16 GB GPU memory (NVIDIA, Santa Clara, CA, USA), 8 CPUs and 30
GB of CPU memory).

Technical support was provided to challenge participants in the form of a baseline algorithm example
and the associated code base as well as detailed description of the submission process on a public
online code repository (https://github.com/lab-midas/autoPET) and the challenge website
(https://autopet.grand-challenge.org/).

Participation policies
The use of data for algorithm development was restricted to the provided public training data set. No
additional data or machine learning models pre-trained on external data were permitted. Members of the
organizer’s institutes were allowed to participate in the autoPET challenge but were not eligible for
awards. The seven best performing contributions according to the challenge leader board (ranking criteria
are described below) were announced publicly awarded with monetary prizes (in €: 6,000 for �rst place,
3,000 for second place, 2,000 for third place and 1,000 for places four to seven). To be eligible for awards,
participating teams were required to publish their code and a technical manuscript describing their
methodology and results under an open-source license. Two members of each team were invited to
contribute as authors to this manuscript.

Datasets
The public training data consisted of 1,014 anonymized oncologic whole-body FDG-PET/CT data sets
together with manually generated segmentation labels of metabolically active tumor lesions drawn from
the University Hospital in Tübingen (UKT) (Fig. 6, A). All training data were obtained from a single
institution and clinical PET/CT scanner (Biograph mCT, Siemens Healthcare) using a standardized
imaging protocol (CT protocol: reference tube current, 200 mAs with automated tube current modulation;
tube voltage, 120 kV; i.v. contrast agent injection, 90–120 ml Ultravist 370 (Bayer AG) in the portal-venous
phase; slice thickness, 2–3 mm; PET protocol: tracer uptake time, 60 min; injected tracer activity, 300–350
MBq; iterative reconstruction (two iterations, 21 subsets) with Gaussian smoothing (2 mm full width at
half-maximum); reconstructed voxel size, 2 x 2 x 3 mm3). The training data set is publicly available at
The Cancer Imaging Archive (TCIA)8 and has been previously described in detail22.
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The private test data set consisted of 150 anonymized oncologic whole-body FDG-PET/CT data sets
together with manually generated segmentation labels of metabolically active tumor lesions (Fig. 6, A).
100 of the 150 training samples were obtained from the same institution (UKT) and acquired with the
same imaging protocol as the training data set. The remaining 50 of the 150 training samples were
obtained from a different institution (LMU) with variable PET/CT imaging protocols using clinical
PET/CT scanners by two vendors (64 TruePoint or Biograph mCT Flow (Siemens Healthineers) or a GE
Discovery 690 (GE Healthcare)). These 50 test data sets were acquired using similar protocols (CT
protocol: tube current, 100–190 mAs; tube voltage, 120 kV; i.v. contrast agent injection, weight-adapted
dose of Ultravist 300 (Bayer AG) or Imeron 350 (Bracco Imaging) in the portal venous phase; slice
thickness, 3 mm; PET protocol: tracer uptake time, 60 min; tracer activity, 300–350 MBq; iterative
reconstruction (three iterations, 21 subsets) with Gaussian smoothing (2–4 mm full width at half-
maximum) reconstructed voxel size, 2.7 x 2.7 x 2–4 x 4 x 5 mm3).

Only members of the organizing committee had access to the private test data set and its labels.

Both, the training and test data sets included examinations of patients diagnosed with lymphoma, lung
cancer or melanoma as well as negative studies (without detectable metabolically active tumor lesion).
Training and test populations had a comparable age distribution. 444 of 1,014 training scans (43.7%)
and 58 of 150 test scans (38.7%) were of female patients. Regarding the distribution of tumor load,
measured by the Metabolic Tumor Volume (MTV) and metabolic tumor activity, measured by the mean
Standardized Uptake Value (meanSUV) training and test data showed a good overall agreement
(Supplemental Figure S1).

A representative example of a complete data set is provided in the supplemental material (Supplemental
Figure S2).

Evaluation and further analyses
Quantitative algorithm performance regarding the challenge task was assessed using three metrics
representing different aspects as previously described in 22 (Fig. 6, B). The foreground Dice score was
used as an overall metric of agreement between ground truth segmentations and algorithm predictions.
In addition, the metrics “false positive volume” and “false negative volume” were used to quantify the
erroneous segmentation of healthy tissue and the miss of entire tumor lesions respectively. The false
positive volume is de�ned as the sum of all positive connected components in the prediction that do not
overlap with true tumor lesions in the ground truth (i.e., false positive segmentations that are not related
to actual tumor lesions). The false negative volume is de�ned as true positive connected components
that do not overlap with positive areas of the prediction (i.e., tumor lesions that were entirely missed).

Challenge submissions were ranked separately for each to these three metrics using their respective
means. The �nal overall rank was derived using the mean of these single rankings (with Dice score being
weighted twice) using the Dice score as a tie break. The code used for computation of the challenge
metrics is publicly available under https://github.com/lab-midas/autoPET.
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To analyze the generalization properties of submitted algorithms, all metrics were also computed
separately for the two data sources (UKT and LMU).

To assess the impact of available training data the following additional ablation studies were performed
using baseline models based on the standard con�guration of the nn-UNet framework19: The impact of
the number of available training data was assessed by training different versions of the baseline model
with 50, 100, 200, 400, 800 or 1,014 randomly drawn training datasets. To assess the impact of
additional anatomical information, these baseline models were trained either using only the PET image
volumes as model input, or the PET volumes and the corresponding CT volumes or the PET and CT
volumes together with CT-based anatomical organ segmentation masks. These organ segmentation
masks were derived on using a publicly available pre-trained CT organ segmentation model 23. This
model provides segmentation of 36 anatomical structures including all major organs as well as adipose
and lean tissue compartments (Supplemental Fig. 2). The underlying hypothesis for these experiments
was that the addition of implicit or explicit anatomical information as input might support the learning
process and potentially improve segmentation performance or reduce the number of required training
data. It should be noted that the use of anatomical labels was not permitted within the challenge and was
only used as part of these additional analyses.
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Figure 1

Challenge organization and participation

The autoPET challenge, conducted in 2022, consisted of two phases: a preliminary phase - allowing
participants to perform technical validation of their algorithms on a small private test set – and a �nal
phase where participants contributed their algorithms for �nal evaluation on the entire private test set.
The seven best performing contributions were awarded and are described in this paper. In total, 359
teams from all continents participated in this challenge. Top: Geographic distribution of registered teams,
bottom: challenge phases and participation.
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Figure 2

Overview of technical details of the �nal phase submissions

All participants used deep learning techniques to solve the challenge task. The majority of participating
teams used a 3D U-Net architecture (left) together with a combined Dice and cross-entropy (CE) loss
(right).



Page 17/20

Figure 3

Overview of algorithm performance

A) Challenge results and algorithm performance in terms of Dice score, false negative (FN) volume and
false positive (FP) volume. Results are ordered from best (left) to worst (right). Overall, algorithms
performed better on the test data drawn from the training distribution (UKT, blue dots) compared to out-
of-distribution data (LMU, green dots)

B) Impact of data source (UKT vs. LMU) and number of training samples on the performance of the
baseline nn-UNet model in terms of Dice score, false negative (FN) volume and false positive (FP)
volume. Overall, algorithm performance was higher on UKT test data compared to LMU test data and
improved with increasing number of training samples. Notably, algorithm performance in terms of Dice
scores did not improve with increasing numbers of training samples on out-of-distribution data (LMU).
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Figure 4

Qualitative examples of false positive and false negative volumes

A) Example of a large false positive volume, drawn from the UKT test data. PET scan of a patient with
lung cancer (arrow I). Manual segmentation (in blue) shows the tumor lesion. Automated segmentation
(red) using the baseline nn-UNet model accurately captures the tumor volume but in addition includes a
large portion of the unusually large urinary bladder (arrow II). This false positive segmentation was
observed in the majority of submitted algorithms.

B) Example of a false negative volume, drawn from the LMU test data. PET scan of a patient with Non-
Hodgkin-Lymphoma of the right pharyngeal tonsil (manual segmentation outlined in green). This lesion
was missed by 5 of the 7 best-performing contributions, probably due to its uncommon location.
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Figure 5

Typical examples of PET/CT data and segmentations from UKT (top) and LMU (bottom)

While CT image appearance is comparable between LMU and UKT data, PET scans have a lower spatial
resolution on LMU data. As a result, all algorithms tended to overestimate local tumor volumes on LMU
data (right column, outlined in green) compared to the manual ground truth segmentation (outlined in
red). On UKT test data, automated tumor segmentations (right column, outlined in blue) showed a better
agreement with manual (outlined in red) and segmentations. This is also re�ected in the overall lower
Dice scores of automated lesion segmentation on LMU test data compared to UKT test data.
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Figure 6

Challenge data and Evaluation Metrics

A) Overview of the composition of training data and test data. Training data were public and drawn from
a single institution and scanner (UKT). Test data were private and drawn from two institutions: UKT
(same as training data distribution) and LMU (out of training distribution).

B) Schematic illustration of the challenge metrics. I: a primary tumor lesion (red), II: a metastasis (red).
Blue: Algorithm output. The Dice score provides a measure of the overall overlap between tumor lesions
and algorithm segmentation. In this illustration, the lesion II is a false negative volume, as it is entirely not
captured by the algorithm. Segmentation III (partial segmentation of the urinary bladder) is a false
positive volume as it is not related to a tumor lesion.
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