
Page 1/37

Endogenous noise of neocortical neurons drives
atypical sensory response variability in autism
Arjun Bhaskaran 

Mac Gill University https://orcid.org/0000-0002-0332-2430
Théo Gauvrit 

INSERM U1215 https://orcid.org/0000-0003-4563-6929
Yukti Vyas 

INSERM U1215
Guillaume Bony 

INSERM U1215
Melanie Ginger 

Neurocentre Magendie
Andreas Frick  (  andreas.frick@inserm.fr )

INSERM, Neurocentre Magendie https://orcid.org/0000-0002-1392-0995

Article

Keywords: Atypical sensory experience, autism, fragile x syndrome, Fmr1-/y mice, neocortical circuits,
neural noise, variability, preclinical models, sensory processing, neurophysiological biomarkers

Posted Date: March 20th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2572651/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: There is NO Competing Interest.

Version of Record: A version of this preprint was published at Nature Communications on November 30th,
2023. See the published version at https://doi.org/10.1038/s41467-023-43777-z.

https://doi.org/10.21203/rs.3.rs-2572651/v1
https://orcid.org/0000-0002-0332-2430
https://orcid.org/0000-0003-4563-6929
mailto:andreas.frick@inserm.fr
https://orcid.org/0000-0002-1392-0995
https://doi.org/10.21203/rs.3.rs-2572651/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41467-023-43777-z


Page 2/37

Abstract
Excessive trial-by-trial and inter-individual neural variability of sensory responses are hallmarks of
atypical sensory processing in autistic individuals with cascading effects on other core autism
symptoms. The neurobiological substrate of this exaggerated variability is unknown. Here, by recording
neocortical single neuron activity in a well-established mouse model of autism, we characterized atypical
sensory processing and probed the role of endogenous noise sources as a driver for response variability.
The analysis of sensory stimulus evoked activity and spontaneous dynamics, as well as neuronal
features, reveals a complex phenotype composed of both cellular and circuit alterations. Neocortical
sensory information processing in autistic animals is more variable, unreliable, and temporally imprecise.
This increased trial-by-trial and inter-neuronal response variability is strongly related with key endogenous
noise features. We provide a novel preclinical framework for understanding the sources of endogenous
noise and its contribution to core symptoms in autism, and for testing the functional consequences for
mechanism-based manipulation of this noise.

Introduction
Accurate neural processing of sensory information is fundamental for human perception, higher cognitive
abilities, and interaction with our environment. Individuals with autism spectrum disorder (ASD)
commonly report differences in their perception of sensory information. This altered sensory perception
has cascading effects on, and is predictive of, other core autism symptoms 1, 2, 3 Consequently, sensory
symptoms are now included as a core diagnostic criterion for ASD in the Diagnostic and Statistical
Manual of Mental Disorders 4. However, there is a paucity of preclinical studies investigating the
neurobiological underpinnings of atypical sensory response variability in autism 5.

Excessive inter-individual and trial-by-trial variability of neural responses are hallmarks of noisy sensory
processing in autistic individuals 6, 7, 8, 9, 10, 11, 12. An emerging model suggests that exaggerated
variability of sensory evoked responses is the result of a “noisy” brain state, rendering sensory
information processing more variable and less reliable, as shown by clinical studies 6, 7, 13, 14, 15, 16.
Consequently, autistic individuals exhibit marked heterogeneity in their perception and responsiveness to
sensory input 3, 17 and temporal sensory processing issues 18, 19. Altered sensory perception also affects
situational predictions that are based on prior sensory experience 8.

The concept of “noise”, however, is poorly de�ned for the �eld of clinical neuroscience. This makes
describing its underlying mechanisms and their relationship with atypical sensory information processing
challenging 7, 9, 15, 16, 20, 21, 22, 23. In addition, tests of the sources and constituents of endogenous neural
noise and its consequences for sensory information processing remain incomplete in human experiments
due to the limited resolution of non-invasive, large-scale physiological measures 23, 24.

Here, we consider the hypothesis that internally generated or endogenous neural noise drives atypical
sensory response variability. We use the term endogenous noise to describe core neural parameters that
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emerge from mechanism-derived alterations in cellular or network properties. To overcome the
aforementioned limitations and to test our prediction, we turned to the Fmr1–/y mouse, an established
mouse model for sensory symptoms in ASD 25. We recorded the activity of individual neurons of the
primary somatosensory cortex (S1) processing touch-related sensory information We focused on paw-
related tactile sensory information given that this sensory modality is directly translational due to its high
comparability between humans and mice 26. Moreover, touch is one of the most frequently affected
sensory modalities in autism 1, 2, 3, and the earliest sense to develop, providing a vital means for children
to explore the world and exchange social contact with parents and caregivers 27, 28. Our approach
enabled us to provide a detailed picture of atypical tactile sensory information processing in the
neocortex and to identify changes in key properties of cellular and network function. We then explored to
what degree these alterations contribute to enhanced endogenous neural noise, and the link between
endogenous noise and autism-associated variability in sensory information processing.

Results
To explore whether the complex features of atypical sensory information processing described in clinical
studies can be recapitulated in a preclinical model, we measured the processing of tactile sensory
information in individual neurons of the primary somatosensory (S1) cortex in anaesthetized Fmr1–/y

mice. Tactile stimuli were given to the contralateral hind-paw (HP) or forepaw (FP) (Fig. 1A and Fig. 3N).
Pyramidal neurons were whole-cell recorded from layer (L) 2/3 (Fig. 1A) — a neuron type that controls the
gain of sensory-evoked responses 29 and that is preferentially affected in ASD 30.

Trial-by-trial variability of sensory responses is markedly increased in S1–L2/3 pyramidal neurons of
Fmr1–/y mice

First, we explored whether the increased trial-by-trial neural variability observed in human studies 6) is
also a hallmark of sensory responses in Fmr1−/y mice. Thus, we compared tactile HP stimuli-evoked
excitatory postsynaptic potential (EPSP) responses to 40 repetitions of the same stimulus in S1–HP
neurons of Fmr1−/y and WT littermate mice (Fig. 1B and C for examples). As expected, WT neocortical
neurons responded with a typical level of trial-by-trial variability to repeated stimuli (Fig. 1B–E; 31, 32). In
contrast, this variability was markedly elevated in Fmr1–/y–L2/3 pyramidal neurons. It was increased for
both the amplitude (Fig. 1D; p < 0.01), half-width (Fig. 1E; p < 0.01), and slope (Table S1) of the EPSPs,
thus affecting the magnitude as well as temporal features of sensory information processing from trial to
trial. Due to this greater trial-by-trial variability (i.e. noise), the signal-to-noise ratio (SNR, 6) of the EPSP
amplitudes was below that of WT neurons (Fig. 1F, p < 0.05). Given that this variability is likely shared
across many neurons of the S1–L2/3 network 33, the reliability of neocortical sensory information
processing might be severely constrained in these mice.

In addition, the range of EPSP amplitudes evoked by HP stimulation (Fig. 1G), and the mean value (Fig.
1H, p < 0.001) were both greater in Fmr1–/y neurons, signi�cantly increasing the possible outcome of
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tactile stimulus evoked responses in these neurons. The larger mean amplitude was also accompanied
by a steeper slope (Fig. 1I, p < 0.05) and a faster onset of the responses following HP stimulation in
Fmr1–/y neurons (Fig. 1J, p < 0.001). Moreover, the EPSPs were prolonged (increased EPSP half-width,
Fig. 1B and K, p < 0.001), indicating a broader temporal window for synaptic integration 34.

Our �ndings demonstrate that tactile stimuli elicit highly variable responses within a larger amplitude
range and temporal window within the somatosensory L2/3 network in Fmr1–/y mice. These results thus
replicate the clinical phenotype of trial-by-trial variability of physiologically measured sensory responses,
and could provide an explanation for the temporal sensory processing issues in autism 18, 19.

Large trial-by-trial variability in AP onset worsens temporal
precision of sensory processing
The aforementioned EPSP alterations suggest that the onset of tactile stimulus-evoked APs would also
be more variable from trial to trial in Fmr1–/y neurons. Tactile HP stimulation elicited APs in at least some
of the stimulus trials in about ~ 25% of the recorded neurons (Fig. 1L; proportion Fmr1–/y vs. WT, n.s.). We
probed AP onset variability by measuring the latency of the �rst evoked AP within each trial (Fig. 1M–P).
While the mean AP onset latency was not different from WT neurons (Fig. 1O, n.s.), the trial-by-trial
variability was signi�cantly increased in Fmr1–/y neurons (Fig. 1P, p < 0.01). An increased AP onset jitter
would further reduce the coordinated and reliable processing of sensory information within neocortical
circuits, contributing to the temporal processing issues in autistic individuals 18. In addition to variable
timing, we also found a ~ 2-fold increase in the fraction of stimulus trials evoking APs in the Fmr1–/y

neuronal population, thereby affecting the number of activated neurons per stimulus (Fig. 1Q–T). We
conclude that any given tactile HP stimulus elicits variably timed AP �ring in approximately twice as
many L2/3 pyramidal neurons within the S1-HP region in Fmr1–/y mice.

The level of endogenous neural noise correlates with trial-
by-trial variability
Endogenous noise 21, 22, 35 at the level of individual neurons or small neural networks has been theorized
to be at the root of the variable and unreliable neural sensory processing in ASD 13, 16, 23, 24. Our high-
resolution experimental data in mice (as compared to low-resolution non-invasive human measures)
enables us to directly test the validity of this hypothesis 23. We thus probed changes in the �uctuation of
the membrane potential (Vm variance) as key indicator of endogenous noise (24; Fig. 2A and B). To better
assess the impact of this noise source on sensory processing, we calculated Vm variance just before the
arrival of the HP-stimulus evoked response. This baseline Vm variance was on average ~ 2-fold larger in

Fmr1–/y neurons (Fig. 2B and C, p < 0.05), supporting the high-noise model of autism 16. If this element of
endogenous noise could be the cause of the trial-by-trial variability of sensory responses, then it should
similarly vary from trial to trial in a correlated manner. We con�rmed this prediction by demonstrating a
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signi�cantly greater trial-by-trial variability of Vm variance (SD of Vm variance) in Fmr1–/y neurons (Fig.
2D and E, p < 0.05). Importantly, the magnitude of Vm variance strongly correlated with both the EPSP
amplitude and EPSP half-width on a trial-by-trial basis (Fig. 2F; see also Vm variance and EPSP amplitude
for same trials, Figs. 2D and 1C).

These results implicate endogenous neural noise as a crucial factor of variable sensory processing in
Fmr1–/y neurons. The large trial-by-trial variability of endogenous noise levels results in �uctuating
functional neocortical states with ensuing consequences for incoming sensory inputs.

Increased trial-by-trial variability of oscillatory power
implicating altered synaptic inputs
We then explored the network components of endogenous noise and their impact on sensory processing.
Network oscillations resulting from structured synaptic input patterns re�ect processes linked to
information transfer, perception, cognition, and behavior 36, 37, and dysfunction in these oscillations has
been strongly implicated in ASD, serving as physiological biomarker of altered brain states 38. We probed
whether we can detect alterations in the power of the Fmr1−/y–S1 network oscillations in our single-
neuron recordings. We analyzed the spectral power of single-neuron Vm �uctuations for the commonly
used frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma
(30–100 Hz) (Fig. 2G–I). This analysis revealed that the power-spectral density (PSD) for these frequency
bands was increased in Fmr1−/y compared to WT neurons (Fig. 2H–I).

Since periodic activity strongly contributes to the Vm variance and thus endogenous noise, we predicted
that the PSD value over this frequency range would similarly vary on a trial-by-trial basis during the
baseline phase just prior to the incoming sensory response. Indeed, the baseline PSD value signi�cantly
correlated with both the EPSP amplitude and duration on a trial-by-trial basis (Fig. 2F and J). Our data
show that dysfunction in oscillatory synaptic input patterns provide an important endogenous noise
source for unreliable sensory processing. These results also suggest that measures of oscillation power
in clinical studies could be used to predict endogenous neural noise and trial-by-trial variability in
neocortical processing in autism.

Greater variability in driving force and elevated spontaneous activity in Fmr1−/y neurons

Neocortical states transition between quieter, hyperpolarized down–states, and more active, depolarized
up–states 39 that are characterized by the presence of synaptic input patterns with high-frequency
oscillatory components (Fig. 2G). Sensory responses evoked during either an up– or a down–state will be
shaped by differences in driving force 40. In line with our �ndings of increased trial-by-trial sensory
response variability, our �ne-scale analysis of the neocortical state transitions revealed that up-states
were often fractionated by brief “micro”-up-states (100–150 ms) in Fmr1–/y neurons (Fig. 2K and L). The
presence of micro up–states (Fig. 2M, p < 0.01) was coupled with an overall increase in the up-state
frequency (Fig. 2N, p < 0.01), and accompanied by a reduced duration and increased frequency of down–
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states (Table S1; p < 0.01 for both). The greater dynamicity of state transitions also resulted in a broader
distribution of up–state Vm values in Fmr1–/y neurons (Fig. 2O). Moreover, the up–down–state Vm

difference was signi�cantly larger for Fmr1–/y neurons (Fig. 2P, p < 0.05). Altogether, these alterations
would create a broader range of driving forces for incoming sensory responses, in turn enlarging the
range of EPSP amplitudes (Fig. 1G). Our data suggests that the increased up–down–state Vm difference
and up–state Vm range present crucial endogenous noise features driving increased sensory response

variability in Fmr1−/y neurons.

In S1, action potentials (APs) are preferentially evoked during up–states, and spontaneous AP activity
strongly impacts on sensory information processing (reviewed in 41). A signi�cant change in this feature
might thus indicate a background noise element of the S1 circuitry, altering its operation 21, 42. We found
that a larger fraction of the Fmr1–/y neuronal population was spontaneously active (Fig. 3A, n = 4/16 WT
and 8/17 Fmr1–/y neurons, p < 0.01). In addition, while spontaneous AP activity in WT neurons was
characteristically low 43, 44 (~ 0.005 Hz), Fmr1–/y neurons exhibited a signi�cantly increased spontaneous
AP frequency (Fig. 3B and C, p < 0.05). These �ndings suggest a more active basal S1 network state in
Fmr1–/y mice.

L2/3 pyramidal neurons are more excitable in Fmr1−/y mice

We next explored the contributory role of altered intrinsic excitability in driving endogenous noise. Our
data revealed that the number of APs and the maximum AP frequency generated by depolarizing current
steps were signi�cantly increased in Fmr1–/y S1–HP neurons (Fig. 3D and E, p < 0.05), demonstrating that
they are intrinsically more excitable. In addition, the APs were wider (Fig. 3F and G, p < 0.05) and the after-
depolarization (ADP) amplitude of the membrane potential following brief high-frequency bursts of APs
was increased (Fig. 3H, p < 0.05). The former feature suggests an increased likelihood of AP-evoked
transmitter release at the neuron’s axon terminals 45, 46, whereas the latter suggests a dendritic
hyperexcitability phenotype 46, 47, both acting together to amplify the input–output function of these
neurons and ultimately the spread of excitation within the neocortex. Altered excitability might also
contribute to the endogenous cellular and circuit noise of S1 by elevating the spontaneous AP �ring and
increasing the E/I ratio within S1 13, thus rendering sensory information processing less reliable. Other
intrinsic properties, such as resting membrane potential, rheobase, and AP threshold, remained unaltered
(Table S1).

Exaggerated variability of numerous features across the Fmr1−/y neuron population

Noisy sensory processing in autistic individuals is characterized not only by increased trial-by-trial
variability, but also by greater inter-individual variability 48. We tested changes in the variability across our
neuronal population as a readout for variability in the Fmr1−/y population. We compared the variability of
both noise- and sensory response related parameters. This analysis demonstrates that the variance of
sensory stimulus evoked EPSP (e.g. EPSP half-width, Fig. 3I, p < 0.05) and AP (e.g. AP number, Fig. 3J, p < 
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0.001) responses was higher for the Fmr1–/y population than that for the WT population. In addition,
variance was also increased for a number of core noise features, including Vm variance (variance of Vm

variance, Fig. 3K, p < 0.01), oscillation power (e.g. gamma band power, Fig. 3L, p < 0.05), spontaneous AP
�ring (Fig. 3M, p < 0.001), and intrinsic excitability (see Table S1 for complete list). These results suggest
the presence of a greater range of functional S1 network states within the Fmr1–/y mouse population.
Additionally, our �ndings strongly support the idea of elevated inter-individual variability as a hallmark of
altered sensory neocortical processing in this preclinical model of ASD.

Broader tuning of S1 neurons suggests reorganization of
connectivity
Noisy neural circuits impact on the precision of sensory processing and, together with anatomical-
functional alterations, affect the connectivity of neocortical neurons—changes in which have been
described in both individuals with autism and ASD mouse models 48, 49, 50, 51. We tested the relevance of
these changes for the speci�city of sensory processing, by measuring the receptive �eld properties of
layer 2/3 pyramidal neurons of S1-HP in Fmr1–/y mice. Speci�cally, we asked whether HP neurons would
display a differential responsiveness to tactile forepaw (FP) stimulation (Fig. 3N–P). Our results indicate
that the percentage of neurons responding to both HP and FP stimuli shifted from ~ 20% in WT mice to ~ 
50% in Fmr1–/y mice (Fig. 3P, p < 0.05). This �nding suggests a broader and less speci�c tuning of these
neurons to tactile stimuli of different sub-modalities.

Relationship between endogenous noise and atypical
sensory information processing
To integrate the aforementioned �ndings into a functional model, we developed a correlation matrix (Fig.
4A, B) and visualized the statistically signi�cant correlations in form of a node graph (Fig. 4C, D). This
allows us to evaluate the predictive value of our physiological measures for cellular or network function
with potential links to increased variability of cellular responses in autism. This analysis revealed that the
most prominent nodes based on their number of signi�cant correlations with other parameters were: Vm

variance, up–down–state Vm difference, oscillation power, trial-by-trial variability, and EPSP amplitude.

The main �ndings from the correlation matrix can be summarized as follows: (i) For both Fmr1–/y and
WT neurons, the (baseline) Vm variance was positively correlated with EPSP amplitude, measures of trial-
by-trial (tbt) variability, and the power of theta- and alpha oscillations, and negatively with SNR. For
Fmr1–/y neurons, the baseline Vm variance was also positively correlated with the power of delta and
gamma oscillations, while this correlation was absent in WT neurons. These �ndings suggest that Vm

variance represents an important driver of sensory response amplitude, and in particular its trial-by-trial
variability. (ii) For Fmr1–/y neurons, the up–down state Vm difference was positively correlated with the
EPSP amplitude, baseline Vm variance, and trial-by-trial measures of baseline Vm variance, PSD, and
EPSP amplitude. In contrast, these correlations were not present in WT neurons. (iii) The power of the
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oscillatory bands strongly correlated with several parameters belonging to different categories in Fmr1–/y

neurons compared with WT neurons. In particular, there was a strong positive correlation between the
power of several oscillations and trial-by-trial variability measures. In addition, gamma power was
positively correlated with spontaneous AP �ring, baseline Vm variance, and up–state frequency. (iv) For

Fmr1–/y neurons, the spontaneous AP activity positively correlated with the beta and gamma powers. (v)
For Fmr1–/y neurons, the maximal AP �ring rate (intrinsic excitability measure) was positively correlated
with the EPSP half-width and peak latency, and negatively correlated with the beta power. The 3rd AP
half-width was positively correlated with the EPSP onset latency and trial-by-trial EPSP half-width.

Altogether, for the Fmr1–/y neuronal population many more parameters correlated positively with each
other when compared to the WT neurons. Among these parameters, the strongest correlations were found
between endogenous noise sources, variability measures and EPSP parameters. Vm variance, up–down
state Vm difference, and oscillation power emerge as core endogenous noise parameters that strongly
determine atypical sensory information processing in the S1-network. Thus, trial-by-trial variability of
sensory responses is largely attributable to the neocortical state at the time of the incoming sensory
responses. More speci�cally, Fmr1–/y neurons displaying the strongest HP stimuli-evoked responses are
also those exhibiting the largest trial-by-trial variability, Vm variance and up–down state Vm difference.
This correlation between the three aspects of information processing is highly pertinent and could point
to important physiological biomarkers for clinical studies.

Dissecting the origin of the different endogenous noise
sources
We asked whether we could further dissect the origin and functional role of the different components of
endogenous noise in Fmr1−/y neurons. To address this, we pharmacologically targeted the voltage-, and
calcium-sensitive K+ channel, BKCa channel, an approach that has previously been shown to correct

cellular hyper-excitability 45, 46, 52, 53. To test whether the endogenous noise elements arise locally at the
level of the S1, we developed an in vivo neocortical assay in which we applied the BKCa channel agonist
locally to the S1 surface (Fig. 5A). This strategy was enabled by employing the highly selective BKCa,

agonist, BMS191011 54, which has poor penetration in complex tissue such as the brain due to its
binding to protein and other complex biomolecules. Our strategy allowed us to distinguish cellular and
network de�cits that were sensitive to local manipulation of BKCa channels from those that were not
affected.

This analysis revealed that many features of HP stimulus evoked EPSPs, including the mean amplitude,
half-width, rise slope, and onset latency, were corrected by BMS191011 application (Fig. 5B–F, WT vs.
Fmr1–/y-BMS191011, normalized data, see methods; all n.s.). In addition, alterations related to certain
endogenous noise features, such as spontaneous AP �ring (AP �ring rate, Fig. 5G; percentage of
spontaneously active cells, Table S1) and intrinsic excitability (AP half-width, Fig. 5H and I; ADP
amplitude, Table S1) were corrected (all n.s.).
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Moreover, BMS191011 signi�cantly diminished the inter-neuronal variability of several features related to
sensory responses (e.g. EPSP amplitude, Fig. 5J, p < 0.05; EPSP half-width, Fig. 5K, n.s.; EPSP onset
latency, Table S1, n.s.) as well as that of spontaneous AP �ring rate (Fig. 5L, n.s.) across the Fmr1–/y

neuron population.

All these corrections could be explained by the role of BKCa channels in regulating dendritic excitability as
well as AP properties in the axons and axonal terminals locally within S1, which in turn determines the
accompanying calcium in�ux and transmitter release probability.

In contrast, trial-by-trial variability of EPSP amplitude (Fig. 5M, p < 0.01) and half-width (Fig. 5N, p < 0.05)
was not affected by local BMS191011 application in Fmr1–/y neurons. Accordingly, BMS191011
treatment also had little or no effect on those core components of endogenous noise that strongly
correlated with trial-by-trial variability of EPSP amplitude: baseline Vm variance (Fig. 5O and P, p < 0.05),
up–down–state Vm difference (Fig. 5Q, p < 0.01), and the power of oscillations (Table S1).

Collectively, our results show that localized BMS191011 application reduces elevated spontaneous AP
�ring as well as neuronal excitability, dampens the impact of HP-stimulus evoked responses, and reduces
inter-neuronal variability in S1–Fmr1–/y–L2/3 pyramidal neurons. However, BMS191011 application
within S1 did not correct the trial-by-trial variability of EPSPs, nor the endogenous noise sources that
strongly relate to this feature, such as the power of periodic synaptic input patterns, up–down–state Vm

difference and Vm variance.

Our results provide evidence for the usefulness of mechanism-based targeted approaches for the
dissection of the different noise sources, and the examination of their relationship with atypical sensory
processing features.

Discussion
These results demonstrate that the complex variability features of sensory processing are recapitulated
with surprising �delity in a preclinical mouse model of autism. Crucially, we discovered core endogenous
noise elements that drive elevated response variability. These results suggest that this elevated response
variability has both cellular and network origins. Our work thus provides a framework for understanding
the role of endogenous noise in atypical sensory information processing in autism. With this in mind, we
developed a model integrating the principal sources and features of altered endogenous neural noise and
their contribution to atypical variability and unreliability of sensory information processing in ASD
(Fig. 6).

We propose that changes in network-level synaptic inputs (synaptic noise) impinging on S1–Fmr1–/y–
L2/3 pyramidal neurons together with dysfunction in their intrinsic excitability (ion channel noise) give
rise to elevated endogenous noise. At the single-cell level, this endogenous noise is expressed as
alterations in the oscillatory power, up–down–state difference, and variance of the membrane potential,
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as well as an elevated level of spontaneous AP �ring as core noise components. These features are
strongly correlated with the variability of sensory responses, in particular changes in their magnitude and
temporal aspects. In addition, these noise components in�uence each other, further exacerbating their
impact on sensory processing. For instance, an increased power in network oscillations and intrinsic
excitability strongly contribute to an increase in Vm variance; Vm variance in turn initiates up–down state
transitions, which together with the greater up–down–state Vm difference drives a larger range and trial-
by-trial variability of EPSP amplitudes. Thus, the presence of �uctuating levels of endogenous noise
underlies rapid changes in neocortical functional connectivity by creating an unstable S1 circuitry.

These unstable functional S1 states could explain many different aspects of the complex and nuanced
symptomatology of sensory features in autism. This includes issues with temporal processing, hyper–
and/or hypo–sensitivity to sensory stimuli, multisensory binding, and impaired predictive abilities.
Importantly, our �ndings could explain the greater trial–by–trial and inter-individual variability of sensory
responses observed in autistic individuals. Our data also provide the �rst experimental evidence
addressing the question whether endogenous noise is increased or decreased in small-scale networks in
autism. Moreover, our model points to a set of translational biomarkers which are predictive of
endogenous noise and can be measured in autistic individuals (Fig. 6; see also ‘biomarkers’, below).

Alterations in spontaneous activity suggest a more active
and unstable neocortical network state
Spontaneous AP activity in the neocortex contributes to the dynamicity of the network state, interacting
with the processing of incoming sensory information 21, 42, and enabling adaptive behavior 55. An
elevated level of spontaneous AP activity may impact the capacity to correctly predict, perceive, and
interpret incoming information (reviewed in 8, 41). Our �nding of increased spontaneous AP activity of
S1–L2/3 neurons in Fmr1−/y mice is consistent with previous �ndings in both awake and anesthetized
mice 56. Additionally, we found that a larger fraction of the Fmr1–/y–L2/3 population was spontaneously
active, suggesting an overall augmented background noise of the S1 network in Fmr1−/y mice. This
increased background noise will in�uence the rhythmicity of network oscillations and contribute to the
increased Vm variance observed in Fmr1–/y–S1 neurons with ensuing functional consequences for
sensory information processing, as shown by our correlation analysis (Figs. 4 and 6).

Up–down–state levels create more diversity in driving force
for synaptic responses
Neocortical states are characterized by periodic up–/down–state transitions occurring during quiet rest,
sleep, and anesthesia, as well as when animals perform perceptual tasks, and in�uence the responses of
somatosensory neurons to subsequent sensory stimulation (reviewed in 57). Up–states are associated
with a marked increase in local neocortical network activity and in the power of higher-frequency
component oscillations (including gamma, Fig. 2G) 58. The heightened dynamicity of up–down–state
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transitions in S1-Fmr1−/y neurons could contribute to the clinically observed variability in sensory evoked
responses. In addition, the greater range of up–down–state Vm difference is expected to result in a larger
range of response magnitudes due to larger differences in the driving force. These dynamic network state
changes could conceivably contribute to heterogeneity in sensory features in autism, namely hyper- and
hyposensitivity reported for the same sensory modality.

Dysfunctional oscillatory power re�ects de�cits in synaptic
input patterns
Our data indicate the presence of a higher power of delta, theta, alpha, beta, and gamma oscillations in
Fmr1−/y neurons. Due to their contribution to endogenous neural noise and thereby sensory information
processing (Figs. 4 and 6), dysfunction in these oscillations suggests changes in processes linked to
information transfer, perception, cognition, and behavior 36, 37. Notably, the augmentation in gamma
power might relate to the aforementioned increase in spontaneous AP �ring in Fmr1−/y neurons (Fig. 4B,
D; 32, 59), and re�ect increased neocortical network excitation and altered E/I ratio 60. Elevated broadband
gamma noise is also associated with reduced spike precision and ability to synchronize periodic gamma
band activity, and social and sensory processing di�culties, and may have cascading effects on
cognitive, behavioral, and neuropsychiatric symptoms 61, 62. Our �ndings of a wide range of gamma
power values among the Fmr1−/y neuronal population suggests that there might be subgroups of
individuals based on the presence of higher and lower gamma power levels 63. A link between increased
gamma power and L2/3 network hyperexcitability has also been described ex vivo for the auditory cortex
64. Mechanistic insight into abnormal gamma power from single-neuron recordings may have
rami�cations for better understanding the pathophysiology of sensory symptoms in autism.

Consequences of noise for stimulus-evoked tactile sensory
processing in ASD
Our �ndings suggest that key parameters of endogenous neural noise, especially Vm variance, up–down–
state Vm, and oscillatory power, are altered, crucially impacting the magnitude, temporal resolution, and

variability/reliability of tactile sensory responses within the L2/3 network of Fmr1−/y mice (Figs. 4 and 6).
Indeed, we �nd that the onset of EPSPs following hind-paw stimulation is faster, their amplitude and rise
slope increased, and their duration prolonged. Tactile stimulation also evokes more variably timed APs
and a greater number of APs within the L2/3 network which, together with broadening of APs, increases
the probability of spreading this information to postsynaptic targets. Increased noise, however, also
reduces the reliability of sensory responses through its contribution to greater trial-by-trial variability.
Augmentation of sensory responses along with greater variability across trials results in a larger
repertoire of potential response features, including a larger amplitude range and wider temporal
integration window, and APs that are consequently evoked at very different time points. This larger
dynamic range strongly correlates with endogenous noise, which shows an overall increase but also
signi�cant variability on a trial-by-trial basis. An optimal endogenous noise level could be bene�cial 65, 66,
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improving neuronal responsiveness and thus perceptual detection sensitivity, whereas higher noise levels
would randomize neuronal responses and impair behavioral performance 67. Together, these variable
network states have the potential to explain both superior and inferior sensory detection and
discrimination skills, sensory hypersensitivity, hyposensitivity, and temporal processing issues in autism 6,

12, 15, 18, 19, 68, 69. In a hyper-excited state, the network’s computational property of divisive normalization is
degraded and its E/I ratio is enhanced 13, 70, 71. Our work suggests a complex scenario in which more
variable (and thus unpredictable) neocortical sensory responses form part of the neurophysiological
signature of autism.

In human studies, the consequences of noise present as increased variability in the magnitude and
dynamics of evoked neuronal responses to sensory stimuli 7, 8, 11, 12. We �nd it intriguing and highly
pertinent that these hallmarks of atypical sensory responses, measured in clinical studies at the scale of
large neuronal networks (fMRI, EEG, or even behavioral responses) are recapitulated by our single-cell
measures in a preclinical model. These parallels between neural measures re�ecting small scale
networks and human physiological responses suggest that it is possible to exploit our �ndings to dissect
the mechanisms underlying complex clinical measures.

Lastly, our data demonstrate a higher prevalence of tactile forepaw stimulus-related responses in L2/3
pyramidal neurons of the S1 hindpaw region, indicating reorganization of the structural or functional
connectivity of the sensory cortex (for similar �ndings in the visual cortex, see 49). Functionally, this
results in changes in the receptive �eld properties of L2/3 pyramidal neurons of S1–HP. Similar �ndings
have been described for L2/3 pyramidal neurons of the whisker-related S1 barrel cortex 72 and auditory
cortex 73. Changes in synaptic connectivity would add noise to the network, leading to compound
changes in neuronal computation with negative consequences for sensory �ltering or transmission of
information to associative sensory areas, and potentially behavioral or perceptual responses, as
suggested by Cascio et al. 74. Functional connectivity re-organization, along with enhanced stochastic
resonance are also proposed neural mechanisms of synesthesia, which commonly occurs in ASD 14, 75.
Together with the increased probability of neurotransmitter release due to broadened APs 45, the
increased level of sensory stimulus-evoked APs and connectivity reorganization provide a multiplicative
noise source by more e�ciently spreading information to a larger postsynaptic network.

Biomarkers
A major challenge to sensory-based autism research is the development of optimized biomarkers that
allow direct comparisons between rodents and human subjects while simultaneously permitting
exploration of the underlying neurobiological mechanisms. Based on our analysis of noise sources, we
have identi�ed several measures (Fig. 6) that are highly translatable between preclinical and clinical
settings. Although these measures were obtained here using single-cell recordings in rodents, equivalent
measures can be obtained by large-scale electroencephalography (EEG) or psychophysical methods in
humans.
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Our analysis of single neocortical neurons in Fmr1−/y mice suggests a change in basal oscillatory power
over a range of frequencies. Notably, these measures strongly correlate with other sources of endogenous
noise, particularly Vm variance, up–down state Vm difference, and spontaneous AP �ring. Here, the power
of delta, theta, gamma, and, to some extent, alpha oscillations also correlates with measures of trial–by–
trial variability for sensory evoked responses. Although a relationship between changes in gamma (30–
80 Hz) power and sensory issues has been suggested in human studies (reviewed in 61, 76), a speci�c
relationship with trial-by-trial variability has not yet been established and merits further exploration.
Interestingly, our correlation analysis suggests a strong relationship between gamma power and other
noise sources as well as atypical sensory responses. This cross-species conservation of resting–state
gamma power changes is remarkable, suggesting its potential as a useful marker of endogenous noise.

Neocortical evoked responses can be measured in humans using EEG, magnetoencephalography (MEG),
and/or fMRI in combination with tactile stimuli (e.g., clothing, air puffs, or naturalistic vibrotactile
stimulation) applied to the hand, �ngertips, or arm. In general, such studies report that neocortical
responses are atypical in autism. Notably, these physiological measures are also highly predictive when
associated with clinical measures of symptom severity or questionnaire-based sensory pro�les (e.g., 74, 77,

78, 79, 80). However, questions remain regarding their capacity to reveal mechanisms underlying atypical
endogenous noise 24. Our results (Fig. 6) suggest a strong correlation between endogenous noise
parameters and both the magnitude, temporal features, and variability of sensory evoked responses, as
well as measures of trial-by-trial variability.

Testing the origin of noise sources by targeting local
neocortical ion channel dysfunction
By targeting a relevant cellular mechanism locally within S1, we gained further insight into the
underpinnings of endogenous noise and atypical sensory processing, and the spatial origin of those
changes (i.e. generated within or outside of S1). We chose to target BKCa channels because of their role in
regulating AP features, neurotransmitter release probability, and dendritic excitability — features that likely
contribute to some of the measured endogenous noise sources and sensory response alterations. In
addition, these channels have previously been implicated in autism 52 and sensory information
processing 53 and suggested as suitable targets for intervention 45, 46, 81, 82.

Our data show that local neocortical application of the selective BKCa agonist, BMS191011, can correct
AP half-width and ADP, reduce spontaneous AP �ring, and restore multiple aspects of tactile information
processing in S1–HP L2/3 pyramidal neurons including the EPSP amplitude and half-width and their
inter-neuronal variability. This �nding of a localized pharmacological intervention effect supports the idea
that some of the neurobiological alterations of atypical sensory information processing in autism arise at
the level of S1 and are related to BKCa channel dysfunction.

On the other hand, local BKCa channel modulation had no signi�cant impact on key endogenous noise
measures correlating with the trial-by-trial variability of EPSP amplitude and half-width, namely Vm
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variance, up–down–state Vm difference and oscillatory power. Thus, endogenous noise features that
drive trial–by–trial variability either originate outside of the S1 network such as synaptic noise arising
from long-ranging connections, are insensitive to BKCa channel agonists, or require a more global
application of BKCa channel agonists. Our framework allows the evaluation of local or global
manipulation on endogenous noise sources contributing to atypical sensory information processing in
autism.

Positioning our �ndings in the context of signal detection
theory
Neural sensory information processing consists of a stimulus-speci�c component and noise. Based on
signal detection theory, the relationship among signal, noise, and neural output in the sensory cortices
can be expressed using the following mathematically de�ned model 15, 20, 83: O = K(S) × (1 + Nm) + Na.
Here, the neuronal output (O) is a function of the encoding function of the signal (K), the signal itself (S),
and various noise sources, namely, multiplicative noise (Nm; stimulus related) and additive noise (Na;
stimulus independent). Nm, for example would cause the signal to spread more widely within the network,
in line with computational motifs such as reduced divisive normalization, enhanced E/I ratio model and
the “intense world theory” 13, 84, 85, 86. While it is important to note that it may be di�cult to discriminate
between multiplicative noise, gain control and additive noise, our experimental �ndings provide a starting
point in this direction. In particular, our data reveal atypical features in the Fmr1–/y neurons that would
suggest both K(S), Nm, and Na alterations. The endogenous noise parameters described in our study (Vm

variance, up–down–state Vm difference, spontaneous AP �ring, and network oscillation power) would be
crucial contributors of additive noise. In addition, these measures would also affect the gain or encoding
function (altered synaptic summation and AP output). An increase in neuronal excitability would
contribute to the additive noise, a modi�cation of the gain function (enhanced neural throughput), and
multiplicative noise (enhanced spread of the signal to postsynaptic targets due to increased transmitter
release probability). The alterations in the receptive �eld properties observed in Fmr1–/y neurons are
indicative of an enhanced functional–structural connectivity, which would strongly affect Nm. The
functional outcome of the combined changes would vary on a trial–by–trial basis and depend strongly
on the highly �uctuating endogenous noise levels with ensuing consequences for sensory processing.
Given the strong correlation between atypical sensory symptoms and autism severity, future studies
encompassing measures of cellular/network noise are warranted (Fig. 6). To this end, our study points to
a number of biomarkers that are likely to be useful indicators of noise. Understanding the role of noise in
sensory information processing may lead to new interventional strategies, whether behavioral,
environmental, or pharmacological, to relieve the stress and con�ict that these experiences generate.

Materials And Methods

Experimental Design



Page 15/37

We performed in vivo whole–cell patch–clamp recordings of neocortical neurons of the primary
somatosensory cortex to examine tactile stimulus–evoked sensory processing in anesthetized mice and
to probe the causal role of endogenous noise sources and parameters for atypical sensory information
processing in autism. Throughout the text, the terms autism and autistic people/individuals are used, in
line with recent evidence suggesting that these terms are preferred in the autistic community and are less
stigmatizing 87.
Ethical statement

All experimental procedures were performed in accordance with the EU directive 2010/63/EU and French
law following procedures approved by the Bordeaux Ethics Committee (CE2A50) and Ministry for Higher
Education and Research. Mice were maintained under controlled conditions (temperature 22-24°C,
humidity 40-60%, 12h/12h light/dark cycle, light on at 07:00) in a conventional animal facility with ad
libitum access to food and water. All experiments were performed during the light cycle. 

Mice

Second generation Fmr1 knockout (Fmr1−/y) 46 and wild-type littermate mice at P26-42 were used in our
study. Mice were maintained in a mixed 129/Sv/C57Bl/6J/FVB background (backcrossed 6 generations
into C57Bl/6J) as described in 46. Male wildtype and Fmr1−/y littermates were generated by crossing
Fmr1+/− females with Fmr1+/y male mice from the same production, and the resulting progeny used for
our experiments was either Fmr1+/y (wild-type) or Fmr1−/y (KO). Mice were maintained in collective cages
following weaning (3–5 litter males per cage). Cages were balanced for genotype and supplemented with
minimal enrichment (cotton nestlets). Number of mice are given in the �gure captions. The genotype of
experimental animals was re-con�rmed post-hoc by tail-PCR.

Surgery

Mice (P26–42) were anaesthetized with a mixture of ketamine (100 mg.kg− 1) and xylazine (10 mg.kg− 1)
injected intraperitoneally and supplemented as necessary throughout the procedure. Proper depth of
anesthesia was monitored by testing the absence of a foot-pinch re�ex and whisker movement. Mice
were head-�xed using non-puncture ear-bars and a nose-clamp (SR-6M, Narishige). Body temperature
was maintained at 37°C. Prior to making an incision on the skin to expose the skull, 0.1 ml of a 1:4
Lidocaine to saline solution was administered subcutaneously and waited for 2 to 5 minutes to induce
local analgesia. Following a careful removal of the scalp, and the remaining tissue on the skull, a small
craniotomy was made above the S1 hindpaw region (1 mm posterior and 1.5 mm lateral from Bregma,
con�rmed with intrinsic imaging coupled with hind paw stimulation) using a dental drill (World Precision
Instruments).

In vivo whole-cell patch-clamp recordings

Blind, in vivo whole-cell recordings were performed from layer 2/3 pyramidal neurons of the hindpaw
region of S1 in anaesthetized mice, as described previously 44, 46. Neurons were identi�ed by their
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electrophysiological properties, and in some cases by their post-hoc morphology. Depth of neurons was
on average 263 µm from pia, ranging from 175 µm to 374 µm. There was no genotype difference in the
depth of recording (WT = 261.69 ± 34.91 µm; Fmr1−/y = 259.72 ± 49.12 µm; p > 0.05, unpaired student t-
test). Data were acquired at 20 kHz sampling rate and low-pass �ltered at 3 kHz using Dagan BVC-700A
ampli�er (Dagan, Minneapolis, USA), Digidata 1320A and Clampex 10.4 software (Axon Instruments).
Recording pipettes with an open-tip resistance of 4–6 MΩ were pulled from borosilicate glass using a PC-
10 puller (Narishige) and �lled with intracellular solution containing (in mM): 130 K-methanesulphonate,
10 Hepes, 7 KCl, 0.05 EGTA, 2 Na2ATP, 2 MgATP, 0.5 Na2GTP (all products from Sigma Aldrich); pH 7.28
(adjusted with KOH); osmolarity was 280–295 osm. In a subset of experiments, biocytin (1.5–2.5 mg/ml)
was added to the recording solution for post-hoc neuronal identi�cation and anatomical comparison. The
intracellular solution was �ltered using a 0.22-µm pore-size centrifuge �lter (Costar Spin-X). Cells were
excluded from the analysis if the pipette access resistance exceeded 50 MΩ or the neuron was
depolarized more than − 50 mV.

Neocortical application of the speci�c BK Ca channel agonist, BMS191011

To pharmacologically target BKCa channels, we used the speci�c channel agonist, BMS191011 (3-[(5-
Chloro-2-hydroxyphenyl)methyl]-5-[4-(tri�uoromethyl)phenyl]-1,3,4-oxadiazol-2(3H)-one, 100 µM; Tocris). A
stock solution with a concentration of 50 mM BMS191011 was prepared in DMSO and stored at − 20°C.
For direct neocortical application the drug was diluted to a �nal concentration of 100 µM in PBS (�nal
concentration of DMSO in PBS: 0.2%). Cortical application of BMS191011 (~ 1 ml) was performed at
least 30 minutes prior to the whole-cell patch-clamp experiments. Drug allocation was semi-randomized
and balanced for cage composition.

Data analysis

Neuronal morphology

Following biocytin (1.5–2.5 mg/ml Biocytin, Sigma) �lling of the neurons during recording, mice were
perfused for post-hoc staining 46. Brie�y, mice received a lethal dose of pentobarbital (300 mg/kg, i.p.)
delivered in the presence of lurocaine (30 mg/kg; i.p.). Following respiratory arrest (and after verifying the
absence of re�exes to toe/tail pinch and eye-blink) tissue was �xed by trans-cardial perfusion with 1 X
PBS (pH 7.4), followed by 4% paraformaldehyde in 1 X PBS (pH 7.4). Brains were then post-�xed for 2h in
4% PFA (or stored in 1 X PBS prior to slicing). Subsequently, 80-µm-thick slices were cut using a
vibratome (Leica), and the slices were stored in 1 X PBS prior to staining. Biocytin was revealed using
streptavidin-Alexa Fluor 555 (Invitrogen). Slices were mounted in Mowiol and neuronal morphology was
reconstructed using a Neurolucida system (MBF Biosciences) equipped with a 100x oil immersion
objective lens.

Spontaneous AP �ring
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Neurons that spontaneously �red at least one action potential (AP) during a 120-second-time window
were considered spontaneously active, otherwise silent. Spontaneous AP rate was calculated as the
number of APs elicited during this 120-second-time window. The analysis included data from both active
and silent neurons. We acknowledge the limitation of the term ‘silent’, since these neurons would likely
become ‘active’ if we would analyze spontaneous AP �ring over a longer time window. As a result, many
WT neurons had spontaneous AP �ring values of zero and we could therefore not include this feature in
our correlation matrix and the accompanying node plot for WT neurons.

Up– and down–states

For up– and down–states, both ‘active and silent cells’ were included in this analysis. Custom-made
python scripts were used to detect all up– and down–states during a 180-second recording period, and to
quantify their duration, frequency, and membrane potential at the respective states. A pre-processing step
was performed when necessary to correct for linear drifts in membrane potential. Our algorithm
annotated each point of the signal as either an up– or down–state with no intermediate state. A gliding
threshold was calculated every second as the median of all points during both a four-seconds-period
before and after that point. For each point of the signal the median of the surrounding points (during 50
ms before and after) was computed and compared to the corresponding gliding threshold. If this median
was greater than this threshold, the point was considered part of an up-state and vice versa. Our analysis
revealed “micro”-up-states lasting between 100 and 150 ms. Events lasting less than 100 ms were
considered too short and removed from the analysis.

Power of membrane potential oscillations

The two periodograms (WT and KO) were obtained utilizing the Welch function of the Python open-source
library, SciPy. Parameters such as a 4-second Hann sliding window, a 50% overlap and the mean
periodogram as the averaging method were used to calculate the Power spectral density (PSD). PSD
values for each delta (0.5–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–100
Hz) bands were computed by calculating the area under the curve of the periodogram to the respective
frequency band by applying the composite Simpson rule.

Membrane potential �uctuations/wavelet analysis

Spontaneous resting signals were transformed using a complex Morlet wavelet with 4Hz as mother
wavelet frequency 38. The widths used to scale the wavelets were computed using the following equation:

where w is the mother wavelet frequency, Fs the sampling rate (20kHz), and yScale is scale of the
frequencies we are interested in. Absolute values were plotted in color-code with the scale ranging from 0

(w ∗ Fs)

(2 ∗ yScale)
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to 3. This maximum is a tradeoff between being able to detect the differences between genotypes but not
saturating the signal.

Intrinsic properties

To study the intrinsic properties of the recorded neurons, we measured the membrane potential responses
to 500-ms long step current injections ranging from − 450 pA to 550 pA (step size: 50 pA). To determine
the action potential (AP) threshold, we measured the membrane potential where the slope of its rising
phase exceeded 10 mV/ms. AP half-width was determined by measuring the duration of the �rst AP at
half maximal amplitude (half-distance from threshold to peak) following the rheobase injection.
Maximum AP frequency was calculated from the voltage trace with the largest number of APs.
Calculation of AP accommodation was performed using a voltage trace encompassing 5 APs. Brie�y, the
spike interval (SI, in ms) between the 1st and 2nd AP (1st spike interval, SI), and the 4th and 5th AP (4th
SI) were calculated, and AP accommodation was then calculated as 4th SI/1st SI. For analysis of the AP
after-depolarization (ADP), trains of three APs at various frequencies were generated by brief somatic
current injections (1 nA, 1.08 ms). Only AP trains occurring during down–states were selected for the
analysis. Three to six trials were averaged, and the ADP amplitude (from baseline) was measured 5 ms
after the peak of the last AP. AP half-width ratio was measured as the ratio of the third and �rst AP. To
measure input resistance, we injected 500-ms-long hyperpolarizing (-100 pA) current pulses and
measured the steady-state membrane potential de�ection at 300 ms relative to baseline.

Sensory stimulus evoked responses - Hindpaw (HP) and forepaw (FP) stimulation

Sensory responses to tactile paw stimulus were evoked by applying squared current pulses (2 ms
duration, 100 V, 30 mA) to the paws via conductive adhesive strips (~ 1 cm2) placed on top of, and
underneath the HP or FP, as described previously 44, 46. These conductive strips covered the entire paw.
Following the establishment of a somatic whole-cell recording con�guration, the contralateral HP or FP
was stimulated 40 times at an interval of < 0.3 Hz.

EPSPs and signal-to-noise (SNR) ratios

Parameters of HP stimulus evoked excitatory postsynaptic potentials (EPSPs) from 40 successive trials
were calculated for EPSP-only neurons (neurons responding to HP stimulus exclusively in a sub-threshold
manner, i.e. an EPSP or a failure) using Clamp�t software (version 11.1, Molecular devices, LLC). Brie�y,
the maximum EPSP amplitude was determined for each trial during a 200-ms time window following the
HP stimulation. Trials with a response amplitude of less than two times the standard deviation of the
baseline were considered as failures. EPSP duration was calculated by measuring the width of the
response at half-maximal amplitude. Response slope was estimated as the rise slope between the 20th
and 80th percentile of the EPSP amplitude relative to the baseline. Baseline membrane potential (Vm)
�uctuation was calculated as the standard deviation (SD) of the Vm �uctuation during a 200-ms-time
window just before the stimulus onset. Signal-to-noise ratio (SNR) was calculated similar as described in
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Dinstein et al. 6, by dividing the EPSP amplitude of each trial by the EPSP amplitude variance across trials
for each cell. EPSP latencies were measured for the averaged response for each cell. EPSP onset latency
was measured as the delay following HP stimulation where the Gaussian �t of the response’s rising
phase crosses the Vm baseline (averaged Vm potential during 200 ms before stimulus onset). Peak
latency was calculated as the delay of the EPSP maximum amplitude with respect to the onset of the
response.

Evoked APs

Neurons were included in the evoked AP analysis if HP stimuli elicited at least one AP during the 40 trials.
Accordingly, these neurons were classi�ed as AP-EPSP neurons. The quanti�cation of evoked AP
responses was adapted from 44, 46. Brie�y, spontaneous AP �ring (pre-stimulus APs) was calculated as
the number of APs elicited within a 200-ms-time window prior to HP stimulus. The evoked AP �ring was
quanti�ed as the difference between the number of APs �red within a 200-ms-long time window following
the HP stimulation (post-stimulus APs) and the pre-stimulus AP number (evoked APs = post-stimulus APs
– pre-stimulus APs). Coe�cient of variation (c.v.) was calculated by dividing the standard deviation of AP
�ring by the mean evoked AP �ring for individual trials. Mean AP number per successful trial was
determined by dividing the number of APs evoked during a 40-trial session by the number of trials
eliciting at least one AP. To determine AP dispersion, we measured the onset of the �rst AP in each trial
within a 70-ms-time-window following HP stimulus.

Correlation matrix and node plot

The correlation graphs were created with python custom-made script using NetworkX and Netgraph
libraries. Seven categories of parameters (in WT neurons six, since spontaneous AP �ring could not be
included, see above) were de�ned: Trial-by-trial variability parameters, up–/down–state parameters,
spontaneous AP �ring, AP parameters, membrane potential (Vm) variance parameters (PSD + SD baseline
Vm variance), SNR parameters, and EPSP parameters. Parameters were ordered depending on these
categories, and each category is displayed in a different color in the graph. The nodes were arranged on a
circular layout and the size of the nodes is proportional to their degrees – in this case the number of
statistically signi�cant correlations. Only correlations with a p-value < 0.05 using the Pearson test are
shown. Edge size and color depend on the correlation coe�cient, larger coe�cients (absolute value) have
edges with greater width and darker color (blue for negative and red for positive correlations).

Trial correlation parameters

The time window chosen to compute Vm baseline parameters (baseline Vm, baseline Vm SD, PSD) on a
trial-by-trial basis was a range of 200 ms before the onset of the HP stimulus. To estimate the in�uence
of baseline Vm �uctuation and PSD on the strength, duration, and reliability of HP stimulus evoked
EPSPs, these parameters were normalized by the baseline Vm. For correlating these parameters for each
trial, we used Pearson correlation tests.
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Data normalization in Fig. 5

To assess whether BMS191011 application corrected the altered physiological features of Fmr1−/y

neurons, we statistically compared WT and Fmr1−/y-BMS191011 values after they were both normalized
by Fmr1−/y values (Fig. 5, panels C, F, G, H, I, M, O, P, Q, S, T). For spontaneous AP �ring (panel D) it was
not possible to normalize this data because of the high proportion of zero values for WT and Fmr1−/y-
BMS191011 neurons. Values were either normalized by the mean of the Fmr1−/y values if these values
were normally distributed, or by the median in case of non-normally distributed data. This is stated for
each panel in the legend of Fig. 5.

Overall experimental design and analysis

Sample sizes were determined based on our published work 44, 46. In addition, we performed posthoc
statistical tests of power. Mice of both genotypes were littermates and randomly assigned. Recordings
and analysis were performed blind to the genotype.

Statistical analysis

Values were �rst tested for outliers (Grubb’s outlier test with alpha = 0.05). These outliers were removed
from the statistical analysis and the resulting plots. Values were also tested for normality using the
Shapiro-Wilk normality test. If the values were normally distributed an unpaired t-test was used to
compare two groups. For non-normally distributed parameters we used Mann-Whitney’s U-test. A mixed
ANOVA model was used for repeated measurements. As we combined silent neurons (no �ring in 2 min
time window) and active neurons for the calculation of spontaneous properties, we have performed a
two-sided non-parametric permutation test to calculate the p-Value. Boxplots indicate the median value
(middle line), the mean (green line), as well as the 25th and 75th percentiles (box). The lower whisker will
extend to the �rst datum greater than Q1–1.5*IQR where IQR is the interquartile range (Q3-Q1). Similarly,
the upper whisker will extend to the last datum less than Q3 + 1.5*IQR (matplotlib boxplot function
default parameters). Correlation matrices were made with R Pearson tests, resulting in a coe�cient of
correlation and an associated p-value. Trial-by-trial variability was calculated as standard deviation of the
parameter values across all trials for each cell. The F-test of equality of variances or Bartlett test were
used to explore the difference in variance between genotypes at the cell-population level (trial-wise
average) for normally distributed data. For non-normally distributed data the Levene test was used with
the mean as center parameter. Density plots (Rugg plots) were made with a gaussian kernal density
estimation using the function scipy.kde.gaussian_kde from the python library scipy. P values < 0.05 were
considered signi�cant (* P < 0.05, ** P < 0.01, *** P < 0.001).
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Figure 1

Trial-by-trial variability of sensory responses is markedly increased in S1–L2/3 pyramidal neurons of
Fmr1–/y mice.

(A) Experimental setup. Sensory stimulus evoked activity was recorded in L2/3 pyramidal neurons of the
hindpaw related S1 (S1–HP) region during contralateral HP stimulation (left). Morphological
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reconstruction (right) of a recorded neuron. (B-K) Analysis for n = 24 cells from 14 mice for Fmr1-/y

neurons and n = 16 cells from 7 mice for WT mice.  (B–F) Trial–by–trial (TBT) variability of EPSPs. (B)
Example of trial-by-trial variability of EPSP amplitudes across 40 trials for one WT and one Fmr1-/y cell.
Average responses are shown in darker colour. (C) Same traces from panel B, plotted versus number of
trials. Standard deviation (SD) of (D) EPSP amplitudes and (E) EPSP half-width across trials were larger
for Fmr1-/y neurons. (F) Signal–to–noise ratio (SNR) of EPSP responses (EPSP amplitude divided by
response variance across trials). (G) Density plot showing the different distribution of EPSP amplitude
values for both genotypes. Box plots demonstrating larger EPSP amplitudes (H), enhanced EPSP rise
slope (I), shorter onset latency of EPSPs (following stimulus) (J), and a greater EPSP half–width (K) for
Fmr1-/y neuron population. (L) Pie charts showing proportion of neurons responding with APs in some of
the trials (AP–EPSP neurons), and of those responding with EPSPs only (EPSP only neurons). (M–P)
Trial-by-trial onset variability of AP onset following HP stimulation. (AP–EPSP neurons; Fmr1-/y, n = 16
cells from 15 mice; WT, n = 14 cells from 12 mice). (M) Example traces of HP stimulus evoked AP
responses in an individual WT and Fmr1-/y neuron showing different temporal dispersion of �rst evoked
AP. (N) Onset of each �rst AP across 40 HP-stimulation trials indicated for all AP-EPSP neurons. (O) No
genotype difference of trial-wise average of AP delay. (P) Greater trial–by–trial AP jitter for Fmr1-/y

neurons. (Q–T) Properties of HP stimulus evoked APs. (Q) Example of responses to 40 successive HP
stimuli in a WT and a Fmr1-/y AP–EPSP neuron. (R) Stacked bar graph showing percentage for each
response outcome (APs, EPSPs, failures) to HP stimuli for the AP-EPSP responding neurons. (S)  Box
plots showing increased number of evoked APs averaged across all 40 trials in Fmr1-/y neurons. (T)
Number of APs per successful trial (i.e., AP evoking trial) were not different between genotypes. Box-and-
whisker plots show the median, interquartile range, range, mean (green line) and individual values.
Statistical signi�cance was calculated using unpaired t-test (J, O), Fisher’s exact test (L),Chi-square 3x3
test (R) or Mann-Whitney U-test (D, E, F, H, I, J, K, P, S, T). n.s., not signi�cant, *P < 0.05, **P < 0.01, ***P <
0.001.
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Figure 2

Endogenous neural noise drives trial-by-trial variability of sensory responses.

(A) Experimental setup. Whole-cell recordings of L2/3 pyramidal neurons of the S1–HP region (B–J)
Fluctuation of the membrane potential (Vm variance). (Fmr1-/y, n = 23 cells from 14 mice; WT, n = 16 cells
from 7 mice) (B) Example for baseline (200-ms time window just before the onset of the HP stimulus) Vm
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variance for a WT and a Fmr1-/y neuron. (C) Baseline Vm variance was exaggerated for Fmr1-/y neurons.
(D) Baseline Vm variance for same trials as shown in B and Fig. 1C, showing enhanced intra–cell

variability in Fmr1-/y neurons and correlation with EPSP amplitude. (E) Exaggerated trial–by–trial
variability in baseline Vm variance (SD of baseline Vm variance) for Fmr1-/y neurons. (F) Correlation of
baseline Vm variance, power spectral density (PSD) and Vm (all calculated during 200-ms time window
before HP stimulus onset) with EPSP amplitude and EPSP half–width on a trial–by–trial basis. Baseline
Vm variance and PSD were normalized by Vm. (G–J) PSD. (Fmr1-/y, n = 23 cells from 14 mice; WT, n = 16
cells from 7 mice) (G) Example of power–time–frequency characteristics of Vm calculated using wavelet
transformation illustrating higher frequency components during up–states. (H) Power spectral density
(PSD) across a frequency spectrum of 0–100 Hz. (I) Fmr1-/y-to-WT PSD ratio for different frequency
bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–100 Hz). (J)
Increased trial-by-trial variability of baseline PSD for the Fmr1-/y neuron population. (K–P) Up– and
down–states (Fmr1-/y, n = 19 cells from 16 mice; WT, n = 13 cells from 8 mice). (K) Example traces from a
WT and a Fmr1-/y L2/3 pyramidal neuron. Note predominant occurrence of short-duration (100–150ms)
up–states in the Fmr1-/y but not WT neuron (marked with μ). (L) Density distribution histogram of up–
state duration for the Fmr1-/y and WT neuron population. Box plots of up–state duration (M) and up–
state frequency (N). (O) Density distribution histogram of up-state (Vm) normalized to mean downstate
(Vm). (P) Box plot of up–down state membrane potential (Vm) difference. Box-and-whisker plots show
the median, interquartile range, range, mean (green line) and individual values. Statistical signi�cance
was calculated using unpaired t–test (M, N and P), Mann-Whitney U test (C, E), Pearson R test(F). n.s., not
signi�cant, *P < 0.05, **P<0.01.
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Figure 3

Changes in action potential properties, inter-neuronal variability, and receptive �eld speci�city in Fmr1−/y

mice.

(A–C) Spontaneous AP activity (Fmr1-/y, n = 17 cells from 15 mice; WT, n = 16 cells from 10 mice). (A) Pie
charts showing percentage of neurons that were spontaneously active (dark color) or silent (light color)
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during a time window of 120 s. (B) Representative example traces from a WT (grey) and a Fmr1-/y L2/3
pyramidal neuron (orange); μ-symbols indicate spontaneous action potentials (AP). (C) Box plot showing
increased AP frequency in Fmr1-/y neurons. (D–H) Intrinsic properties. (D) Example voltage traces in
response to a depolarizing current step for a WT and a Fmr1-/y neuron. (E) Mean number of APs plotted
as function of the injected current (Fmr1-/y, n = 17 cells from 16 mice; WT, n = 13 cells from 8 mice). (F)
Example traces showing the increased broadening of APs for a Fmr1-/y compared to WT neuron. (G) Box
plot showing the �rst AP half–width (Fmr1-/y, n = 15 cells from 11 mice; WT, n = 11 cells from 7 mice). (H)
Average amplitude of after-depolarization (ADP) (Fmr1-/y, n = 7 cells from 3 mice; WT, n = 7 cells from 2
mice). (I-M) Inter-neuronal variability across cell population. Bar graphs illustrating increased variance of
EPSP half-width (analysis for n = 24 cells from 14 mice for Fmr1-/y neurons and n = 16 cells from 7 mice
for WT mice) (I), HP stimulus evoked APs (Fmr1-/y, n = 16 cells from 14 mice; WT, n = 14 cells from 12
mice) (J), Vm variance (Fmr1-/y, n = 23 cells from 14 mice; WT, n = 16 cells from 7 mice) (K), gamma

power (n = 24 cells from 14 mice for Fmr1-/y neurons and n = 16 cells from 7 mice for WT mice) (L), and
of spontaneous APs (Fmr1-/y, n = 17 cells from 15 mice; WT, n = 16 cells from 10 mice) (M) for the Fmr1-/y

neuron population.  (N–P) Receptive �eld changes of S1–HP L2/3 pyramidal neurons (Fmr1-/y, n = 33
cells from 28 mice; WT, n = 27 cells from 23 mice). (N) Schematic of experimental condition illustrating
stimulation of both HP and forepaw (FP) while recording from S1-HP neurons. (O) Example for HP and FP
stimulus evoked responses in the same WT neuron. (P) Number of neurons responding to HP–only
stimulus and to HP/FP stimuli in WT and Fmr1-/y mice. Box-and-whisker plots show the median,
interquartile range, range, mean (green line) and individual values. Statistical signi�cance was calculated
using unpaired t–test (G and H), or mixed ANOVA (E), Bartlett variance test (I), Levene variance test (K and
M), F test (J), Two–sided permutation test (C), Fisher’s exact test (P). n.s., not signi�cant, *P < 0.05,
**P<0.01.
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Figure 4

Stronger correlation of endogenous noise with sensory response variability in Fmr1-/y neurons. (A, B)
Correlation of main parameters describing spontaneous AP �ring, up-/down–state pattern, intrinsic
excitability, power–spectral–density, HP stimulus evoked responses and trial–by–trial (tbt) variability.
Positive correlations are indicated in red and negative correlations in blue. The correlation strength is
color-coded, and statistically signi�cant correlations are indicated by large squares. Correlation matrix of
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WT neurons (A), and Fmr1-/y neurons (B). (C, D) Node graphs displaying only the statistically signi�cant
correlations of the main parameters. The size of the node is proportional to the number of signi�cant
correlations with other parameters. The thickness of the edges is proportional to the coe�cient (strength)
of the correlation. The parameters have been grouped under the same color according to their biological
similarities. Node graph of WT (C), and Fmr1-/y (D) neurons.

Figure 5
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Dissecting the origin of noise sources by targeting local neocortical ion channel dysfunction. (A)
Schematic of local BMS191011 (abbreviated BMS) application onto S1, combined with whole-cell
recordings from HP stimulus evoked responses. (B) Example traces of HP stimulus evoked EPSPs from a
WT–, Fmr1-/y– and a Fmr1-/y neuron in the presence of BMS (Fmr1-/y–BMS neuron) revealing correction
of EPSP amplitude and half-width by BMS191011. (C-F, I, M, N, P, Q) Fmr1-/y–BMS and WT values were
normalized to those of Fmr1-/y neurons and statistically compared to test for correction. (C–F) EPSP
features (Fmr1-/y–BMS, n = 10 cells from 10 mice). Box plots showing correction of EPSP amplitude (C),
EPSP half-width (D), EPSP rise slope (E), and EPSP onset latency (F) in the Fmr1-/y neuron population. (G)
Correction of spontaneous AP �ring (Fmr1-/y–BMS, n = 12 cells from 12 mice). (H) Example traces of APs
from a WT–, Fmr1-/y– and a Fmr1-/y–BMS neuron demonstrating correction of 1st AP halfwidth by
BMS191011. APs were scaled to the peak to visualize differences in halfwidth. (I) Box plot showing
correction of AP half–width of Fmr1-/y neurons (Fmr1-/y–BMS, n = 8 cells from 8 mice). (J-L) Inter-
neuronal variability. (J) Bar graph demonstrating reduction in inter-neuronal variability of EPSP amplitude
below that of WT neurons. Correction of inter-neuronal variability of EPSP half-width (K) and of
spontaneous AP �ring (L). (M) Increase in trial-by-trial variability of EPSP amplitude. (N) Lack of
correction of trial–by–trial variability in EPSP half-width. (O) Example traces of baseline Vm variance

from a WT–, Fmr1-/y– and a Fmr1-/y–BMS neuron under the three different conditions. (P) Lack of
correction of atypical baseline Vm variance by BMS191011. (Q) Lack of correction of Upstate-Downstate
Vm difference by BMS191011. (Box-and-whisker plots show the median, interquartile range, range, mean
(green line) and individual values. Data was normalized to mean (C, D, I, F, Q) or median (E, G, M, N, P),
Statistical signi�cance was calculated using unpaired t-test (C, D, I, F, Q), Mann-Whitney U test (E, M, N, P)
or Two sided permutation test (G), Bartlett test (J), Levene test (K, L). n.s., not signi�cant, *P < 0.05, **P <
0.01, ***P < 0.001.
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Figure 6

Model of the relationship between endogenous noise features and atypical sensory processing. The
schematic highlights the physical sources and main features of endogenous neural noise in Fmr1-/y

neurons of the S1-HP cortex, their inter-relationships, as well as their impact on atypical sensory
processing. These alterations provide an explanation for the nuanced and complex sensory
symptomatology in autistic individuals. This demonstrates not only features that are altered in our
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autism model but also potential translational biomarkers that can be measured both in clinical and
preclinical settings. These measures include the strength, onset, duration and variability of sensory
responses. The oscillation power could also be measured clinically under basal conditions and during
sensory processing. In addition, endogenous noise could also partly be measured in humans, e.g. by
measuring the background activity before the onset of sensory responses. Our schematic also provides a
framework for the evaluation of drug application for noise and ensuing atypical sensory information
processing in autism.
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