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Abstract

The use of domain-specific modeling (DSM) in safety-critical avionics is rare, even though the ever-
increasing complexity of avionics systems makes the use of DSM reasonable. DSM shows its advantage
especially in capturing complex systems, data and relationships. The reason for the limited use in the
(safety-critical) avionics area is mainly due to the high demands on the safety of software and systems.
Everything that is to be used in flight operations and development must undergo a rigorous and com-
plex certification process. Any data used in operations must be verified. A reduction of this effort can
be achieved using qualified tools. A qualified tool can either replace or support certification activities.
This article elaborates different use cases of how DSM could be used in relation to airwor-
thy software. For those use cases, we review the effort of a certification and retrieve the major
shortcomings and showstoppers of available frameworks, e.g. infeasible qualification of DSM run-
times and the unavailability of qualification artifacts. Finally, we elaborate possible ways of
mitigation and show the concept and first results of a new DSM framework for airworthy
applications, called DOMAINES. DOMAINES covers deterministic meta-modeling up to graph-
based model transformations and verified visual editing. The concept of DOMAINES and a
first functional prototype are presented that indicate that the shortcomings can be mitigated.

Keywords: Domain-specific modeling, safety-critical, avionics, certification, qualification

1 Introduction

The complexity of systems and software used in
aircraft and the associated development effort are

constantly increasing. To cope with this complex-
ity, it is conceivable to use concepts of domain-
specific modeling (DSM) in the field of avionics.
DSM in general copes with the challenges of build-
ing complex and heterogeneous systems [40] and
software. A particular challenge when using DSM
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in avionics is the issue of safety. Most avionics soft-
ware is safety-critical and for this reason, must go
through a rigorous life cycle process for certifica-
tion. Both in the development process and in real-
time applications, the developer must ensure that
no misbehavior occurs nor that there is unaccept-
able negative impact on the safety of the aircraft.
Acceptable evidence of freedom from misbehavior
must be provided to a certification authority in
the form of documents and supporting artifacts.

The process of software certification takes up
a considerable part of the software development
effort in the avionics domain, as depicted in Figure
1 [27]. This effort distribution shows that 35% of
the effort results from certification activities for
software developed according to item development
assurance level (DAL) C, which is acceptable for
software with the safety-effect “Major” [51]. There
are different safety-effects ranging from “No Safety
Effect” to “Catastrophic” depending on the influ-
ence on aircraft, crew, and passengers. DAL A
software, required in case of any “Catastrophic”
safety-effect, increases the absolute effort and the
relative contribution of any certification activ-
ity by orders of magnitude (cf. DO-178C [46]).
However, exact effort quantifications are hard to
obtain.

When aiming to leverage existing DSM tools
in the safety-critical domain, one possibility to
use their outputs (e.g. meta-model, model for-
mats, or source-code) is to conduct a (manual)
output verification. Another theoretical possibil-
ity is to qualify existing tools according to their
application. However, this usually fails because

the effort is almost the same as for the flying
software itself and often required documents are
missing and the software foundations are infeasi-
ble for qualification. In both cases, the effort is
prohibitive, which makes the use of current DSM
tools end at the stage of support tools. Their out-
puts and benefits hardly enter the qualified region
of safety-critical systems. Even more ambitious is
the use of DSM methods in flying software. For
this purpose DSM software must be fully certified,
since manual output verification is not possible.
All generated artifacts needed for further opera-
tions would first have to be manually checked for
correctness before they could be processed. In [56],
we already presented the basic concept for the
DSM framework DOMAINES (domain-specific
modeling for aircraft and other environments),
that is to be used in the safety-critical domain.
The current paper aims to justify the need for
the DOMAINES framework. It elaborates the rea-
sons for the high qualification effort of current
frameworks and to show how it can be reduced in
order to leverage the full potential of DSM when
developing safety-critical systems as well as in the
execution of safety-critical (flying) real-time soft-
ware. We also aim to show how DOMAINES can
be developed from the proposed measures and how
they interact with each other to achieve the goal
of a certifiable DSM framework.

The paper is structured as follows: First basic
knowledge about avionics software development,
domain-specific modeling, and conceivable use
cases of DSM in avionics is presented. Section 3
explains the reasons for the extensive qualification
effort required when using DSM tools in avionics.
In addition, section three provides suggestions on
how to reduce the possible qualification effort. Our
approach, as well as initial results for the develop-
ment of a certifiable DSM framework, is presented
in Section 4. Finally, there is a summary and an
outlook. This article is an extended version of [57].
It adds more details, figures, and the current state
of DOMAINES.

2 Domain-specific Modeling
and (Airworthy)
Safety-critical Software

This chapter focuses on the fundamentals of
DSM within the domain of safety-critical avionics
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systems. It gives an overview of the develop-
ment process of safety-critical avionics software
with respect to its dedicated certification process,
describes the fundamentals of DSM, and presents
possible use cases of DSM within the field of
avionics system development.

2.1 Avionics Software Development
and Certification Process

Avionics software always operates as part of an
overall system. Therefore, the system life cycle
process is considered first. Acceptable means for
showing compliance of the aircraft system devel-
opment with the airworthy regulations are con-
tained in the aviation standard ARP 4754A [51].
The ARP 4754A process model is the V-model
as depicted in Figure 2. The software life cycle
process is divided into a development process
and a verification process, seen on the left and
right branches of the V-model, respectively. On
every level of the process, output data is pro-
duced in terms of certification artifacts. This data
includes software high level and software low level
requirements, design descriptions, and traceability
data.

A software development assurance level (DAL)
is assigned to the software based on the results
from the safety assessment process during sys-
tem development. The software level defines the
objectives and activities of the software life cycle.
For software with a software level DAL C, this
includes, but is not limited to, the develop-
ment of software high-level requirements, software
architecture, software low-level requirements, and

source code. Acceptable means of compliance for
achieving the required software level are con-
tained in the software standard DO-178C [46]. The
DO-178C is accompanied by technique-specific
supplements. These are the software tool qualifica-
tion considerations DO-330 [47], the model-based
development and verification supplement DO-331
[48], the object-oriented technology and related
techniques supplement DO-332 [49] and the for-
mal methods supplement DO-333 [50]. The most
fundamental level of the avionics software devel-
opment process is the source code. According to
DO-178C, the source code for DAL C software
must have the properties traceable, verifiable,
consistent, and correctly implements low-level
requirements [46]. The most prominent program-
ming languages used in safety-critical software
projects are C and Ada. Ravenscar Ada [12] and
MISRA-C [38] describe additional restrictions for
safety-critical programming.

In the verification process, the software is
analyzed and tested for errors. Verification is
performed for the outputs of the development
process. For DAL C software the objectives of
the verification process are e.g., to confirm accu-
racy, consistency, verifiability, and conformance to
the requirements as well as conformance to the
requirements on the next higher level. The output
of this process is e.g., test results and traceability
data.

The entire processes of the software life cycle
must be repeated iteratively. Therefore, parts of
the software life cycle process should be auto-
mated with the help of software tools. A software
tool is defined as a type of software that is “used
to help develop, transform, test, analyze, produce,
or modify another program” [47]. Even if a “tool
cannot introduce an error in the output of the
tool, but may fail to detect an error” [47], it has
to be qualified for its use. In contrast to software,
tools are not certified as part of a system but
receive a qualification only for their specific use.
The guidelines for tool qualification are defined
in the DO-330 standard [47]. The tool life cycle
process is similar to the software life cycle pro-
cess. According to the software life cycle process
a tool qualification level (TQL), ranging from
TQL-1 (most rigorous) to TQL-5 (least rigorous),
has to be assigned to the tool. This is deter-
mined according to the influence of the tool on
the software life cycle. It defines the objectives



and activities of the tool life cycle. Comparing the
number of objectives and activities to be achieved
for a tool with TQL-1 and software with DAL A,
the effort for the tool life cycle can be as high
as for the software life cycle. Depending on the
TQL, the artifacts for tool qualification at least
include tool high level requirements, tool architec-
ture description, and tool low level requirements
(not for TQL-4 and TQL-5). In contrast to the
software life cycle process, the tool life cycle pro-
cess is divided into an operational process and a
development and verification process. In the oper-
ational process, the operational requirements are
defined and verified by the tool user. Furthermore,
the tool user is responsible for the qualification
of the tool as defined in the software life cycle.
In the development and verification process, the
tool requirements are defined and verified by the
tool developer. A tool qualification kit is used for
communication between the tool user and the tool
developer. “The developer should provide [the]
qualification kit/package to assist the user in the
qualification process” [28].

A key property for software tool qualification
is determinism as it is defined in the DO-330
[47] standard: “For a tool whose output may vary
within expectations, it should be shown that the
variation does not adversely affect the intended
use of the output and that the correctness of the
output can be established.”.However, if the output
from a tool is to be used in software, the defini-
tion of determinism is stricter, in the sense that a
variation of the output for the same input when
operating in the same environment is not allowed
[47].

A note on terminology: A distinction is made
between the terms qualification and certification
in the area of authorization. Qualification is used
when dealing with an “auxiliary” tool and certi-
fication when dealing with software used in the
aircraft. In ambiguous cases, this article uses
certifiability.

The use of object-oriented programming lan-
guages and techniques is controversial in both
the software life cycle and the tool life cycle.
In non-critical software, object-oriented program-
ming is widespread. In the field of avionics its
use is increasing, nevertheless, several issues have
to be considered to ensure safety and integrity
as described in the DO-332 standard [49]. The

issues described include inheritance, overload-
ing, type conversion, exception management, and
dynamic memory management. In the area of
inheritance, the problems mainly concern the
inheritance of methods and their implementation,
especially within multiple inheritance. Despite the
improvement of code readability and maintenance,
overloading can induce ambiguities when the com-
piler performs inappropriate implicit type con-
versions. Many problems are induced by implicit
type conversions, e.g. with a narrowing type con-
version, data may be lost. A potential challenge
is the exception management. Exception han-
dling breaks the code hierarchy, is difficult to
verify, and endangers determinism. Moreover, it
is based on dynamic memory allocation. Since
object-oriented programming tends to rely on
dynamic memory management techniques, this
is an important point to consider. The vulnera-
bilities include ambiguous references, starvation,
or heap memory exhaustion. Another important
point is traceability, which must also be taken into
account in procedural programming, but causes
a few difficulties in object-oriented programming
such as constructors, and destructors complicating
the traceability between object code and source
code [44].

Formal methods can be used to support the
validation and verification of safety-critical soft-
ware. These are mathematically based techniques
for the specification, development, and verifica-
tion of software aspects of digital systems [50].
The usage of formal methods is motivated by
mathematical analyses contributing to establish-
ing the correctness of a design. As noted in the
DO-333, formal methods are capable of provid-
ing verification evidence, demonstrating the free-
dom from exceptions or unintended function, and
are therefore an important resource for achieving
qualifiability and certifiability.

2.2 Domain-specific Modeling

DSM is typically used to cope with large and com-
plex data structures when developing and deploy-
ing systems and software. DSM raises the level of
abstraction beyond coding, making development
faster and easier [32]. Several frameworks, such as
the Eclipse Modeling Framework (EMF) [53], the
Generic Modeling Environment (GME) [35], the
Cameo Systems Modeler [15], or the Mathworks



System Composer [37], are available for DSM.
These frameworks allow the efficient handling of
complex relationships in application-specific data
models using a meta-language, a meta-model, and
a domain-specific model. Domain-specific models
can be defined as an abstraction of a cyber-
physical system that represents a partial and
simplified view [40]. Meta-languages are the foun-
dation of each meta-model. Typically representa-
tions of meta-languages can either be graphical
(e.g.: UML [42], (E)MOF [43], MetaGME [29])
or text-based (e.g.: Backus-Naur Form (BNF)
[45]). The meta-model defines a domain-specific
language for the domain-specific model. Domain-
specific languages are tailored to a particular
application domain (e.g.: OAAM [3], AADL [20]).
Furthermore, the use of domain-specific languages
can help to bridge the gap between domain-
experts and the implementation of modeled sys-
tems. Experts can keep their language and infor-
mation can be automatically analyzed and imple-
mentations like source code can be generated [34].
DSM applications can range from highly specific
(e.g. avionics) to broader domains (e.g. embedded
systems) [22].

For further consideration, we refer to the meta-
language as M3-level, the meta-model as the M2-
level, and the domain-specific model as the M1-
level.

Additionally, DSM enables an increasing level
of automation, which contributes to more effi-
cient processes and higher product maturity [40].
Automations can be realized by means of model
transformations which can either be model to
model (M2M), text to model (T2M), or model
to text (M2T). A uniform definition of model
transformation is difficult, as there are many
different approaches. Basically, a model transfor-
mation transfers a source model into a target
model, both can be either graphical object-based
or text-based. Model transformations consist of
a set of rules that define the information trans-
fer. Rules can exist as e.g., textual statements
or graphical, object-based representations. A sin-
gle rule contains a description of converting a
source construct into a target construct [16].
The model transformation approaches include the
operational approach, relational approach, hybrid
structures, and graph-based methods. Examples
of these transformation approaches are contained

in the Query/View/Transformation (QVT) speci-
fication of the Object Management Group (OMG)
[41]. The Atlas Transformation Language (ATL)
is a hybrid transformation language that com-
bines declarative and imperative constructs [31].
Model transformations can also be realized with
graph transformations. An example of this is the
transformation language GReAT [8].

2.3 Domain-specific Modeling in
Avionics

In avionics, there are several application areas
for DSM e.g. requirements formalization [39], pre-
design, simulation [26], configuration [4] [24] [52],
optimization [9], code-generation and automated
testing [30] [39]. We see high potentials for the use
of DSM in, first, the development of flying sys-
tems and, second, as part of flying software itself.
In the following section, we introduce three use
cases, which we then analyze in Section 3.

2.3.1 Use Case 1: Generation of
Avionic Configurations and
Simulation Models

This use case describes the implementation of
a seamless toolchain for the design, implemen-
tation, and simulation of Integrated Modular
Avionics (IMA) platforms focusing on system
function applications hosted on avionics [26].
The goal is to support the development of such
IMA platforms by reducing error-prone tasks via
automation (M2M or M2T) and more sophis-
ticated representations of development artifacts
(e.g. (object-based) configuration models instead
of textual configuration files) and ensuring the
generation of these development artifacts without
errors using DSM tools. The toolchain consists of
meta-models allowing the modeling of IMA avion-
ics platform instances or dedicated configuration
models. Model transformations allow transform-
ing a platform model into a configuration model,
which can be further processed into configuration
files e.g., csv-formatted Interface Control Docu-
ments (ICDs) [25], [26]. For generating the plat-
form and configuration model, EMF (ECORE) is
used. Eclipse/EMF is based on Java and the tools
used for model generation, Java Emitter Tem-
plates (JET) and Java Merge (JMerge) [24], are
based on OOP procedures. An approach similar



to Use Case 1 is developed within the German
TALIA project [4].

2.3.2 Use Case 2: Generation of Source
Code for Flight Operations

This use case targets an automated develop-
ment process by generating executable code,
requirement documents as well as test cases
and test scripts for an advanced avionic plat-
form. Within this approach, the characteristics of
the avionic platform are described in a domain-
specific language, which allows the modeling of
a highly abstracted “input specification”. This
“input specification” is processed and refined by
multiple model transformations until executable
code for platform management mechanisms of a
safety-critical application is generated. Hereby,
the generated source code must match the infor-
mation that is contained in the software design
documents [39]. These must be verified manu-
ally, unlike common code generators where the
source code must match the model. For model-
ing of the avionic platform instances, GME is
used; for processing the “Graph Rewriting And
Transformation (GReAT)” language. The primary
languages for integration are the OOP based ones,
C++ and Visual Basic [35]. Additionally, GME
comes with a C++ code generator for GReAT
transformation models [8]. An approach similar
to Use Case 2 is developed within the German
RPAS23-CP project [11].

2.3.3 Use Case 3: Domain-specific
Models in Flying Software

In this use case, the possibility of using DSM tools
to generate and process domain-specific models
in flying software is considered. The informa-
tion available in the domain-specific models can
be used for the configuration of avionics hard-
ware modules at runtime. As an example, DSM
is used by the platform consciousness of the
Plug&Fly Avionics platform [6]. The Plug&Fly
Avionics Platform is a concept for self-configuring
/self-organizing avionics systems with the goal of
providing adaptiveness during runtime for optimal
dynamic resource utilization. The domain-specific
platform consciousness is a model-driven database
of the platform. In the platform consciousness, all

information necessary for deriving the configura-
tion (state, available resources, and application
descriptions) of the modules is processed in a
model-based way. In addition, automations are
executed on the models e.g., in order to opti-
mally allocate the tasks to the hardware devices.
The occurrence of events in flight can lead to the
need to adjust the models. This requires a runtime
for model interaction. Safety-relevant decisions are
made on the basis of the model information of the
platform consciousness. Errors in the models, in
the communication with the models, or in the pro-
cessing of the models can lead to faulty decisions
or configurations with effects on system safety
with the safety-effect “Catastrophic”. For this rea-
son, the highest software assurance level is needed
to be assigned to the platform consciousness. The
DSM runtime must therefore be developed for
the software level DAL A. An approach similar
to Use Case 3 is developed within the German
PAFA-ONE project [6].

3 Rationale for the Extensive
Qualification Effort

This section describes the possibilities of lever-
aging the described use cases in a safety-critical
avionics environment and explains the correspond-
ing effort that needs to be applied. All use cases
use DSM to produce outputs for certified systems
or even within certified software. Based on the use
cases, we analyze how their output could be used
in safety-critical flight operations.

3.1 Analysis of Qualification
Methods of DSM in the Use
Cases

Starting with Use Case 1, one possibility is to
perform a manual output verification, where every
development artifact has to be verified by hand
[46]. This is probably the most expensive, but a
natural and a commonly used option, as other
options are currently hardly available. One would
have to manually verify that the configuration of
thousands of parameters of an IMA system gen-
erated with EMF is correct and does not lead to
any misbehavior. Since there are typically a large
number of different components in an aircraft, the
manual verification effort can increase immensely.



This effort can and is in practice reduced by per-
forming a tool-based output verification [47]. In
contrast to manual output verification, the verifi-
cation process is supported by tools automatically
discovering wrong or malformed output with e.g.,
model-checkers, thus reducing manual effort. How-
ever, a verification tool used must be developed
and qualified at great expense. Tool-based out-
put verification can be conducted using a qualified
model checker as well. Model checkers automat-
ically check whether the created models meet
specified requirements. Tool-based output verifica-
tion would make it possible, for example, to create
an ICD frequently used in avionics with EMF
and subsequently use a qualified tool to automat-
ically verify that the data it contains is correct.
The subsequent verification of the output from
EMF models, transformations, and conversions
could be avoided if EMF and the ICD genera-
tor is a qualified tool itself. This would require
a tool qualification. Although this is possible in
theory, in practice this procedure will probably
be infeasible. One problem is the object-oriented
implementation of EMF with Java as described
in Section 2.1. In addition, the complexity of
the EMF is challenging. A lot of modeling con-
structs and implementations are included that are
not needed for the application purpose, result-
ing in deactivated code. According to the DO-300
[47] standard, a mechanism should be designed
and implemented “to provide evidence that the
unexercised Tool Source Code has no impact on
the outputs of the tool in any operational use.”.
Despite the fact that EMF is open source and the
code would be customizable, the effort to ensure
this is immense. Moreover, requirements would
have to be created manually for any functionality
within EMF.

In Use Case 2, source code is to be gener-
ated from the created models, which is to be used
in flight operations. Again, manual output verifi-
cation can be used to qualify the generated source
code to be used in the aircraft. In doing so, the
correct and intended behavior must be manually
verified. Especially for DAL A software, modi-
fied condition/ decision coverage (MCDC) must
be achieved to verify the source code. The problem
is that the source code can be arbitrarily com-
plex and manual verification of the output quickly
reaches its limits. Depending on how far-reaching
the tool-based output verification is, this is more

or less helpful. A simple check of the source code
for its syntax is possible without further ado, how-
ever, it is insufficient. It is also necessary to check
whether created models have also been correctly
transformed into source code, this is almost impos-
sible. The reason for this is that the verification
tool would have to understand the model and the
mapping from the source code back to the model
may not be explicit. The manual qualification
of a (model transformation) tool would consid-
erably reduce the subsequent certification effort
here as well. However, the domain-specific model-
ing and transformation languages GME/GReAT
used are hardly qualifiable. They are based on the
object-oriented programming language C++. Fur-
thermore, the transformation language GReAT
does not fulfill our requirements on deterministic
behavior, because depending on how the transfor-
mations are executed, different paths are taken to
the output for the same input. We have also iden-
tified the assignment of random IDs for modeling
objects as a critical aspect for tool qualification.
Due to the random assignment of IDs, the trans-
formation code must be completely re-qualified
each time it is generated. The re-qualification is
necessary because the traceability of the objects
in the model is lost. Since existing domain-specific
model transformation languages known to us have
not been developed with regard to tool qualifica-
tion for safety-critical software, we consider that
model transformation tools for Use Case 2 can
only be qualified with an immense amount of
effort.

For Use Case 3, both manual output ver-
ification and tool-based output verification are
impossible because the output cannot be verified
at runtime. If, for example, optimization cal-
culations were performed using a current DSM
framework, these would not be allowed to be used
further, as it cannot be ensured that these calcula-
tions were performed correctly. Therefore, in this
case, only a certified DSM runtime environment
comes into consideration to make DSM with its
advantages usable in the aircraft. However, such a
certified runtime environment does not yet exist.



3.2 Summary of the Qualification
Effort of the Use Cases

Figure 3 summarizes the different methods on how
to use DSM output within airworthy applications
and its relation to the use cases described above.
In section 1○ the manual output verification is
visualized, which is adaptable to Use Case 1 and
Use Case 2. For both use cases, the certification
effort is extremely high, as every generated arti-
fact, be it a configuration data sheet or source
code, must be manually verified. Section 2○ illus-
trates the tool-based output verification where the
manual output verification (section 1○) is sup-
ported by means of already qualified tools such
as model-checkers. This reduces the subsequent
certification effort compared to manual output
verification. Additional effort is required in this
case due to the necessary qualification of the aux-
iliary tool, but this effort is nonrecurring. Section
3○ shows the ideal scenario for the use of DSM
in the development process for avionics systems
(Use Case 1, Use Case 2), the qualified tool. There
is no more subsequent certification effort, gener-
ated configuration files or even source code can be
used directly for aircraft development. Section 4○
shows Use Case 3 where output verification can
not be used and therefore a certified DSM runtime
is required. The major problem here, however, is
that existing DSM tools can hardly be certified,
which the next section will prove.

As it can be seen in Table 1, the simplest use
case for DSM in the avionics area, Use Case 1, can
already be applied with existing methods in the
safety-critical environment, but with high effort
and partly supported by qualified tools. For Use
Case 2, as described, the effort required for all
methods is still too high for widespread use, and
for Use Case 3, there are currently no possibili-
ties for implementing it with DSM. In all three
use cases described, the benefit of a qualified DSM
tool becomes clear. This may be because of the
required cost-intensive output verification or sim-
ply because, as in Use Case 3, there is no DSM
tool that is suitable for this purpose. Nevertheless,
the effort for a tool qualification (Use Case 1, Use
Case 2) and software qualification (Use Case 3) of
existing DSM tools is currently still impractical.

3.3 The Hurdles for DSM Tools

In this section, the reasons for this are listed and
suggestions are provided as to how this effort can
be reduced. In our opinion, it is of great support
to use qualified DSM tools when using DSM in
(safety-critical) avionics. Unfortunately, the effort
to qualify or even certify existing DSM tools seems
immense.

First of all, the correct implementation of
the DSM tools must comply with the guidelines
for safety-critical programming. Since most DSM
tools are based on object-oriented program-
ming languages and techniques, such as EMF
on Java, and GME on C++, proving correctness
is much more difficult and costly than if they were
based on a procedural language [54] as described
in Section 2.1. Factors that matter in this context
include traceability, (multiple) inheritance, and
dynamic memory management. Software imple-
mented with Java might be certified for a DAL
D project, but DAL A software requires a higher
degree of determinism [44]. Since we aim for DAL
A, it seems unfeasible to use EMF for Use Case
3 at all. Moreover, it seems hard to certify soft-
ware with dynamic memory allocation [44] which
is required when using pointers.
Another aspect, which immensely increases the
qualification effort is the lack of qualification
documents. Although a manual or online docu-
mentation is usually provided, which could count
as a design document in the broadest sense, how-
ever, this is far from being sufficient. Assuming
that the documentation of existing open-source
tools has a sufficiently large scope or, for exam-
ple, the open source code could be analyzed, it is
possible to generate the documents subsequently
under high effort. Unfortunately, this would mean
a reverse requirements engineering and this is not
the way to fulfill the objectives from the tool
standard.

To qualify a tool or certify a software any pos-
sible functionality must be checked, even if it is not
required for use. For example, the behavior of the
EOperations of EMF Ecore must be verified even
if they are not needed for modeling configuration
artifacts as in Use-Case 1. Since most DSM tools
cover a large number of different use cases, have a
high level of complexity, and thus usually offer
significantly more functionality than is needed, the
qualification effort is significantly higher than it
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Fig. 3 Overview on verification methods and avionics use cases

could actually be. There is the additional issue of
deactivated code. Any unused functionality could
be considered deactivated code and therefore must
be handled with additional measures.

A major factor for the qualification effort is
the proof of deterministic behavior for, e.g,
the execution of transformations and the creation
of models. In the paper [2], the central proper-
ties of model transformations are presented and
analyzed. One of these properties is determinism.
In this paper, determinism for model transforma-
tions means that the same output model must
always be produced for the same input model. For

our understanding of determinism, further prop-
erties for model transformations from [2] include
termination, traceability, and type correctness.
Termination means that a transformation must
be executed in finite time. To prove that the
transformations and the implementation behave
deterministically at any time, each transforma-
tion as well as the complete implementation must
be traceable. This includes the traceability of
the individual transformation steps as well as to
the low-level requirements. Moreover, it must be
proved that the models are type-correct with the
underlying meta-language and meta-model at all
times.



Table 1 Overview of use cases, verification methods and corresponding effort

Method Use Case 1 Use Case 2 Use Case 3

Manual Output Verification high high not possible

Tool-based Output Verification medium high not possible

Qualified Tool low low low

GReAT from GME, as used in Use-Case 2, is
an example of a model transformation approach
that does not meet our goals for determinism and
traceability as described in 2.1. GReAT offers two
ways to perform transformations [8]. Depending
on whether the GReAT engine or the code gener-
ator is used for execution, the same input model
can lead to a different output model or a trans-
formation abort. This is especially the case when
deleting objects from the model. In addition to
verifying the created transformations, there is also
the need to verify the generation of the code from
existing models. This is often conducted based on
OOP-based code generators.

As described, there are several factors con-
tributing to a high qualification effort for existing
DSM tools. In the following, we will examine the
which methods can be used to reduce the certifi-
cation effort in order to be able to develop a new
certifiable DSM framework.

3.4 Suggestions on How to Reduce
the Qualification Effort

The first aspect to reduce the certification effort
considers the implementation of the DSM frame-
work or generated code. A language suitable
for safety-critical programming should be
used, which, if possible, is not based on object-
orientation, which seems a contradiction, because
DSM originates from OOP, but also non-OOP
languages can deal with objects. The standard
languages suggested for safety-critical applications
in avionics are Ada and C [44]. In addition to
the programming language, a corresponding sub-
set or coding guideline is suggested. MISRA-C for
C and SPARK for Ada are the most prominent
candidates. Moreover, SPARK provides support
for formal code checking and therefore reduces the

effort for source code verification. Even if the pro-
gramming language is able to work in an object-
oriented way, it should be avoided when imple-
menting and managing models and, for example,
the concept of object-relational mapping should
be applied.

One point that can be applied at the imple-
mentation level as well as at the software archi-
tecture level to reduce the certification effort is
decoupling and modularity. At the software
architecture level, modularity can be used to sep-
arate different functional modules or components
e.g., a module responsible for the visualization,
model-checkers, or compilers. Each of such mod-
ules or components might have a different effect on
the software and system safety and can therefore
be considered with different (lower) certification
levels. Moreover, if these components or modules
exhibit clearly defined interfaces, decoupled incre-
mental certification of modules becomes possible,
e.g. models relying on interfaces of other mod-
ules can take certification credits on previously
certified modules if ensuring that the interface is
used correctly. On implementation level decou-
pling and modularity are primarily important
when considering maintainability [44]. Readability
through, among other things, reusable functions,
coding guidelines, and documentation as well as
well-structured code are important.

We further suggest to support the DSM tool
user in the tool qualification process by offering
a tool qualification kit. This tool qualification
kit should contain relevant documents like oper-
ational, development, and verification artifacts as
listed in Section 2.1. To further decrease the qual-
ification effort, it is suggested to create the tool
qualification kit in a model-based and automated
way.



In addition, a qualifiable DSM framework
should offer model restrictions. With restric-
tions, the effort for the verification activities might
be reduced, because the number of model vari-
ants to be tested is reduced. Moreover, restrictions
are capable of facilitating traceability. Restric-
tions can play a role in several areas, for example
in the design of different modeling languages or
in the development and execution of transforma-
tions. The objective is to ensure that only intended
objects and relationships can be modeled. Fur-
thermore, for transformations, restrictions can be
applied either for the execution of a single trans-
formation rule or for the rule-scheduling. Restric-
tive rule-scheduling ensures that the rule to be
executed and its input and output are explicitly
and validly defined. Restrictions on rule execu-
tion ensure that the output of the rule is always
defined.

As described in Section 2.1, formal meth-
ods can strongly support providing verification
evidences and demonstrating the freedom from
unintended functionality. Therefore, formal meth-
ods are important when considering the reduction
of the qualification effort. For example, they can
be used to automatically verify the syntactic cor-
rectness of the source code. Formal methods can
further be used for describing and analyzing rule
executions of model transformations. For exam-
ple, a helpful mathematical technique is graph
rewriting. Moreover, formal definitions of models,
languages, and restrictions, can conceivably serve
as certification artifacts.

A further possibility to reduce the qualification
effort is the use of pre-qualified components
such as compilers or model-checkers.

An effective way to reduce the qualification
effort is the implementation by means of simple
and comprehensible algorithms and meth-
ods. This means that it can be helpful to forgo
powerful and more complex algorithms in favor
of less powerful but simple algorithms. Further-
more, special features of programming languages
can also lead to a better comprehension of the
implementation.

An overview of the proposed measures for
reducing the certification effort and explicit sug-
gestions are given in Table 2.

In conclusion, the effort for the certification
and qualification of existing DSM frameworks is

too high due to e.g., the object-oriented imple-
mentation, missing artifacts, complex (modeling
and transformation) languages and software struc-
tures, and insufficient deterministic behavior. For
this reason, the certifiable framework DOMAINES
for DSM is being developed in the TALIA project
[56]. The next chapter will discuss which of the
mentioned methods we will use to achieve the
lowest possible qualification effort. Moreover, the
current status of DOMAINES is presented.

4 The DOMAINES Approach

To our knowledge, there are no meta-modeling
tools available so far for efficient use in safety-
critical software, therefore, we decided to imple-
ment and design our own DSM framework in
consideration of the findings on qualifiability and
certifiability. DOMAINES stands for a framework
that can be used for the development of air-
craft systems and in the aircraft for complex data
handling and management during flight. The func-
tional scope of existing DSM tools should not
and cannot be covered - the more functional-
ity the higher the certification effort. The next
sections present requirements, the concept, and
the architecture of DOMAINES, and elaborate the
measures that reduce the certification effort. This
description is a continuation of the DOMAINES
concepts presented in [56].

4.1 Requirements for the
DOMAINES Framework

For the specification of the components and the
architecture of DOMAINES, requirements for its
functional scope were defined. These are listed and
justified below:

• Req1: Allow creating, using and modifying
meta-models (M2) and domain-specific models
(M1)

– Rational: Enable a more efficient develop-
ment, design and management of avionics
systems under consideration of concepts from
the model-based systems engineering.

• Req2: Allow graphical editing of meta-models
(M2) and domain-specific models (M1)



Table 2 Overview of proposed measures to reduce the qualification effort

Measure Description

1 Implementation with a programming language
suitable for safety-critical programming and
avoidance of OOP

C with MISRA-C or Ada, usage of object rela-
tional mapping

2 Decoupling & modularity Separate functional entities, make them inter-
changeable

3 Providing tool qualification kit Qualification artifacts: requirements docu-
ments, verification documents, traceability
data

4 Model restrictions Multi-level modeling, simplified languages,
augmentation with constraints, restricted rule
scheduling

5 Formal methods to verify the correctness of
implementations

SPARK, graph rewriting

6 Usage of pre-qualified components Compilers, model checkers

7 Simple and comprehensible implementations
and methodologies

Forgo complex algorithms in favor of simpler
ones

– Rational: Graphical editors are more intuitive
for the user, provide a better overview and
are usable for non-experts.

• Req3: Allow the verification of the visualiza-
tion of meta-models (M2) and domain-specific
models (M1).

– Rational: Errors can be introduced into the
system by incorrect or ambiguous representa-
tions. This is to be avoided.

• Req4: Allow the generation of qualification
artifacts to support the tool-user.

– Rational: The tool user is responsible for the
qualification of the tool and requires suitable
qualification artifacts.

• Req5: Allow the modeling of purely static
behavior of complex relationships.

– Rational: For our application areas within
avionics, purely static modeling without the
possibility to create functions or operations is
sufficient.

• Req6: Allow the instantiation of domain-
specific tools for custom purposes

– Rational: Not every part of the DOMAINES
framework is needed or useful for every appli-
cation area. Therefore it should be possible to
combine the modules independently of each
other.

• Req7: Allow the execution of model-to-model
(M2M), and model-to-text (M2T) transforma-
tions

– Rational: It should be possible to apply meth-
ods of model-driven engineering to domain-
specific models. This includes the generation
of development and verification artifacts.

• Req8: Allow the persistent storage of M2 and
M1 models independent of the (meta) modeling
language.

– Rational: Limit the functionality in the core
of the framework to the essentials and achieve
easy usability of other modeling languages.

4.2 Overview on the DOMAINES
Framework

Based on the defined requirements, the follow-
ing architecture and functional scope were chosen.



DOMAINES exhibits a modular hierarchic archi-
tecture. Each component contributes to the issues
of qualifiability and certifiability. The high level
architecture of DOMAINES is depicted in Figure
4. The red ellipses are interfaces between the com-
ponents, the white boxes the components, the gray
boxes an implemented language or blueprint, and
the green box the elements which are specific to
the modeling-language.

The central part of DOMAINES is the
MODeling Language (MOD) which is imple-
mented in the RUNtime ModelDataBase
(RUNMDB). Unlike many other modeling lan-
guages, in our case, there is no text-based (xml)
representation that is transformed into executable
code, since it is infeasible to qualify xml parsers.
Instead, the language is written directly in code.

This code is the RUNMDB, which is the exe-
cutable for creating and maintaining meta-models
(M2) and domain-specific models (M1). It is
implemented with the programming language Ada
which was especially developed for the program-
ming of safety-critical applications and allows for
formal proves with the subset SPARK. MOD and
RUNMDB enable the creation of meta-models and
domain-specific models as demanded by Req1.

Any interaction between the RUNMDB and
the Basic Model Interaction (BMI) is per-
formed by model-oriented CRUD (Create, Read,
Update and Delete) commands. For each different
RUNMDB, all that is required is a compati-
ble language specific implementation of the BMI
interface translating generic CRUD commands to
more (language specific) CRUD commands. The
BMI is part of the model-interaction language
EOQ3 (Essential Object Query) [5] formalism.

Additionally, the Model Interaction Processor
(MIP) is a specific implementation of the EOQ3
formalism, which is currently available in Python
and (with reduced functionality) in Ada, and
remains unchanged for every RUNMDB. The MIP
is responsible for the translation of complex and
nested queries to generic CRUD commands. By
applying a model interaction language, a clear sep-
aration between model data storage and model
interaction should be achieved within the frame-
work.

While the BMI is responsible for the commu-
nication between the RUNMDB and the MIP, the
Advanced Model Interaction (AMI) interface is
responsible for the handling of EOQ3 commands,

queries, events, and different (user) sessions for
multi-user support. The formal defined AMI inter-
face enables the efficient expansion of DOMAINES
with further functionality.

Beside the creation of domain-specific lan-
guages and models, the framework provides the
possibility of conducting model transformations
with the Model TRAnsformation Engine (TRA).
TRA is based on theMetaTRAnsformation Lan-
guage (MetaTRA) which is a domain-specific lan-
guage for the creation and execution of determin-
istic model-to-model (M2M) and model-to-text
(M2T) transformations demanded by Req7.

A major difference from other DSM frame-
works is the Tool Qualification Agent (TQA)
which is responsible for the generation of docu-
ments and artifacts required from tool users and
authorities. TQA is built on TRA which has the
possibility to conduct M2T transformations for
document generation.

Since the RUNMDB is an empty DSM run-
time, a Model Persistency Layer (MPL) is
required to persistently store and load models and
meta-models via AMI commands, e.g. from files.
Since MPL is interfaced to the AMI, the MPL is
model and language independent addressing Req8.

The Graphical EDiting (GED) is required
for the model-based visualization and graphical
editing of models. This fulfills Req2.

A further novel component is theVisualization
Verification Tool (VVT). With the VVT it shall
be possible to verify if the representation of models
in the GED to the user of the tool corresponds to
the models in the RUNMDB, addressing Req3.

Due to the formal defined interfaces, every
implementation is interchangeable. A DSM tool
instantiated with DOMAINES consists of the
components RUNMDB, MIP, MPL, GED and
VVT including one or more model transforma-
tions. Each DSM tool must be qualified for itself.
The artifacts of the Tool Qualification Agent
support this activity.

Any component of our framework has to cope
with the issue of qualifiability and certifiability.
The next section describes which measures of
Section 3.4 are (to be) applied. In the following we
differentiate between two different types of mea-
sures. First, measures for the effort reduction by
methods and technology which are partly com-
mon in existing frameworks e.g., providing a tool
qualification kit or the application of restrictions.
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Second, measures for the effort reduction by newly
developed supporting tools.

4.3 Effort Reduction by Methods
and Technology

The following text validates the capability of
DOMAINES to reduce the qualification effort of
DSM software derived from it.

Firstly considering Measure No. 1: Imple-
mentation with a programming language suitable
for safety-critical programming. For this, we uti-
lize the programming language Ada for the imple-
mentation of RUNMDB and MIP. Moreover, the
key functionality of RUNMDB (creating, updat-
ing, reading, and deleting of model elements)
shall later be restricted to Ada SPARK. SPARK
is able to perform formal proofs and guarantees
freedom from runtime errors, this could result

in the fact that this proof does not have to be
additionally executed and provided. Despite the
possibility of conducting object-oriented program-
ming with Ada, we decided to avoid it and use
the procedural programming paradigm. The man-
agement of objects within RUNMDB is performed
by using object-relational mapping where depen-
dencies between objects are resolved by lists and
references.

Decoupling and modularity are addressed by
Measure No. 2. We want to achieve that com-
ponents with a lower impact on aircraft safety
can be certified with lower DAL or TQL and
thus with less effort. E.g., the GED likely has a
higher software complexity and lesser impact on
aviation safety than the RUNMDB and therefore
it is favorable to have less stringent qualification
objectives. It should also be possible to remove
individual components of the framework or use



some of them in other environments, e.g. one may
decide to use a different, possibly more convenient
GED or someone wants to add a new function-
ality to the framework. Moreover, already quali-
fied components could be used, such as qualified
model-checkers or compilers. The straightforward
interchangeability of components is enabled by
AMI and BMI. The AMI interface is defined by
an Extended Backus-Naur Form (EBNF) based
grammar. As long as every input command cor-
responds to this defined grammar, it is possible
to communicate with the MIP and the underly-
ing RUNMDB. In contrast, the BMI interface is
defined based on CRUD commands. Each request
or query is resolved to basic CRUDs within the
MIP. If the RUNMDB is changed, only the further
processing of the CRUDs within the BMI must be
adapted. The aim is that AMI and BMI are for-
mally defined and all possible variants of model
interaction can be tested. Modularity additionally
plays a role in the TRA engine component. As
depicted in Figure 5,TRA is divided into a Trans-
formation Executor, a Transformation Generator,
and the Transformation Model itself based on
the MetaTRAnsformationLanguage (MetaTRA).
Only the Transformation Executor is part of the
DSM tool to be qualified or certified. The Trans-
formation Generator itself does not need to be
qualified. The Transformation Executor is the out-
put of the Transformation Generator for a specific
transformation model. When the Transformation
Executor is verified, this is equivalent to an out-
put verification for the Transformation Generator.
Thus, only the Transformation Executor has to
undergo further qualification or certification activ-
ities.

As a further point, Measure No. 3 is applied:
provide a tool qualification kit to tool users. The
deployment of a tool qualification kit is the pur-
pose of the TQA. For the efficient and reliable
generation and deployment, M2T transformations
of TRA shall be used. The following documents,
for example, should later be generated: Require-
ments documents including tool high-level and
tool low-level requirements, testing results from
tool testing against the tool requirements and
traceability data for the traceability between tool
requirements, tool implementation and tool test-
ing [23].

Measure No. 4 - Application of restrictions,
is addressed through a restrictive and simplified

meta-modeling language (MOD), the use of text-
based constraints, the application of the multi-
level modeling concept, the usage of an Extended-
Backus Naur Form grammar for command def-
inition [56] [55], and restrictive rule scheduling.
Our meta-modeling language, shown in Figure 6,
is based on simplicity, which means that compared
to other (meta)-modeling languages, functional-
ity has been reduced to the one which is required
from the described use cases to facilitate the certi-
fication process. This finally leads to a restriction
of the modeling possibilities. MOD allows to cre-
ate Classes, Attributes, and Units as well as to
connect Classes with each other via Composi-
tions, Inheritances and Associations. In addition,
models can be structured using Namespaces and
further restrictions can be created using Mathe-
matical Constraints and String-based constraints.
The elements of this language are limited to the
8 different elements. Each of these is itself a
StructureElement which is more or less similar
to EObjects from the Ecore meta-language. The
StructureElement is required for the interchange-
ability of instances on M1 level. Due to Req5,
it is not necessary to be able to model opera-
tions. Therefore, operations are not part of the
meta-language [56]. In addition to the restricted
meta-modeling language itself, we apply concepts
of multi-level modeling [7]. With the introduction
of potency values (@), it is possible to restrict the
allocation of values to specific modeling levels. For
example, we already want to specify at the M3
level, that attributes should be given a value at
the M1 level instead of only having influence from
one modeling level to the one above (M3 -> M2,
M2 -> M1). This is denoted by the ’@2’ sym-
bol behind the value attribute. This allows us
to use the M3 language definition to influence
and restrict M1 models to be created. Another
example is that we want to achieve that each
attribute is already assigned a data type when
the domain-specific language is created (M2 level)
and this cannot be changed at M1 level denoted
by the ’@1’ symbol. As is depicted in Figure 6,
we additionally provide the possibility to define
constraints to restrict modeling possibilities on
M1 level. Constraints are divided into mathemat-
ical constraints and string-based constraints and
are formally defined by an Extended-Backus Naur
Form (EBNF) grammar which is itself strongly
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restrictive [55]. DOMAINES uses a restrictive rule
scheduling to execute transformations. The goal
of restrictive rule scheduling is to ensure that each
rule has a well-defined preceding and succeeding
rule. This enables deterministic rule sequencing
according to our properties for determinism pre-
sented in Section 3. The rule sequencing corre-
sponds to a restrictive state diagram. Each rule
corresponds to a node in the graph of the state dia-
gram. The transformation begins at the start node
and ends at the defined end node. The transition
from one rule to the successor rule is defined by

an edge between the rule nodes. Parallel execution
paths are not permitted by the restrictions.

The usage of formal methods to verify the
correctness of implementations is addressed in
Measure No. 5. We aim for an implementa-
tion that conforms to SPARK, at least with the
core functionality of creating and updating mod-
els. The definition of the transformation language
is based on the formal methods of graph rewrit-
ing. In the specification, a transformation rule
is divided into left-hand side patterns and right-
hand side patterns. The execution of the rule is



specified by a double pushout DPO-approach [19].
This approach enables the formal verification of
the correct implementation of a transformation
rule.

Measure No. 7 is a measure that applies
to every component of the DOMAINS framework
is the explicit decision to use algorithms and
implementation methodologies that are as
simple and comprehensible as possible in
order to ease qualification and certification pro-
cesses. This includes, for instance, the utilization
of the non-recursive descent parser technology
(LL(k)) instead of more complex, powerful, and
faster bottom-up LR parsing algorithms. One
huge advantage of an LL(k) parser is that the algo-
rithm is comprehensible and does not require any
pointers. Moreover, the algorithm is highly com-
prehensible. The implementation of RUNMDB
makes extensive use of an advantage of the
Ada programming language - the application of
self-defined and comprehensible data types. This
should increase the comprehensibility of the code
and thus reduce the susceptibility to errors. In
addition, this is intended to avoid errors caused
by the use of incorrect data types.

4.4 Effort Reduction by Supporting
Tools

During our work on the certifiable DSM frame-
work DOMAINES, we have identified additional
ways to support the reduction of the qualification
effort.

Creating the necessary qualification artifacts
for a DSM tool in the tool qualification process
is associated with an immense manual effort for
the tool user. For this reason, DOMAINES has a
software component that supports the tool user
in creating these artifacts, the Tool Qualifica-
tion Agent (TQA). It enables a model-based
and automated generation of the required doc-
uments. The information for this is read from
the models of the DSM tool, e.g. domain-specific
model, meta-model, and transformation models.
The transformation models, for example, contain
information about the configuration, the schedul-
ing and the individual rules of the model transfor-
mation. From this information, specifically devel-
oped model transformations for tool qualification
automatically generate qualification documents.
The model-based and automated approach of the
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Tool Qualification Agent should reduce the man-
ual effort by an amount that makes the creation
and use of custom DSM frameworks in avionics
attractive.
The tool life cycle, which is supported by the Tool
Qualification Agent, corresponds to a V-process,
as depicted in Figure 7. At the operational level
of the tool life cycle, the tool user is responsi-
ble for the manual creation of the operational
requirements and the operational tool testing. The
operational requirements are too abstract to be
generated automatically by the Tool Qualification
Agent, because the information is not stored in
the models of the DSM tool. In the tool develop-
ment process, the Tool Qualification Agent should
generate the functional requirements and design
requirements automatically. In the verification
process, the Tool Qualification Agent should auto-
matically generate the test documents (including
test results). In addition, the Tool Qualification
Agent is responsible for the traceability between
the requirements and the tool testing. However,
all created qualification artifacts must be manu-
ally reviewed by the tool user, as specified in the
DO-330 standard.

Another point that, in our opinion, contributes
to the goal of a DSM framework that can be used



in the safety-critical avionics domain is the intro-
duction of a visualization verification tool
(VVT). In an automated and tool-based devel-
opment process, the developer needs to trust the
visualization of object-based models. It is not
convenient to verify in a poorly human-readable
persistency file that the visualized and the stored
models are identical. A typical problem might be
that the developer deletes a modeling element,
but for some reason, this change is only visualized
and not propagated to the MDB. Another exam-
ple originates from the human factors domain.
What if the developer accidentally moves a block
far away from the center of the model and for-
gets about its existence, however, the block is
still there. In both cases, the stored model dif-
fers from the intention of the developer and thus
leads to unintended behavior. Especially in the
safety-critical domain, this needs to be avoided.
The visualization per se does not ensure that dis-
played models match the data in the RUNMDB.
This would require to qualify the visualization as
a development tool with TQL-1 and respective
effort. Rather a separate verification tool for the
visualization is used as depicted in Figure 8. This
allows qualification according to TQL-5, which
means highly reduced qualification effort.

Measures from Table 2 taken for our approach
to reduce the qualification or certification effort
are summarized in the Table 3. It is important
to note that these are primarily ideas and initial
approaches. First prototypes already exist, how-
ever, still work needs to be done to quantify the
benefits of the measures taken in DOMAINES
towards simplified certification of DSM software.

4.5 Current Status of the
DOMAINES Implementation

To validate the DOMAINES concept, a proto-
type was and is being developed. This prototype
is available in the following git-repository: https:
//gitlab.com/domaines/domaines-main.

The current functionality of the prototype is to
send strings or files with strings as AMI commands
via the MIP and the BMI to the RUNMDB using
a command line web-interface. Meta-models and
domain-specific models can be created and modi-
fied in the RUNMDB. In addition, model informa-
tion can be queried and elements can be deleted.
With a read visualization, based on PlantUML,

created models can be displayed. Instructions for
creating an example avionics use case are available
in the repository. This example involves the cre-
ation of the meta-model (M2) depicted in Figure
9. The M2 model allows for the creation of Devices
which could be either Devices in general or spec-
ifications such as Switches, Sensors, or Actuators.
EveryDevice or specialization of aDevice contains
IOs (Input/Output Interfaces). IOs are connected
with each other via Connections. Each object has
attributes such as Size and Power of a Device.

Based on this M2 meta-model it is possible to
create a corresponding M1 domain-specific model.
Due to the model size, the M1 domain-specific
model is not suitable to be shown here. Please refer
to the visualization in the prototype. The example
from the manual includes the creation of four Sen-
sors, two Input-Output Modules (IOM), a Switch,
a Management Module, an Actuator Control, and
two Actuators.

Beside the creation of M2 and M1 models,
the prototype can demonstrate methods to pre-
vent possible misbehavior of the implementation
or the user. The manual of the prototype gives two
different scenarios:

• Send a command to the AMI which is not
covered by the defined grammar. Wrong com-
mands are rejected so that no misbehavior can
be triggered within the RUNMDB.

• Send a command to the AMI with references
to objects which are not available. Commands
addressing objects not available within the
model will be rejected to prevent unexpected
behavior.

The prototype is continuously being developed.
The next step is the integration of TRA. This
should then make it possible to perform basic
M2M transformations within the prototype.

After problems, proposed solutions and the
own approach have been described in detail, the
classification and delimitation to existing research
and projects follows.

5 Related Work

DOMAINES is not the first approach that aims
for a qualified use of DSM. In the follwing we
list related work. As a teaser it can however be
stated that there is no approach describing such a

https://gitlab.com/domaines/domaines-main
https://gitlab.com/domaines/domaines-main
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Fig. 8 DOMAINES Visualization Verification Tool in interaction with the Graphical Editor [60]

Table 3 Overview of Planed and Implemented Measures

Measure Implementation

1 Implementation with a programming language
suitable for safety-critical programming and
avoidance of OOP

Implementation with Ada (SPARK) and
object relational mapping

2 Decoupling and modularity Decoupling of components via AMI and BMI
for different levels of qualification and certifi-
cation effort, decoupled transformation gener-
ator and executor

3 Provide a tool qualification kit to tool users Model-based and automated generation of
requirements, test documents, and traceabil-
ity data

4 Model restrictions Restricted modeling possibilities due to
simplified modeling language and con-
cepts of multi-level modeling, design of an
EBNF based constraint language, restrictive
rule scheduling

5 Visual Verification Tool (VVT) Ensuring that the visualization of the models
corresponds to the data in the RUNMDB.

6 Tool Qualification Agent (TQA) Responsible for qualification issues based on
M2T transformations

7 Simple and comprehensible algorithms and
implementations

LL(k) parsers, avoidance of pointers

comprehensive redesign of a DSM framework for
certification as DOMAINES.

Within the scope of the Automotive Industry
Working Group of the Eclipse Foundation, there
was an approach to enable tool developers to use

Eclipse as a platform for the development of qual-
ifiable plugins within WP5 [21]. However, as far
as can be seen from the available information,
TQL-1 is excluded due to its high complexity. In
addition, it is not clear whether this project was
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pursued further after the concept phase. Similarly,
Matlab Simulink claims to have a Tool Qualifi-
cation Kit for the DO-178C standard. However,
more detailed information is not publically avail-
able. We are not aware of any other approaches to
make a framework of domain-specific modeling or
parts of it qualifiable or certifiable.

For specific domains qualified approaches
exist. Mainly certified code generators for dedi-
cated models exist. Probably the most prominent
example is SCADE [17]. SCADE is a model-
based development environment for safety-critical
embedded software. The code generator from
SCADE models has been qualified as a develop-
ment tool for DO-178B software up to Level A and
DO-178C/DO-330 at TQL-1 [17]. Another quali-
fied code-generator is the Gene-Auto [58], which
is a qualified C code generator from mathematical
models under Matlab-Simulink and Scilab-Scicos.
TargetLink from dSpace [18] is a code generator
for C code from Mathworks Simulink /Stateflow
and is certified to ISO26262, ISO 25119, and
IEC 61508 standards. Equally as TargetLink, the
qualifiable code generation and verification tool
QGen [1] is based on Simulink and Stateflow mod-
els. It is able to generate MISRA C code as well as
SPARK (Ada subset) code which makes this gen-
erator suitable for DO-178C software. Moreover,
when generating SPARK code, the code can be
formally analyzed.

Approaches to at least reduce the qualification
or certification effort exist in the form of model
checkers or code analyzers. In [59] a case study

was conducted in providing a qualification pack-
age for the Kind 2 model checker [13]. Polyspace
from Mathworks [36] is a static code analysis tool,
which is able to find bugs and formally proves
the absence of critical runtime errors of source
code from C, C++, and Ada programming lan-
guages. Moreover, Polyspace provides a DO178C
qualification kit [59]. Other model checkers include
UPPAAL, which can check invariant and reacha-
bility properties [10] or NuSMV [14] which is an
open-source symbolic model-checker.

Last, there is an approach to support qualifi-
cation administratively, by including certification
information in development models [54] [33]. The
IEC 61508 standard is integrated into a UML
profile in order to enrich software models with
certification information. Moreover, this profile is
compliant with this standard.

6 Conclusion and Outlook

With this paper, we showed which difficulties
arise when using DSM in (safety-critical) sys-
tems and software. In principle, DSM offers many
advantages for the avionics domain, but exist-
ing tools and software can only be used in areas
not liable to qualification itself or only to a very
limited extend and with great effort as qualified
tool or certified software. A distinction is made
in the areas of application between development
and practical use in the aircraft. We believe that
there is currently no way to apply DSM in the
aircraft at runtime except a manual verification



of generated implementations. DSM is already
being used for (safety-critical) system develop-
ment. Nevertheless, we are of the opinion that
the effort to make generated development arti-
facts usable is immensely high. The reasons for the
high effort were analyzed and measures for mit-
igation were made. Moreover, we introduced our
DSM framework DOMAINES which is currently
under development and is designed to be qualifi-
able and certifiable. In doing so, we address which
of the measures are and in the future be applied
to reduce the qualification and certification effort.
We see the introduction of a Tool Qualifica-
tion Agent (TQA), the implementation with Ada
(SPARK), the deterministic behavior of transfor-
mations, and the Visualization Verification Tool
(VVT) as key points. More research has, however,
to be conducted to quantify the effort reduc-
tion of a possible qualification or certification.
The completion, validation and quantification of
DOMAINES is subject to future research.
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