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Abstract

Objective To demonstrate how the Observational Healthcare Data Science and Informatics (OHDSI)
collaborative network and standardization can be utilized to externally validate patient-level prediction
models at scale. Materials & Methods Five previously published prognostic models (ATRIA, CHADS2,
CHADS2VASC, Q-Stroke and Framingham) that predict future risk of stroke in patients with atrial
fibrillation were replicated using the OHDSI frameworks and a network study was run that enabled the
five models to be externally validated across nine datasets spanning three countries and five independent
sites. Results The five existing models were able to be integrated into the OHDSI framework for patient-
level prediction and their performances in predicting stroke within 1 year of initial atrial fibrillation
diagnosis for females were comparable with existing studies. The validation network study took 60 days
once the models were replicated and an R package for the study was published to collaborators at
https://github.com/OHDSI/StudyProtocolSandbox/tree/ master/ExistingStrokeRiskExternalValidation.
Discussion This study demonstrates the ability to scale up external validation of patient-level prediction
models using a collaboration of researchers and data standardization that enable models to be readily
shared across data sites. External validation is necessary to understand the transportability and
reproducibility of prediction models, but without collaborative approaches it can take three or more years
to be validated by one independent researcher. Conclusion In this paper we show it is possible to both
scale-up and speed-up external validation by showing how validation can be done across multiple
databases in less than 2 months.

Background

Observational healthcare data often contains longitudinal medical records for large heterogeneous
populations. There has been increased interest in learning patient-level prediction models using these
real world datasets with the aim of improving healthcare. These patient-level prediction models can be
used to identify high-risk subgroups that could benefit from interventions. It is important to ensure a
model has good performance before it is used clinically.

Models are often internally validated using the development dataset by withholding a subset of that data
from the model training stage so that it can be used for evaluating the model performance. The majority
of patient-level prediction models will report internal validation. External validation is accomplished by
evaluating the model on a new dataset (that is different from the development dataset). Few published
patient-level prediction models are externally validated and research has shown that it often takes three
or more years for external validation to occur once a model is published [1].

External validation of a patient-level prediction model can provide useful insights into the model. When a
model is validated on a population that has similar characteristics to the development data population
the generalizability of the model is investigated (i.e., how well the model performs when making
predictions on similar patients). When a model is validated on a population that has different
characteristics to the development data population the transportability of the model is investigated (i.e.,
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how well the model performs on different patients). Many observational datasets are not representative
of the whole population, so the transportability performance of the model discovered during external
validation is important to know when identifying who the model can be broadly applied to. For example,
some clinical guidelines recommend treatment stratification for patients based on applying a simple risk
score model that was developed on a small population and the transportability on the general population
may never have been studied.

External validation is a slow process due to the difficulty finding suitable data to replicate a prediction
model on and difficulty replicating a prediction model (e.g., writing code to correctly extract the same
model covariates from the new data). Often published papers lack the information required to replicate
the model or subjectivity (e.g., in defining medical conditions or variables) can be an issue causing
models to be replicated incorrectly. This prevents efficient and large-scale external validation which likely
slows down clinical uptake of published patient-level prediction models or results in the models being
applied clinically to patient populations where the model transportability is unknown.

A collaborative approach to external model validation has been proposed to enable extensive evaluation
of prediction models [2]. The Observational Healthcare Data Science and Informatics (OHDSI) network is
a community of researchers that are working towards the common goal of improving the analysis of
observational data. The OHDSI community have developed standardizations that enable efficient
collaboration across research sites. The main standardization is the common data structure and
vocabulary used by all collaborators known as the Observational Medical Outcomes Partnership (OMOP)
common data model. The OMOP common data model ensures all researchers have their data in the
same structure so analysis codes such as SQL can be shared across sites. This has enabled the
development of analysis packages in R for causal inference and patient-level prediction that can be used
by any researcher with data in the OMOP common data model. The OHDSI collaborative network,
common data model and patient-level prediction package now present the opportunity to scale up
external validation.

The aim of this study is to demonstrate that the OHDSI tools and OMOP common data model can
improve the ability to perform external validation. Instead of taking years to externally validate a model, it
may now be possible to apply a prediction models to a large number of datasets in a short period of

time. We picked the problem of predicting stroke in atrial fibrillation patients as there are multiple existing
models that are used clinically, namely ATRIA (no prior stroke model) [3], Framingham (no prior stroke
model) [4], CHADS, [5], CHADS,-VASc [6] and Q-Stroke (female model) [7]. We show these models can be
replicated using the OHDSI standardization and then externally validated across numerous data sites at
scale.

Methods

Existing stoke prediction models
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We chose the problem of predicting stroke in patients with atrial fibrillation as it has been well studied
and is one of the only prediction problems to have been extensively validated. Therefore, we have ample
benchmarks to compare to this study’s validations. The existing models we replicated were ATRIA,
CHADS,, CHA,DS, VASc, Framingham and Q-Stroke.

The Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) [3] model was developed on a cohort of
7,284 patients who were 18+ and had an atrial fibrillation outpatient diagnosis during 1997 or 1998 and
internally validated on 3,643 patient hold out set obtaining an AUROC of 0.72. In the same paper, the
authors also externally validated the model on a cohort of 33,247 patients aged 21+ with inpatient or
outpatient atrial fib or flutter during 2006-2009, obtaining an AUROC of 0.7. The Congestive heart failure,
Hypertension, Age > 75, Diabetes, prior Stroke/transient ischemic attack (CHADS,) score [5] was
developed by combining two other stroke prediction models (using the variables from these models and
assigning points) and was validated on 1,733 patients aged 65 to 95 years who had nonrheumatic AF.
The CHADS, score obtained an AUROC of 0.81 on this population. The CHA,DS, VASc score [6] is
another score based model that was developed using knowledge of risk factors. The model was
validated on a cohort of 1,577 patients who were 18+ and had AF during 2003 to 2004 from 35

countries. The model obtained an AUROC of 0.61 for this patient population. The Framingham score [4]
model was based on a Cox model developed using data from 705 patients aged 55 to 94 with initial atrial
fibrillation. The internal validation, using a bootstrap approach, showed an AUROC of 0.66. The Q-Stroke
[7] model was developed using primary care data from the UK consisting of 3,549, 478 patients aged 25-
84 with no prior stroke or anticoagulation use (except aspirin) and internally validated on 1,897,

168 similar patients. When applying the model to predict the 10-year risk of stroke in female patients
with AF at baseline, the AUROC was 0.65.

The existing models include a small number of variables, Table 1 summarizes the variables included in
each model. Some of the variables are unlikely to be available in claims data and these are highlighted in
red. A large number of Q-Stroke variables are not commonly found in claims data (or are UK specific), so
this model is difficult to replicate in external non-UK databases. Although the internal validation for some
of the models was as high as 0.8, previous external validation of the models tends to achieve an AUROC
between 0.6 and 0.7.

The complete definitions for each variable (sets of SNOMED CT or RXNorm codes) are provided in
Appendix A.

Prediction task

Within a target population of female patients with newly diagnosed atrial fibrillation and no prior stroke
predict who will develop a stroke 1 to 365 days after initial diagnosis of atrial fibrillation.
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Target populations definitions

The existing models were applied to two target populations. Both target populations consisted of female

patients newly diagnosed with atrial fibrillation and no prior stroke or anticoagulant use but target
population 1 was patients ages 65 or older and target population 2 was all ages.

Target population 1: The target populations was defined as females aged 65-95 with either:

e 2 atrial fibrillation records
e 1 atrial fibrillation in an inpatient setting

e 1 atrial fibrillation with an ECG within 30 days prior

and at least 730 days prior database observation and no prior stroke and no prior anticoagulant.

Target population 2: The target populations was defined as females with either:

e 2 atrial fibrillation records
1 atrial fibrillation in an inpatient setting

e 1 atrial fibrillation with an ECG within 30 days prior

and at least 730 days prior database observation and no prior stroke and no prior anticoagulant.

Outcome definition
The stroke outcome was defined as:

e An ischemic or hemorrhagic stroke recorded with an inpatient or ER visit

The code sets used to define atrial fibrillation, ECG and ischemic or hemorrhagic stroke are presented in

Appendix B. The full analysis code (data creation and model evaluation) is available at:

https://github.com/OHDSI/StudyProtocolSandbox/tree/master/ExistingStrokeRiskExternalValidation

Time-at-risk
We predicted stroke occurring 1 day until 365 days after the initial atrial fibrillation start date.

Sensitivity analysis
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As using anticoagulants can impact a patient’s risk of stroke, in addition to the two target populations we
did a sensitivity analysis where we removed people who had an anticoagulant prescription record that
may have intervened in the stroke development. In the additional sensitivity target populations we
censored patients at the point an anticoagulant was recorded, so any patient with an anticoagulant
during the time-at-risk period was effectively removed from the target population unless they had a stroke
prior to the anticoagulant,

Statistical analysis

The prediction model performances were evaluated using the area under the receiver operating
characteristic (AUROC) curve. Discriminative measure and confidence intervals were also calculated
when the data are small.

Datasets
The datasets used to evaluate the models are:

IBM MarketScan® Commercial Database (CCAE) is a United States employer-sponsored insurance health
plans claims database. The database contains claims (e.g. inpatient, outpatient, and outpatient
pharmacy) from private healthcare coverage to employees, their spouses, and dependents, so patients
are aged 65 or younger.

IBM MarketScan® Medicare Supplemental Database (MDCR) represents health services of retirees in the
United States with primary or Medicare supplemental coverage through privately insured fee-for-service,
point-of-service, or capitated health plans. The patients are aged 65 or older.

IBM MarketScan® Multi-State Medicaid Database (MDCD) contains adjudicated US health insurance
claims for Medicaid enrollees from multiple states and includes hospital discharge diagnoses, outpatient
diagnoses and procedures, and outpatient pharmacy claims as well as ethnicity.

Optum®De-Identified Clinformatics® Data Mart Database — Socio-Economic Status (Optum Claims) is an
adjudicated administrative health claims database for members with private health insurance. The
population is primarily representative of US commercial claims patients (0-65 years old) with some
Medicare (65+ years old) however ages are capped at 90 years.

Page 7/19



Optum®de-identified Electronic Health Record Dataset (Optum EHR) is a US electron health record
containing clinical information, inclusive of prescriptions as prescribed and administered, lab results, vital
signs, body measurements, diagnoses, procedures, and information derived from clinical Notes using
Natural Language Processing (NLP).

Stanford Translational Research Integrated Database Environment (STRIDE) is a clinical data warehouse
that supports clinical and translational research at Stanford University. This resource includes the EHR
data of approximately 2 million adult and pediatric patients cared for at either the Stanford Hospital or
the Lucile Packard Children’s hospital. This study was completed on an OMP-CDM adherent instance of
STRIDE.

Columbia University Medical Center's (CUMC) OMOP CDM data come from New York Presbyterian
hospital’s clinical data warehouse. The database comprises EHR data on approximately 5 million
patients and includes information such as diagnoses, procedures, lab measurements and prescriptions.

Ajou Univeresity School Of Medicine (AUSOM) is a database in the format of OMOP-CDM version 5 for
entire EHR data from 1994 to 2018 of Korean tertiary hospital, Ajou university hospital. It contains
medical record of about 2.9 million patients.

The Integrated Primary Care Information (IPCI) is an electronic health care databases containing patients
of Dutch general practitioners.

Each site had institutional review board approval for the analysis approval for the analysis, or used
deidentified data and thus the analysis was determined not to be human subjects research and informed
consent was not deemed necessary at any site.

Results And Discussion

IPCI did not contain inpatient stroke records, so the models were unable to be evaluated on this dataset.
The incidence of stroke in each of the remaining dataset target populations is presented in Table 2. The
incidence of stroke during the 1 year following atrial fibrillation diagnosis in the various target
populations ranged from approximately 1% in CCAE, STRIDE, AUSOM and Optum EHR to 5% in MDCD
and CUMC. Excluding patients with an anticoagulant after atrial fibrillation who did not have a prior
stroke increased the incidence rate for all databases except CCAE and STRIDE. This suggests many
people under 65 who have a stroke within a year of initial atrial fibrillation diagnosis had a prior
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anticoagulant. This may be a consequence of different treatment of patients with atrial fibrillation who
are under 65 compared to being 65 and older. Atrial fibrillation patients who are given an anticoagulant
when they are younger than 65 may have other risk factors prompting the use of an anticoagulant.

The results of the discriminative ability of the five existing models across all seven datasets that had
inpatient stroke recorded are presented in Table 3. As the AUSOM and STRIDE datasets had outcome
counts less than 100, we report the performance in Table 3 but do not include it in the aggregate
summaries due to uncertainty in the estimates as a result of small sample sizes.

Across the datasets with sufficient outcome counts, ATRIA obtained a mean AUROC of 0.61 (range 0.57-
0.64) on the female patients aged 65 or older and a mean AUROC of 0.63 (range 0.58-0.65) on the female
patients of all ages. CHADS, obtained a mean AUROC of 0.58 (range 0.54-0.60) on the female patients
aged 65 or older and a mean AUROC of 0.61 (range 0.56-0.63) on the female patients of all ages.
CHA,DS,VASc obtained a mean AUROC of 0.60 (range 0.55-0.62) on the female patients aged 65 or older
and a mean AUROC of 0.63 (range 0.58-0.65) on the female patients of all ages. Framingham obtained a
mean AUROC of 0.57 (range 0.55-0.59) on the female patients aged 65 or older and a mean AUROC of
0.60 (range 0.56-0.62) on the female patients of all ages. Q-Stroke obtained a mean AUROC of 0.55
(range 0.53-0.56) on the female patients aged 65 or older and a mean AUROC of 0.57 (range 0.54-0.61)
on the female patients of all ages.

The sensitivity analysis shows the AUROC performance of models when removing patients with an
anticoagulant and no stroke or an anticoagulant prior to stroke is comparable or better. This makes
sense, for example consider the hypothetical situation where a clinical risk model correctly assigns a high
risk to a patient who will have a stroke, but this high risk leads to a clinician giving the patient
anticoagulants before the stroke that prevent the stroke occurring. In this situation the model’s
performance will be negatively impacted because of the intervention as the model was correct to assign a
high risk but was wrong due to the intervention preventing the stroke. This raises the issue of evaluating
models that are already being used clinically or prediction problems where existing guidelines are used to
identify patients who should being given preventative medicine. A fair evaluation is simple when there is
no clinical intervention, but complex when preventative medicine exists for the outcome.

The validation performance of the models replicated using the OHDSI patient-level prediction framework
and validated across the OHDSI network are comparable with other published results. The Q-Stroke
model performed the worst out of all the existing models, but this is likely due to many variables of that
model being specific to the UK or not well recorded in claims data. This may indicate that Q-Stroke is not
transportable to the US population. In addition, the performances of the models were worse when applied
to older females as age is a key predictor in many of the models. In future work it would be interesting to
investigate applying machine learning methods to learn more advanced models for predicting stroke in
older patients with atrial fibrillation and no prior stroke.
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The external validation was performed over 60 days by five different research sites. This greatly scales up
the current process for external validation that takes more than three years on average for one other
researcher to implement the model. The large-scale external validation was only possible because i) the
OMOP common data model and OHDSI standardizations enable sharing of analysis code and ii)
collaboration that is possible due to the OHDSI network. We recommend researchers who develop
prediction models gain insight into their model’s transportability by utilizing the OHDSI network'’s external
validation ability. All that is required is to replicate their models using the OHDSI Patient-level prediction
framework, which would also enable other researchers to readily implement the model.

The main limitation of this study was the correct replication of existing models. The reason external
validation rarely occurs is that many published models lack certain details such as how to define
variables, as code lists are often not published. As a best practice patient-level prediction models should
provide full definitions for all variables in the model and provide the model. We used the model’s variable
definitions when published, but when not available we used our own code sets to define the variables.
Another limitation in this study is the limited target populations investigated. We chose females aged 65
or older with no prior stroke as that was the intersection of criteria used when developing the five existing
stroke models but we also wanted to see the impact of restricting to older patients (as many models use
age as a variable), so we included a second target population of all females with no prior stroke. In future
work it would be interesting to investigate the performances of the models across many different target
populations.

Conclusions

In this paper we demonstrated the ability to scale-up external validation by using a collaborative network
where researchers share a common data structure. The existing prediction models were validated on 9
databases across 5 sites within two months. We recommend that researchers utilize the OHDSI network
to externally validate their models at scale to gain insight into the generalizability and transportability of
their models.

In addition, the results show that the existing stroke in atrial fibrillation models do not perform well at
predicting stroke in the target population of older females in datasets we investigated. This prompts
further research into whether a better model can be developed.
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Variable ATRIA Framingham | CHADS, CHA,DS,VASc | Q-
Stroke

Age 85+ X

Age 75-84 X

Age 65-74 X X

Age 60-62 X

Age 63-66 X

Age 67-71 X

Age 72-74 X

Age 75-77 X

Age 78-81 X

Age 82-85 X

Age 86-90 X

Age 91-93 X

Age >93 X

Age 75+ X X

Female X X X

Diabetes X X X X X

CHF X X X

Prior Stroke or TIA X X X

Hypertension X X X X

Systolic blood pressure X X

Total cholesterol:HDL cholesterol ratio X

Townsend deprivation score X

Proteinuria X

eGFR<45 or ESRD X

Vascular disease X

CHF or LV disease X

Smoking status X
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Ethnicity

CHD

Family history of congestive heart

failure

Atrial fibrillation

Rheumatoid arthritis

Chronic renal disease

Valvular heart disease

Internal AUROC
0.72 0.66 0.82 0.61 0.65
External AUROCs
UK EMR 2015 [8] 0.7 (0.69- - 0.68 (0.67- | 0.68 (0.67- -
0.71) 0.69) 0.69)
Swedish EMR 2016 [9] 0.71 (0.70- | - 0.69 (0.69- | 0.69 (0.69- -
0.71) 0.70) 0.70)
Taiwan 2016 [10] - - 0.66 0.70 -
New Zealand, Russia and the - 0.70 (0.68- - - 0.71
Netherlands 2014 [11] 0.73) (0.69-
0.73)
UK EMR 2010 [12] - 0.65 (0.63- 0.66 (0.64- | 0.67 (0.65- -
0.68) 0.68) 0.69)

Table 1 Existing models for predicting stroke risk
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Incidence % (Target population size)

fibrillation no prior
stroke or
anticoagulants (no
anticoagulants during

tar)

Target Population CCAE MDCD MDCR Optum Optum CUMC | AUSOM | STRIDE
claims EHR

T1: Females aged - 4.95 4.40 4.07 1.30 5.46 2.61 1.37

65+ with atrial (25,880) | (89,156) | (110,905) | (149,906) | (3,664) | (268) (3,366)

fibrillation no prior

stroke or

anticoagulants

T2: Females with 1.33 4.61 - 3.49 1.13 4.71 1.76 1.28

atrial fibrillation no (61,224) | (33,262) (139,376) | (189,815) | (4,969) | (455) (4,456)

prior stroke or

anticoagulants

Sensitivity T1: - 5.04 5.26 4.48 1.44 5.99 4.17 1.29

Females aged 65+ (23,586) | (56,511) | (78,353) | (99,212) | (2,872) | (144) (2,094)

with atrial fibrillation

no prior stroke or

anticoagulants (no

anticoagulants during

tar)

Sensitivity T2: 1.28 4.69 - 3.73 1.22 5.04 2.73 1.22

Females with atrial (46,054) | (29,546) (100,757) | (128,409) | (3,910) | (256) (2,786)

Table 2 Target population size in each dataset and the incidence of stroke within 1 year of initial atrial

fibrillation diagnosis
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Target Population | Model CCAE | MDCD | MDCR | Optum | Optum | CUMC | AUSOM | STRIDE
claims | EHR
T1: Females aged | ATRIA - 057 |063 |061 |062 |064 |0.60 0.49
65+ with atrial (0.55- | (0.62- (0.60- | (0.33- | (0.40-
fibrillation no prior 0.58) 0.64) 0.68) 0.87) 0.58)
stroke or CHADS, ; 054 |060 |05 |060 |060 |051 0.48
anticoagulants (0.53- | (0.59- 0.57- | 0.27- | (0.39-
0.56) | 0.61) 0.64) |0.75) | 0.57)
CHA,DS,VASc | - 055 |060 |059 |062 |o062 |0.53 0.52
(0.53- | (0.59- (0.58- | (0.32- | (0.42-
0.57) | 0.61) 0.66) |0.74) | 0.62)
Framingham - 0.55 0.59 0.56 0.58 0.57 0.46 0.57
(0.53- | (0.58- 0.53- | (0.24- | (0.49-
0.56) | 0.60) 0.61) |0.69 |0.65)
Q-Stroke ; 053 |056 |055 |056 |056 |0.56 ;
(0.52- | (0.55- (0.51- | (0.29-
0.55) | 0.57) 0.60) | 0.84)
T2: Females with | ATRIA 062 |058 |- 065 |0.65 |065 |0.73 0.52
atrial fibrillation (0.60- | (0.56- 0.62- | (0.58 | (0.44-
no prior stroke or 0.64) | 0.59) 0.69) 0.89) 0.60)
anticoagulants CHADS, 061 |056 |- 062 |063 |062 |063 0.50
(0.59- | (0.55- 0.59- | (0.43- | (0.42-
0.62) | 0.57) 0.66) |0.83) |0.57)
CHA,DS,VASc | 0.63 | 058 |- 064 |065 |064 |0.73 0.55
(0.61- | (0.56- (0.61- | (0.60- | (0.47-
0.65) | 0.59) 0.68) |0.85 |0.62)
Framingham | 0.61 | 0.56 | - 061 |062 |061 |061 0.57
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(0.59- | (0.55- 0.57- | (0.47- | (0.50-
0.63) | 0.58) 0.64) |0.76) |0.69)
Q-Stroke 061 |054 |- 057 |058 |057 |0.63 -
(0.59- | (0.53- (0.53- | (0.39-
0.63) | 0.56) 0.61) | 0.88)
Sensitivity T1: ATRIA - 056 | 063 |061 |063 |066 |0.69 0.55
Females aged 0.55- | (0.62 | (0.61 | (0.61 | (0.62- | (0.43- | (0.47-
65+ with atrial 0.58) |-0.64) |-0.62) |-0.64) |0.70) |0.95 | 0.62)
fibrillation no prior | -y, e - 054 |061 |059 |o061 |062 061 0.51
stroke or (0.53- | (0.60 | (0.58- | (0.59 | (0.58- | (0.36- | (0.38-
anticoagulants (no 0.56) |-0.62) |0.60) |-0.62) |0.66) |0.85) | 0.63)
anticoagulants
CHA,DS,VASC | - 055 |061 |059 |063 |064 |064 0.55
during tar)
(0.54- | (0.60 | (0.58- | (0.61 | (0.60- | (0.45- | (0.42-
0.57) |-0.62) |0.60) |-0.64) |0.68) |0.83) |0.67)
Framingham | - 054 |059 |057 |059 |059 |0.53 0.51
0.53- | (0.58 | (0.56- | (0.58 | (0.55- | (0.30- | (0.40-
0.56) |-0.60) |0.57) |-0.61) |0.63) |077) |o0.61)
Q-Stroke - 053 |057 |055 |057 |056 |0.61 -
(0.52- | (0.55- | (0.54- | (0.55 | (0.52- | (0.30-
0.55) |0.58) |0.56) |-0.58) |0.61) |0.92)
Sensitivity T2: ATRIA 063 |058 |- 067 |067 |068 |0.79 0.53
Females with (0.61 | (0.56 (0.64- | (0.63- | (0.43-
atrial fibrillation -0.66) | -0.59) 0.71) |094) |0.63)
no prior stroke or | oy g 062 |056 |- 064 |065 |065 |0.72 0.51
anticoagulants (no (0.60 | (0.55 (0.61- | (0.53- | (0.41-
anticoagulants 0.65) | -0.58) 0.68) |091) |0.62)
during tar)
CHA,DS,VASc | 0.65 |0.58 |- 065 |0.67 |067 |0.81 0.55
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(0.62 | (0.56 (0.63- | (0.71- (0.44-

-0.67) | -0.59) 0.70) 0.90) 0.65)
Framingham 0.63 0.56 - 0.63 0.64 0.63 0.67 0.52

(0.61 | (0.55 (0.59- | (0.52- (0.43-

-0.65) | -0.58) 0.67) 0.82) 0.61)
Q-Stroke 0.62 0.55 - 0.58 0.6 0.58 0.68 -

(0.60 | (0.53 (0.54- | (0.42-

-0.64) | -0.56) 0.62) 0.94)

Table 3 Discrimination performance of the existing models across the datasets

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

e supplement1.docx

Page 19/19



https://assets.researchsquare.com/files/rs-2577/v1/supplement_1.docx

