1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians 71, 209-249, doi:10.3322/caac.21660 (2021).
2 Strobel, O., Neoptolemos, J., Jäger, D. & Büchler, M. W. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 16, 11-26, doi:10.1038/s41571-018-0112-1 (2019).
3 Solomon, S., Das, S., Brand, R. & Whitcomb, D. C. Inherited pancreatic cancer syndromes. Cancer J 18, 485-491, doi:10.1097/PPO.0b013e318278c4a6 (2012).
4 Grover, S. & Syngal, S. Hereditary pancreatic cancer. Gastroenterology 139, 1076-1080, 1080.e1071-1072, doi:10.1053/j.gastro.2010.08.012 (2010).
5 Earl, J. et al. A comprehensive analysis of candidate genes in familial pancreatic cancer families reveals a high frequency of potentially pathogenic germline variants. EBioMedicine 53, 102675, doi:10.1016/j.ebiom.2020.102675 (2020).
6 Hu, C. et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. Jama 319, 2401-2409, doi:10.1001/jama.2018.6228 (2018).
7 Parenti, G., Andria, G. & Ballabio, A. Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 66, 471-486, doi:10.1146/annurev-med-122313-085916 (2015).
8 Yang, C. & Wang, X. Lysosome biogenesis: Regulation and functions. J Cell Biol 220, doi:10.1083/jcb.202102001 (2021).
9 Goh, L. K. & Sorkin, A. Endocytosis of receptor tyrosine kinases. Cold Spring Harbor perspectives in biology 5, a017459, doi:10.1101/cshperspect.a017459 (2013).
10 Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nat Rev Cancer 5, 886-897, doi:10.1038/nrc1738 (2005).
11 Shin, J. et al. Oncogenic effects of germline variants in lysosomal storage disease genes. Genet Med 21, 2695-2705, doi:10.1038/s41436-019-0588-9 (2019).
12 Amaravadi, R., Kimmelman, A. C. & White, E. Recent insights into the function of autophagy in cancer. Genes Dev 30, 1913-1930, doi:10.1101/gad.287524.116 (2016).
13 Sidransky, E. & Lopez, G. The link between the GBA gene and parkinsonism. Lancet Neurol 11, 986-998, doi:10.1016/S1474-4422(12)70190-4 (2012).
14 White, E. The role for autophagy in cancer. J Clin Invest 125, 42-46, doi:10.1172/JCI73941 (2015).
15 Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633-637, doi:10.1038/nature12138 (2013).
16 Perera, R. M. et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524, 361-365, doi:10.1038/nature14587 (2015).
17 Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 25, 717-729, doi:10.1101/gad.2016111 (2011).
18 Wu, W. K. et al. The autophagic paradox in cancer therapy. Oncogene 31, 939-953, doi:10.1038/onc.2011.295 (2012).
19 Huang, K. L. et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 173, 355-370.e314, doi:10.1016/j.cell.2018.03.039 (2018).
20 Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov 12, 31-46, doi:10.1158/2159-8290.CD-21-1059 (2022).
21 Risch, N., Burchard, E., Ziv, E. & Tang, H. Categorization of humans in biomedical research: genes, race and disease. Genome Biol 3, comment2007, doi:10.1186/gb-2002-3-7-comment2007 (2002).
22 Kittles, R. A. & Weiss, K. M. Race, ancestry, and genes: implications for defining disease risk. Annu Rev Genomics Hum Genet 4, 33-67, doi:10.1146/annurev.genom.4.070802.110356 (2003).
23 Xu, C., Sakai, N., Taniike, M., Inui, K. & Ozono, K. Six novel mutations detected in the GALC gene in 17 Japanese patients with Krabbe disease, and new genotype-phenotype correlation. J Hum Genet 51, 548-554, doi:10.1007/s10038-006-0396-3 (2006).
24 Li, J. et al. Regulation and function of autophagy in pancreatic cancer. Autophagy 17, 3275-3296, doi:10.1080/15548627.2020.1847462 (2021).
25 Perera, R. M. & Bardeesy, N. Pancreatic Cancer Metabolism: Breaking It Down to Build It Back Up. Cancer Discov 5, 1247-1261, doi:10.1158/2159-8290.CD-15-0671 (2015).
26 Guo, J. Y., Xia, B. & White, E. Autophagy-mediated tumor promotion. Cell 155, 1216-1219, doi:10.1016/j.cell.2013.11.019 (2013).
27 Noguchi, M. et al. Autophagy as a modulator of cell death machinery. Cell Death Dis 11, 517, doi:10.1038/s41419-020-2724-5 (2020).
28 Kimmelman, A. C. The dynamic nature of autophagy in cancer. Genes Dev 25, 1999-2010, doi:10.1101/gad.17558811 (2011).
29 Autophagy-Deficient Pancreatic Cancer Cells Depend on Macropinocytosis. Cancer Discov 11, OF28, doi:10.1158/2159-8290.CD-RW2021-045 (2021).
30 Su, H. et al. Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell 39, 678-693 e611, doi:10.1016/j.ccell.2021.02.016 (2021).
31 Arumugam, T. & Logsdon, C. D. S100P: a novel therapeutic target for cancer. Amino acids 41, 893-899, doi:10.1007/s00726-010-0496-4 (2011).
32 Arumugam, T., Simeone, D. M., Van Golen, K. & Logsdon, C. D. S100P promotes pancreatic cancer growth, survival, and invasion. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 5356-5364, doi:10.1158/1078-0432.Ccr-05-0092 (2005).
33 Ye, Y. et al. High expression of AFAP1-AS1 is associated with poor survival and short-term recurrence in pancreatic ductal adenocarcinoma. Journal of translational medicine 13, 137, doi:10.1186/s12967-015-0490-4 (2015).
34 Yu, M. et al. Apolipoprotein M could inhibit growth and metastasis of SMMC7721 cells via vitamin D receptor signaling. Cancer management and research 11, 3691-3701, doi:10.2147/cmar.S202799 (2019).
35 Zhou, Y. et al. The effects and possible mechanism of action of apolipoprotein M on the growth of breast cancer cells. Molecular biology reports 49, 1171-1179, doi:10.1007/s11033-021-06945-2 (2022).
36 Xue, H. et al. Apolipoprotein M inhibits proliferation and migration of larynx carcinoma cells. Sci Rep 10, 19424, doi:10.1038/s41598-020-76480-w (2020).
37 Knudson, A. G., Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68, 820-823, doi:10.1073/pnas.68.4.820 (1971).
38 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
39 McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303, doi:10.1101/gr.107524.110 (2010).
40 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids research 38, e164-e164, doi:10.1093/nar/gkq603 (2010).
41 McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biology 17, 122, doi:10.1186/s13059-016-0974-4 (2016).
42 Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434-443, doi:10.1038/s41586-020-2308-7 (2020).
43 Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic acids research 42, D980-D985, doi:10.1093/nar/gkt1113 (2014).
44 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 29, 15-21, doi:10.1093/bioinformatics/bts635 (2013).
45 Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323, doi:10.1186/1471-2105-12-323 (2011).
46 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8 (2014).
47 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30, doi:10.1093/nar/28.1.27 (2000).
48 Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics (Oxford, England) 27, 1739-1740, doi:10.1093/bioinformatics/btr260 (2011).
49 Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607, doi:10.1038/nature11003 (2012).