The rotor operating stiffness of high-speed motorized spindles (HSMSs) is key to machining accuracy. Because HSMSs are difficult to load due to their high speeds, a contact loading device was developed to test rotor operating stiffness. The dynamic support stiffness of the front/rear bearings (DSSB) is the main factor affecting the rotor operating stiffness. Two novel experimental schemes for measuring the DSSB are proposed: 1) indirect measurement—by analysing deformation displacements at two points on the external loading rod of the HSMS, and 2) direct measurement—by eddy current sensors installed near the front/rear bearings. Based on the experimental device and two experimental schemes, the influences of working-condition parameters on the DSSB were tested. The results show that the proposed experimental device and two experimental schemes can effectively and accurately measure rotor operating stiffness and DSSB at speeds of up to 30,000 rpm. However, because the tapered connection gap between the loading rod and rotor increases the measured deformation displacement, the DSSB measured by the indirect measurement scheme was relatively small. The DSSB decreases with speed and increases with radial force and working temperature. This study provides a new experimental basis for the quality inspection of finished HSMSs and the verification of theoretical bearing stiffness models.