[1] L. Belbasis, V. Bellou, E. Evangelou, J. P. A. Ioannidis, and I. Tzoulaki, “Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses,” Lancet Neurol., vol. 14, no. 3, pp. 263–273, Mar. 2015, doi: 10.1016/S1474-4422(14)70267-4.
[2] Y. Tian, H. Yin, X. Deng, B. Tang, X. Ren, and T. Jiang, “CXCL12 induces migration of oligodendrocyte precursor cells through the CXCR4‑activated MEK/ERK and PI3K/AKT pathways,” Mol. Med. Rep., vol. 18, no. 5, pp. 4374–4380, 2018.
[3] C. S. Frohman, E.M.; Racke, M.K.; Raine, “No TitleMultiple sclerosis—The plaque and its pathogenesis.,” N. Engl. J. Med., pp. 942–955, 2006.
[4] M. M. Goldenberg, “Multiple sclerosis review,” Pharm. Ther., vol. 37, no. 3, p. 175, 2012.
[5] R. J. M. Franklin and C. Ffrench-Constant, “Remyelination in the CNS: from biology to therapy,” Nat. Rev. Neurosci., vol. 9, no. 11, pp. 839–855, Nov. 2008, doi: 10.1038/nrn2480.
[6] M. Aliomrani, M. A. Sahraian, H. Shirkhanloo, M. Sharifzadeh, M. R. Khoshayand, and M. H. Ghahremani, “Blood concentrations of cadmium and lead in multiple sclerosis patients from Iran,” Iran. J. Pharm. Res. IJPR, vol. 15, no. 4, p. 825, 2016.
[7] B. Paknejad, H. Shirkhanloo, and M. Aliomrani, “Is There Any Relevance Between Serum Heavy Metal Concentration and BBB Leakage in Multiple Sclerosis Patients?,” Biol. Trace Elem. Res., vol. 190, no. 2, pp. 289–294, 2019.
[8] C. ffrench-C. Emmanuel Garcion, Andreas Faissner, “No TitleKnockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration,” Development, vol. 128, no. 13, pp. 2485–2496, 2001.
[9] C. ffrench-C. K.L. Blaschuk, E.E. Frost, “No TitleThe regulation of proliferation and differentiation in oligodendrocyte progenitor cells by alphaV integrins,” Development, vol. 127, no. 9, pp. 1961–1969, 2000.
[10] B. W. Kiernan, B. Götz, A. Faissner, and C. Ffrench-Constant, “Tenascin-C Inhibits Oligodendrocyte Precursor Cell Migration by both Adhesion-Dependent and Adhesion-Independent Mechanisms,” Mol. Cell. Neurosci., vol. 7, no. 4, pp. 322–335, Apr. 1996, doi: 10.1006/mcne.1996.0024.
[11] R. D. McKinnon, T. Matsui, M. Dubois-Dalcq, and S. A. Aaronsont, “FGF modulates the PDGF-driven pathway of oligodendrocyte development,” Neuron, vol. 5, no. 5, pp. 603–614, Nov. 1990, doi: 10.1016/0896-6273(90)90215-2.
[12] N. Pringle, E. J. Collarini, M. J. Mosley, C. H. Heldin, B. Westermark, and W. D. Richardson, “PDGF A chain homodimers drive proliferation of bipotential (O-2A) glial progenitor cells in the developing rat optic nerve.,” EMBO J., vol. 8, no. 4, pp. 1049–1056, Apr. 1989, doi: 10.1002/j.1460-2075.1989.tb03472.x.
[13] J. Praet, C. Guglielmetti, Z. Berneman, A. Van der Linden, and P. Ponsaerts, “Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis,” Neurosci. Biobehav. Rev., vol. 47, pp. 485–505, Nov. 2014, doi: 10.1016/j.neubiorev.2014.10.004.
[14] A. Othman, D. M. Frim, P. Polak, S. Vujicic, B. G. W. Arnason, and A. I. Boullerne, “Olig1 is expressed in human oligodendrocytes during maturation and regeneration,” Glia, vol. 59, no. 6, pp. 914–926, Jun. 2011, doi: 10.1002/glia.21163.
[15] F. Mazloumfard, M. Mirian, S.-M. Eftekhari, and M. Aliomrani, “Hydroxychloroquine effects on miR-155-3p and miR-219 expression changes in animal model of multiple sclerosis,” Metab. Brain Dis., pp. 1–9, 2020.
[16] L. Gustafsson, B. Lindstrom, A. Grahnen, and G. Alvan, “Chloroquine excretion following malaria prophylaxis.,” Br. J. Clin. Pharmacol., vol. 24, no. 2, pp. 221–224, Aug. 1987, doi: 10.1111/j.1365-2125.1987.tb03165.x.
[17] A. H. Mackenzie, “Dose refinements in long-term therapy of rheumatoid arthritis with antimalarials,” Am. J. Med., vol. 75, no. 1, pp. 40–45, Jul. 1983, doi: 10.1016/0002-9343(83)91269-X.
[18] D. Plantone and T. Koudriavtseva, “Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review,” Clin. Drug Investig., vol. 38, no. 8, pp. 653–671, Aug. 2018, doi: 10.1007/s40261-018-0656-y.
[19] M. W. Koch et al., “Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis,” J. Neurol. Sci., vol. 358, no. 1–2, pp. 131–137, 2015.
[20] S. Faissner et al., “Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease?,” Mult. Scler. J., vol. 24, no. 12, pp. 1543–1556, 2018.
[21] G. J. Gage, D. R. Kipke, and W. Shain, “Whole Animal Perfusion Fixation for Rodents,” J. Vis. Exp., no. 65, Jul. 2012, doi: 10.3791/3564.
[22] C. Laule et al., “Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology,” Mult. Scler. J., vol. 12, no. 6, pp. 747–753, Nov. 2006, doi: 10.1177/1352458506070928.
[23] M. Aliomrani, M. A. Sahraian, H. Shirkhanloo, M. Sharifzadeh, M. R. Khoshayand, and M. H. Ghahremani, “Correlation between heavy metal exposure and GSTM1 polymorphism in Iranian multiple sclerosis patients,” Neurol. Sci., vol. 38, no. 7, pp. 1271–1278, 2017.
[24] C. Procaccini, V. De Rosa, V. Pucino, L. Formisano, and G. Matarese, “Animal models of Multiple Sclerosis,” Eur. J. Pharmacol., vol. 759, pp. 182–191, Jul. 2015, doi: 10.1016/j.ejphar.2015.03.042.
[25] H. G. Kuhn, T. D. Palmer, and E. Fuchs, “Adult neurogenesis: a compensatory mechanism for neuronal damage,” Eur. Arch. Psychiatry Clin. Neurosci., vol. 251, no. 4, pp. 152–158, Aug. 2001, doi: 10.1007/s004060170035.
[26] W. F. Blakemore and R. J. M. Franklin, “Remyelination in Experimental Models of Toxin-Induced Demyelination,” 2008, pp. 193–212.
[27] R. H. Miller, S. Fyffe-Maricich, and A. C. Caprariello, “Animal Models for the Study of Multiple Sclerosis,” in Animal Models for the Study of Human Disease, Elsevier, 2017, pp. 967–988.
[28] R. J. M. Franklin and S. A. Goldman, “Glia Disease and Repair—Remyelination,” Cold Spring Harb. Perspect. Biol., vol. 7, no. 7, p. a020594, Jul. 2015, doi: 10.1101/cshperspect.a020594.
[29] B. Emery, “Regulation of oligodendrocyte differentiation and myelination,” Science (80-. )., vol. 330, no. 6005, pp. 779–782, 2010.
[30] M. Jana and K. Pahan, “Astrocytes, Oligodendrocytes and Schwann Cells,” in Neuroimmune Pharmacology, Springer, 2017, pp. 117–140.
[31] M. Zawadzka et al., “CNS-Resident Glial Progenitor/Stem Cells Produce Schwann Cells as well as Oligodendrocytes during Repair of CNS Demyelination,” Cell Stem Cell, vol. 6, no. 6, pp. 578–590, Jun. 2010, doi: 10.1016/j.stem.2010.04.002.
[32] E. Zeldich, C.-D. Chen, R. Avila, S. Medicetty, and C. R. Abraham, “The Anti-Aging Protein Klotho Enhances Remyelination Following Cuprizone-Induced Demyelination,” J. Mol. Neurosci., vol. 57, no. 2, pp. 185–196, Oct. 2015, doi: 10.1007/s12031-015-0598-2.
[33] E. G. Baxi et al., “Lineage tracing reveals dynamic changes in oligodendrocyte precursor cells following cuprizone-induced demyelination,” Glia, vol. 65, no. 12, pp. 2087–2098, Dec. 2017, doi: 10.1002/glia.23229.
[34] F. J. Sim, C. Zhao, J. Penderis, and R. J. M. Franklin, “The Age-Related Decrease in CNS Remyelination Efficiency Is Attributable to an Impairment of Both Oligodendrocyte Progenitor Recruitment and Differentiation,” J. Neurosci., vol. 22, no. 7, pp. 2451–2459, Apr. 2002, doi: 10.1523/JNEUROSCI.22-07-02451.2002.
[35] R. H. Woodruff, M. Fruttiger, W. D. Richardson, and R. J. . Franklin, “Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination,” Mol. Cell. Neurosci., vol. 25, no. 2, pp. 252–262, Feb. 2004, doi: 10.1016/j.mcn.2003.10.014.
[36] R. C. Armstrong, T. Q. Le, E. E. Frost, R. C. Borke, and A. C. Vana, “Absence of Fibroblast Growth Factor 2 Promotes Oligodendroglial Repopulation of Demyelinated White Matter,” J. Neurosci., vol. 22, no. 19, pp. 8574–8585, Oct. 2002, doi: 10.1523/JNEUROSCI.22-19-08574.2002.
[37] Y. Zhu et al., “Control of oligodendrocyte generation and proliferation by Shp2 protein tyrosine phosphatase,” Glia, vol. 58, no. 12, pp. 1407–1414, Sep. 2010, doi: 10.1002/glia.21016.
[38] S. L. Fyffe-Maricich, J. C. Karlo, G. E. Landreth, and R. H. Miller, “The ERK2 Mitogen-Activated Protein Kinase Regulates the Timing of Oligodendrocyte Differentiation,” J. Neurosci., vol. 31, no. 3, pp. 843–850, Jan. 2011, doi: 10.1523/JNEUROSCI.3239-10.2011.
[39] V. Tsiperson et al., “Brain-Derived Neurotrophic Factor Deficiency Restricts Proliferation of Oligodendrocyte Progenitors Following Cuprizone-Induced Demyelination,” ASN Neuro, vol. 7, no. 1, p. 175909141456687, Feb. 2015, doi: 10.1177/1759091414566878.
[40] Y. Zhang et al., “Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone-induced demyelination,” Schizophr. Res., vol. 138, no. 1, pp. 8–17, Jun. 2012, doi: 10.1016/j.schres.2012.04.006.
[41] H. A. Arnett, “bHLH Transcription Factor Olig1 Is Required to Repair Demyelinated Lesions in the CNS,” Science (80-. )., vol. 306, no. 5704, pp. 2111–2115, Dec. 2004, doi: 10.1126/science.1103709.
[42] E. G. Rodriguez et al., “Oligodendroglia in cortical multiple sclerosis lesions decrease with disease progression, but regenerate after repeated experimental demyelination,” Acta Neuropathol., vol. 128, no. 2, pp. 231–246, Aug. 2014, doi: 10.1007/s00401-014-1260-8.
[43] Z. Ou et al., “Olig2-Targeted G-Protein-Coupled Receptor Gpr17 Regulates Oligodendrocyte Survival in Response to Lysolecithin-Induced Demyelination,” J. Neurosci., vol. 36, no. 41, pp. 10560–10573, Oct. 2016, doi: 10.1523/JNEUROSCI.0898-16.2016.
[44] T. Kuhlmann, V. Miron, Q. Cuo, C. Wegner, J. Antel, and W. Bruck, “Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis,” Brain, vol. 131, no. 7, pp. 1749–1758, Jul. 2008, doi: 10.1093/brain/awn096.
[45] R. Milo and E. Kahana, “Multiple sclerosis: Geoepidemiology, genetics and the environment,” Autoimmun. Rev., vol. 9, no. 5, pp. A387–A394, Mar. 2010, doi: 10.1016/j.autrev.2009.11.010.
[46] A. Wegener et al., “Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination,” Brain, vol. 138, no. 1, pp. 120–135, Jan. 2015, doi: 10.1093/brain/awu375.
[47] Y. Jia et al., “Cordycepin (3′-deoxyadenosine) promotes remyelination via suppression of neuroinflammation in a cuprizone-induced mouse model of demyelination,” Int. Immunopharmacol., vol. 75, p. 105777, Oct. 2019, doi: 10.1016/j.intimp.2019.105777.