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Abstract
The ability to detect interesting events is instrumental to effectively steer experiments and maximize their
scienti�c e�ciency. To address this, here we introduce and validate three frameworks based on self-supervised
learning which are capable of classifying 1D spectral data using a limited amount of labeled data. In particular,
in this work we focus on the identi�cation of phase transitions in samples investigated by x-ray diffraction. We
demonstrate that the three frameworks, based either on relational reasoning, contrastive learning, or a
combination of the two, are capable of accurately identifying phase transitions. Furthermore, we discuss in
detail the selection of data augmentations, crucial to ensure that scienti�cally meaningful information is
retained.

Introduction
Experimental techniques such as spectroscopy and x-ray diffraction are instrumental in investigating matter
(see, e.g., Ref.1-4). When experiments are performed at modern x-ray facilities, such as x-ray free electron lasers
(XFELs), a vast amount of data are potentially collected over short periods of time. For example, at the
European XFEL5 up to 27,000 pulses can be generated in a second. Of these, up to 5,120 can be stored as
detector images6,7. The ability to rapidly and accurately assess the status of an experiment is essential to
maximize its e�ciency. As an example, one may want to rapidly identify structural variations as a function of
external variables. On the other hand, when analyzing data already collected – potentially up to hundreds of
thousands of data sets – it is crucial to be able to employ some automated or semi-automated method capable
of extracting interesting features in the data to minimize the usage of experts’ time and to maximize the
scienti�c output.

Methods based on machine learning (ML) are ideal for automation of repetitive tasks and identi�cation of
patterns in data sets, and several applications to data collected at x-ray facilities have been recently published
(see, e.g., Ref.8,9,10). When considering 1D spectral data, numerous classi�cation approaches have been
developed, including unsupervised clustering method such as spectral clustering11, K-Means12, Agglomerative
clustering13, DBSCAN14, and supervised ML methods such as k-nearest neighbors15, partial least squares
discriminant analysis16,17, decision trees18, random forests19, and extreme learning machines20,21. However, for
traditional unsupervised clustering algorithms, �ne-tuning of hyperparameters is usually required to obtain
accurate results. This task is typically performed by experts and might need to be reiterated for different data
sets, which hinder the automation of data analysis and greatly reduce e�ciency. An alternative to increase
accuracy and reduce computation time is to employ supervised ML methods. These may require a long training
time, and rely on experts’ knowledge in terms of data annotation. Current popular methods are based on deep
neural networks (DL), of which the most commonly established are convolutional neural network (CNN)22-,24,
recurrent neural networks (RNNs)25,26, attention-based neural networks27,28, and hybrid models26,27,29. However,
it should be noted that the strength of supervised ML methods, that is the possibility of introducing domain-
knowledge through annotation, is often problem-speci�c and time-consuming, which again hinders
automation. Recently, methods based on self-supervised learning have opened up a new research frontier30.
These are based on data augmentation and appropriate pretext tasks, through which deep neural networks can
learn generalizable features from unlabeled data. Self-supervised methods impose invariance to appropriate
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pretext tasks, which are solved with the aim of learning a good representation of the data and designed
according to speci�c problems31-34. While self-supervised learning requires domain-speci�c knowledge, the
need for human supervision is largely reduced with respect to supervised learning and the potential for
automation is increased. In this study, we focus on two branches of self-supervised learning, that is self-
supervised relational reasoning learning35. 36, 37, 38 and self-supervised contrastive learning31, 32, 34. 

The relational reasoning networks are based on a key design principle, that is the use of a relation network
(usually a multi-layer perception (MLP)) as a learnable function to quantify the relations between entities and
their properties36. While the relational reasoning paradigm has gained traction in the deep learning community
only recently36, it has achieved promising results in many �elds, for example, video processing37, few-shot
nature image recognition38, and time series data classi�cation35. However, its application in the natural
sciences is still scarce. Contrastive learning39 is based on learning similar/dissimilar representations from
unlabeled data. The key principle is to extract underlying patterns in data by maximizing similarities of
augmentations from the same instances while minimizing the similarity of different instances31.
Recently, contrastive learning has attracted increasing attention in the natural sciences and has shown
remarkable results on a variety of scienti�c problems, including molecular representation40,41, density-of-states
of 2D photonic crystals42, similarity search for sky surveys43, single-particle diffraction images44, and Raman
spectrum. In particular, Ref.42 demonstrates that self-supervised contrast learning can greatly reduce the
number of labels required to train a network, which is tedious and time-consuming operation. These successful
applications in different scienti�c �elds demonstrate the effectiveness and versatility of contrastive learning.

In this work, we demonstrate that self-supervised machine learning methods can provide great opportunities to
improve the scienti�c e�ciency of experiments at large-scale x-ray facilities. We explore the application of self-
supervised relational reasoning and contrastive learning to 1D spectral classi�cation problems. In particular, we
demonstrate that it can be effectively used to classify phase transitions observed in X-ray diffraction (XRD)
experiments45-47. We introduce and discuss three self-supervised representation learning frameworks for the
classi�cation of data, namely SpecRR-Net, SpecMoco-Net, and SpecRRMoco-Net. SpecRR-Net extracts
discriminative features from unlabeled spectra based on relational reasoning, which attempts to discover data
representations by reasoning the relation among entities35,36 in multiple dimensions and at different
scales. SpecMoco-Net is based on contrastive learning, which aims to build representations by learning
similarities and dissimilarities between different objects31,32. SpecRRMoco-Net bene�ts from both relational
reasoning and contrastive learning, unifying SpecRR-Net and SpecMoco-Net. The backbone encoders applied in
all three models were adapted from the ConvSC attention model in Ref.27, which was speci�cally designed for
1D spectral classi�cation. We furthermore demonstrate the validity and performances of these three
frameworks targeting the identi�cation of a phase transition as seen by x-ray diffraction. The results show that
SpecRR-Net and SpecRRMoco-Net are superior, and can effectively reduce the time spend by scientists
annotating data manually, therefore offering great potential to automate the classi�cation process.

Methods
In this section, after introducing the case study, we present the proposed self-supervised spectral classi�cation
framework, shown in Fig. 3. It includes self-supervised training to learn useful representations from unlabeled
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spectral data, and downstream supervised classi�cation based on small amounts of labeled data. Self-
supervised learning methods generally include two aspects: pretext tasks and loss functions. A crucial step for
the success of self-supervised learning is the de�nition of proper objectives for unlabeled data in conjunction
with data augmentation. In this work, we de�ne four pretext tasks by exploring the meaningful information of
1D spectral data itself. Based on this, four surrogate-objective functions are proposed. In this way, useful
representations can be learned by solving these pretext tasks, with the aim of signi�cantly reducing the amount
of labels and increasing the automation of the classi�cation process. In the following, we �rst introduce the
formulation of the problem, then detail the data augmentation applied in this work, and �nally detail our
approach.

Experimental data. We validate the proposed self-supervised approaches using data from high-pressure X-ray
diffraction experiments. These allow us to probe the evolution of parameters of the atomic lattice and to
identify phase transitions, if any, during compression and decompression of the sample. Modi�cations of the
lattice are re�ected by changes of the scattering curves (examples of these are shown in Fig. 1), which are the
inputs to our framework. In this investigation, we particularly aim at detecting phase transitions, whose
�ngerprint is typically the appearance of new peaks in the scattering curves. In the rest of the manuscript, XRD
data collected from wüstite (FeO) and Fe powder samples at the P02.2 beamline of the synchrotron light source
PETRA III48 at DESY will be used. Details on the experiment are provided in the supplementary material SM-1.
We divide measured spectra into three different classes depending on the atomic arrangement within the
sample, namely before, during and after the phase transition.

Problem De�nition. Given unlabeled data containing a series of spectral curves , we aim to learn a
parametrized map , which can produce a rich and descriptive representation  from unlabeled
spectra for the downstream classi�cation task. In this equation, θ are the learnable parameters of the neural
networks. The learned representations will be then used for downstream spectral classi�cation tasks while
using a minimal number of labels.

Data augmentation. Data augmentation, which provides different views of the input data expected to be
mapped to similar representation vectors, is critical in de�ning useful pretext tasks31 in self-supervised learning.
Such augmentations produce varied spectra, possibly with simulated additional experimental complexity or
noise, but still plausible and with the same target labels. The objective function therefore ensures that same-
label variations of the input spectra must be represented similarly. Such a procedure increases the robustness
and generalization capabilities of the model, as variations of the input dataset are also used to train the model.

In this work, we �rst preprocessed the spectra data by normalizing them to the [0, 1] range, then we sequentially
applied diffraction angle warping (which is adapted from time warping49 changing its original time dimension
to the diffraction angle dimension), and magnitude warping49 as data augmentations. Magnitude warping is
used to simulate reasonable and random variations in the intensities of peaks, while not changing their
positions. Diffraction angle warping is used to parallel the variation of peak positions, so to allow the model to
focus more on the number of peaks rather than their location. An example of the effect of the augmentations is
shown in Fig. 2. It is important to note that both data augmentations are physically meaningful and speci�c to
the case of study. In fact, neither data augmentation results in changes in the number or shape of the peaks,
which are the primary indicators for detecting a phase transition.

{xi}

fθ (⋅) zi = fθ (xi)
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Self-supervised �rst stage training and second stage 1D spectra classi�cation. The self-supervised
classi�cation framework adopts a two-stage training, as shown in Fig. 3. In the �rst stage, the feature extraction
backbone encoder is trained in an unsupervised manner through momentum contrastive learning and relational
reasoning-based learning. The objective of this �rst stage is to learn useful representations, thus reducing the
amount of label information needed. After the �rst stage training, the contrast head and relational reasoning
heads are discarded to reduce the correlation between output variables, as it has been suggested in related self-
supervised learning research, such as in Ref.31,32,35, the backbone parameters are completely transferred to the
second part for downstream classi�cation tasks. In the second stage, a single-layer linear classi�er is trained
using a reduced amount of labeled data, projecting the latent space to physically meaningful spectral phase
classes.

The shared feature extraction backbone model  applied in this approach is the Conv SC attention model from

Ref.27, but without feed-forward network, as shown in Fig. S1 of the supplementary material. It consists of two
convolution modules for extracting local features, and two self-attention modules performed across spatial
(diffraction angle) and channel (introduced by the convolutional channels) dimensions to build long-range
dependencies of spectra. In this way, latent dependencies and useful representations can be well captured.
Furthermore, to accept input data with different feature sizes, we apply the 1D adaptive average pooling instead
of the 1D global max pooling operation in the second convolution module, as shown in Fig. S1 of the
supplementary material (see Ref.27 for more details on this model).

In this work, four pretext tasks are proposed to supervise the training of the backbone encoder in the �rst stage.
These include three relational reasoning-based pretext tasks, i.e., an inter-sample relational reasoning module,
an intra-sample relational reasoning module, an external-variable relational reasoning module, and one pretext
task based on instance-level contrastive learning, as shown in Fig. 3. We name the self-supervised classi�cation
framework based only on three relational reasoning modules as SpecRR-Net, the network based only on the
contrastive learning module as SpecMoco-Net, and the combination of these two networks as SpecRRMoco-
Net. We will describe each module in detail in the following sections.

Inter-Sample Relational Reasoning. The Inter-Sample relational reasoning module35,36 learns to quantify the
relationships of the sampled pairs (how spectral instances are related to themselves and other instances), by
formulating it as a binary classi�cation pretext task, as shown in the upper branch of Fig. 4. This pretext task is
trained by minimizing the binary cross-entropy loss , which follows the loss function of Eq. (1) in Ref.35.

Intra-Sample Relational Reasoning. The Intra-Sample relational reasoning module35 models the relation
between different spectral pieces within each individual diffractogram. It is adapted from the intra-temporal
relational reasoning module in Ref.35, originally proposed to model the global temporal dependencies of time
series data. Here, we extend it to the diffraction angle dimension. We formulate the intra-sample relational
reasoning module as a multi-class classi�cation task trained with cross-entropy loss , which follows the
loss function of Eq. (2) in Ref.35. The hyperparameters are consistent with those of the module in Ref.35. In this
way, the underlying dependencies along the diffraction angle dimension can be captured. Further details are
given in the SM-2 of the supplementary material.

fq

LInter

LIntra
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External Variable Relational Reasoning. Although the above two relational reasoning modules can learn latent
discriminative features from sampled pairs, they do not properly utilize information on external variable of
spectra. The external variables could be any external condition in the experiment, e.g., temperature, pressure, or
electric �eld. In our speci�c use case, this is pressure, which varies with time during compression and
decompression. Guided by this, we designed and introduced a third relational reasoning branch (see Fig. 3 and
Fig. 4), that is the external variable relational reasoning module, to build robust external dependencies from the
spectral samples. This can further enable the backbone to learn useful patterns along the external variable
dimension.

Formally, given any spectral curve  collected at time step , the encoded representation of its augmented
version  is denoted by . A single layer external-variable relation projection head  is

applied to reason the external variable relation score, denoted as . First, the spectral curves are
evenly divided into T=5 external variable relation categories in order of acquisition time. Then, a multi-class
classi�cation pre-task is constructed and trained with the cross-entropy loss  as

where   is the ground-truth class label in this module. The ablation study of hyperparameters T is left to
future work.
The relational scores in these three relational reasoning modules are not �xed distance metric but rather a
learnable nonlinear similarity measure for comparing the similarity of encoded spectra data.

Self-Supervised contrastive learning module for 1D spectra classi�cation. In the self-supervised contrastive
learning module, instance–wise contrastive learning31,34 is employed, where each spectra instance is treated as
a distinct class of its own and a pretext classi�er is trained to distinguish between individual instances50.
SpecMoco-Net is based on momentum contrastive learning (MoCo)34. This is formulated as minimizing
InfoNCE-based contrastive loss function  proposed by Ref.31,34. During training, the unsupervised
contrastive loss brings spectra containing similar spectral peak features closer together in latent space, while
spectra with different spectral features are pushed farther apart. Dissimilarities, within our case of study, are,
e.g., different number of peaks, at different positions, or with different shapes. Further details are given in the
SM-2 of the supplementary material.

Self-Supervised loss function. As can be seen from Fig. 3, the above four modules share the same backbone
encoder . The training of the shared feature extraction encoder can also be viewed as multi-task learning. By
jointly optimizing the inter-sample relational reasoning objective, the intra-sample relation reasoning objective,
the external-variable relational reasoning objective, and the self-contrastive learning objective, the �nal training
loss function of SpecRRMoco-Net is speci�ed as

xi i

xA
i zi = fθ (xA

i ) rγ (⋅)

s
tmp
i = rγ (zi)

Ltmp

y
tmp
i

Lcont

fq
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Here is a coe�cient to adjust the weight of the contrastive loss and is set to 0.01. Ablation studies on this
coe�cient are presented in ’Experiments and Results’ section. It is important to note here that this loss function
uni�es SpecRR-Net and SpecMoco-Net, i.e., a value of 0 for the coe�cient  corresponds to SpecRR-Net, while a
value of in�nity (achieved by retaining the   item with a coe�cient of 1, while excluding the other three
relational reasoning-based loss items in the loss function) is equivalent to SpecMoco-Net).

Experiments And Results
Implementation details. The SpecRRMoco model, SpecRR-Net, and SpecMoco-Net were trained using PyTorch
on a single NVIDIA A100-PCIE-40GB. The self-supervised backbone encoder  is trained by minimizing the

proposed joint loss function Eq. (2) with a stochastic gradient descent (SGD) optimizer51. We named the nine
data sets used as D1 to D9 for convenience, where D8 and D9 were collected from FeO powder, and D1-D7,
from Fe powder sample. Among them, D1, D4, D8, and D9 data sets (872 spectral curves in total), were used to
train the encoder network  to learn feature representations during the �rst stage training (without label

information). The batch size was set to 512, and the capacity of the queue of keys in the contrastive learning
module to 872*2 (that is, twice the total number of spectral curves in the �rst stage training data sets). Within
the SpecRRMoco-Net framework, experiments were performed with a loss factor of , unless otherwise
stated. We applied data augmentations randomly 6 times in the inter-sample relational reasoning branch. In the
�rst stage, the initial learning rate of the optimizer was set to 0.15, a linear warmup for the �rst 50 epochs (from
a value of 0.02) followed by a cosine decay schedule was applied to adjust the learning rate during training,
and the weight decay was set to 1 × 10−4. While the relation scores in relational reasoning modules are
similarity-based, we formulate each relational reasoning pretext task as a classi�cation task, so accuracy-based
metrics can be applied to evaluate its performance. See Fig S4 for more details.

In the second stage, a linear was trained by minimizing the cross-entropy loss function, and an SGD optimizer
with a learning rate of 0.15, and weight decay of 1 × 10− 4 was applied. To further prevent over�tting, a
train/validation/test strategy and an early stopping strategy, which stops the training when the validation
accuracy does not increase relatively to its previous best value for M = 20 steps, were employed to train the
linear classi�er. Some representative scattering curves of each phase of our samples were selected as the basis
of the training/validation/test dataset, and a total of 42 original curves (2.7% of total) were labeled. Further
details are provided in Supplementary Material SM-3.

Linear evaluation on downstream classi�cation task. In this subsection, we evaluated the performance of the
self-supervised encoder trained by different networks on the downstream spectral classi�cation task. To do so,
we train a linear classi�er on top of learned representations from the backbone encoder. The representative
labeled spectra from �ve data sets (the four data sets used in the �rst stage training plus D5) were used to train
the linear classi�er. Figure 5 shows the classi�cation results together with the classi�cation probabilities of
SpecRRMoco-Net for 4 data sets (D2, D3, D8 and D9) using only 2.7% of the labeled data. The classi�cation
results of the other 5 data sets are reported in See Fig. S6 of the supplementary material. To simplify
interpretation, we only present results around the phase transition zone. The green line represents class 0
(before phase transition), the red line represents class 1 (during phase transition), and the blue line represents
class 2 (after phase transition). We compared the classi�cation accuracy of SpecRRMoco-Net (average
accuracy 98.6%), SpecRR-Net (average accuracy 98.9%), and SpecMoco-Net (average accuracy 97.9%), as

c

c

Lcont

fq (⋅)

fq (⋅)

c = 0.01
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reported for each dataset in Table 1. The prediction time for each spectral curve is about 40 µs, which is small
enough to meet the requirement of real-time processing even at high-repetition rate facilities like the European
XFEL. The overall results show that with only 2.7% of the labels (42 spectral curves), all three models were able
to accurately detect phase transitions. In particular, SpecRR-Net achieved a slightly better classi�cation
performance than SpecRRMoco-Net under the current training strategy and hyperparameter settings, while
SpecMoco-Net performed worse among the three models. In SpecMoco-Net, the predicted class labels of some
spectra in D8 data set were inconsistent around the ‘during phase transition’ region (Fig. S7). Also, a few
spectral curves were misclassi�ed in a few other data sets. It should be noted that the other four data sets (D2,
D3, D6, and D7 data sets) were not included in the self-supervised learning or the linear evaluation, but
nevertheless the self-supervised models still achieved very good classi�cation results, meaning that the learned
representation is transferable. Moreover, it also demonstrates the high quality of the learned representations of
the feature extraction backbone encoder.

Comparison with other methods. In this section, we compare the self-supervised classi�cation models already
introduced with a modi�ed version of the SelfTime network35 (designed speci�cally for time series data), which
we name SpecSelfTime. In particular, we replaced the original convolutional backbone encoder with the ConvSC
attention network to better �t 1D spectral data for better performance. It should also be noted that
SpecSelfTime, which is closely related to our work and is the baseline of our SpecRR-Net, does not include the
external variable relational reasoning module we introduced in this study.

For a fair comparison, the settings of hyperparameters in the SpecSelfTime model are the same as in the
SpecRR-Net and SpecRRMoco-Net models. Table 1 show its classi�cation results on experimental spectra with
2.7% labeled data (average accuracy 92.6%). SpecSelfTime performs poorly on several data sets, and
particularly on D8 and D3, where it failed to detect the ‘during phase transition’ class on D8 and failed to
distinguish the ‘before-’ and ‘after-phase transition’ categories on D3. This indicates poor generalization ability
of the model. More classi�cation results are presented in Fig. S7 of the supplementary material. As can be seen
from the results, SpecSelfTime performs worse than the improved SpecRR-Net and even SpecMoco-Net, which
highlights the importance of the external-variable relational reasoning module we introduced.

We furthermore considered the unsupervised spectral clustering method Spectral Clustering11. Also, in this case,
classi�cation results for each dataset are shown in Table 1. As it can be observed, it performs well on data sets
with abrupt phase transitions (D1-D7, although slightly worse than the three self-supervised methods we have
introduced), but not so well on the ‘during phase transition’ regions of the D8 and D9 datasets.
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Table 1
Classi�cation accuracy with different methods. For all self-supervised methods, 2.7% of labeled data were

used.
Model D1 D2 D3 D4 D5 D6 D7 D8 D9 Average

Spectral
Clustering

0.950 0.983 0.971 0.969 0.985 0.971 0.992 0.734 0.670 0.914

SpecRRMoco 
+ Spectral
Clustering

0.983 0.991 0.986 0.992 0.992 1.000 1.000 0.775 0.896 0.957

SpecSelfTime 1.000 1.000 0.700 0.992 0.900 0.986 1.000 0.793 0.959 0.926

SpecRR-Net 0.983 0.991 0.986 0.992 0.985 1.000 1.000 0.986 0.980 0.989

SpecMoco 0.983 0.948 1.000 0.985 0.992 1.000 1.000 0.955 0.950 0.979

SpecRRMoco 1.000 0.991 0.986 0.985 0.977 1.000 1.000 0.973 0.961 0.986

While the downstream classi�cation task can evaluate the quality of the model, it cannot fully re�ect the
clustering ability. Therefore, as a qualitative analysis, we further evaluate the clustering power of these self-
supervised classi�cation models by visualizing the learned representations using t-SNE (t-Distributed
Stochastic Neighbor Embedding) 52. Figure 6a renders the t-SNE of SpecRRMoco-Net, while Fig. 6b visualizes
the original data with labels predicted by the spectral clustering method. The t-SNE visualization plots of
SpecRR-Net, SpecMoco-Net, and SpecSelfTime are given in Fig. S8 of the supplementary material. The
corresponding silhouette coe�cients of each self-supervised model are shown in Table 2. These are calculated
after predicting labels of each data sets by applying unsupervised spectral clustering to the learned
representations of each self-supervised encoder. The average silhouette values were 0.798 for SpecRRMoco-
Net, 0.791 for SpecSelfTime, 0.780 for SpecMoco-Net, and 0.821 for SpecRR-Net. Compared to SpecRRMoco
network, SpecRR-Net has the better clustering ability, effectively amplifying the differences between different
classes while clustering data from the same class together. SpecRRMoco-Net and SpecRR-Net exhibit better
clustering ability than SpecMoco-Net, which is consistent with the classi�cation results.

To verify whether the self-supervised model works well when no label information is available, we applied the
spectral clustering method to the learned representation of the SpecRRMoco encoder (as it uni�es SpecRR-Net
and SpecMoco-Net). The classi�cation results for each dataset are listed in Table 1, and the corresponding
silhouette values in Table 2. It should be noted that in this experiment, class labels are assigned by the spectral
clustering method without using data annotations, so it can be regarded as a completely unsupervised learning
method. We found that the proposed combination of SpecRRMoco-Net and spectral clustering performs better
than Spectral Clustering alone, especially on the data sets with ‘during phase transition’ regions (D8 dataset and
D9 dataset). The classi�cation accuracy and Silhouette Coe�cient values show that our proposed method can
extract useful underlying patterns from unlabeled data, thus making the following classi�cation tasks easier.
This can signi�cantly overcome the label sparsity problem and greatly automate the spectral classi�cation
procedure.
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Table 2
Average Silhouette coe�cient obtained by applying different methods to each data set.

Model D1 D2 D3 D4 D5 D6 D7 D8 D9 Average

Spectral
Clustering
(SC)

0.684 0.623 0.800 0.793 0.616 0.729 0.923 0.594 0.576 0.704

SpecSelfTime 
+ SC

0.825 0.856 0.923 0.924 0.845 0.861 0.955 0.422 0.506 0.791

SpecRRMoco
(c 0.01) + SC

0.817 0.840 0.916 0.879 0.784 0.854 0.961 0.537 0.593 0.798

SpecRR-Net + 
SC

0.824 0.831 0.
926

0.
866

0.
849

0.
858

0.
971

0.674 0.588 0.821

SpecMoco + 
SC

0.798 0.722 0.895 0.882 0.813 0.741 0.920 0.658 0.592 0.780

Ablation studies on the coe�cient in the SpecRRMoco-Net loss function. Here, we report on an ablation study
on the coe�cient (shown in Table 3), performed to understand its impact on learning data representations.
These experiments were performed under the same training setup described above. We varied in the range
[0.001, 1], and also set it to 0 (that is, a pure SpecRR-Net) and in�nity (that is, a pure SpecMoco-Net). For the
downstream spectral classi�cation task, 2.7% of labels were used. From Table 3, we can see that SpecRRMoco-
Net performs well over a wide range of the coe�cient (0-0.1 and in�nity). This result suggests that jointly
optimizing the relational reasoning-based pretext task and the contrast learning-based pretext task can improve
the performance of the pure contrast learning-based network, but not of the purely self-supervised relational
reasoning network under the current training setup.

Table 3
Ablation study of the coe�cient  in the loss function.

c D1 D2 D3 D4 D5 D6 D7 D8 D9 Average

0.001 0.983 0.931 0.957 0.992 1.000 0.971 0.988 0.968 0.911 0.967

0.01 1.000 0.991 0.986 0.985 0.977 1.000 1.000 0.973 0.961 0.986

0.1 0.983 0.983 1.000 0.985 1.000 1.000 1.000 0.950 0.943 0.983

1 0.967 0.914 0.943 0.985 0.938 0.986 1.000 0.919 0.965 0.957

0

(SpecRR-Net)

0.983 0.991 0.986 0.992 0.985 1.000 1.000 0.986 0.980 0.989

Inf

(SpecMoco-
Net)

0.983 0.948 1.000 0.985 0.992 1.000 1.000 0.955 0.950 0.979

Ablation studies on the data augmentation. We report here on an ablation study on data augmentations
performed in order to evaluate their impact on the SpecRRMoco-Net performances. Several commonly used

c
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data augmentation techniques were explored, including diffraction angle warping, magnitude warping, window
slicing, jitter, and scaling. Among them, diffraction angle and window slicing are performed in the diffraction
angle dimension, whereas jitter, scaling, and magnitude warping are performed in the magnitude domain. These
data augmentation techniques introduce invariances with respect to the physics knowledge. They generate new
input with variances while keeping identical labels in the embedding space. Based on this, surrogate tasks can
be formed to extract underlying patterns and build the representations. In addition to the diffraction angle and
magnitude warping which were already discussed, jittering was used to introduce possible random noise in the
experiment, scaling was used to model uniform intensity variations, and window slicing was used to model
small variations in diffraction angle coverage. As can be seen from Fig. 7, diffraction angle warping is the most
important data augmentation technique in this application, since the number of diffraction peaks is crucial in
this experiment. In addition, when this is combined with the transformation in the magnitude domain,
performances are improved. In particular, the best result is achieved when diffraction angle is combined to
magnitude warping. Therefore, in this study, we applied amplitude warping and diffraction angle sequentially to
all models presented in this paper. This experiment illustrates that data augmentations play an important role in
self-supervised models31,32. As it is domain-speci�c, it must be customized for data sets from different research
areas. Once the most appropriate data augmentation techniques are identi�ed, the ability to automatically
classify the data can be effectively improved.

Discussion
From the above experimental results, it can be concluded that the three networks proposed in this paper are
effective in constructing data representations that can greatly improve the automation of the classi�cations of
spectral data, and in particular the detection of phase transitions. We attribute the success of the models,
consistent with the results of the ablation study, to appropriate data augmentations and pretext tasks. In fact,
self-supervised learning critically relies on augmentations, which should be tailored for the scienti�c case object
of investigation. The ones applied in this study retain physically meaningful information while simulating other
plausible experimental effects. Thus, compared to traditional unsupervised clustering algorithms which require
manual tuning of parameters for each dataset, self-supervised models allow the classi�cation process to be
automated once a minimal amount of labels is available.

In SpecMoco-Net, the learning process is primarily based on exploiting biases in the data, rather than learning to
perform inference tasks based on the data itself. In addition, SpecMoco-Net is based on the instance-instance
discrimination task, which cannot explicitly exploit data information at different scales, such as the global
dependencies across diffraction angle dimension. Furthermore, in practice, self-supervised contrastive learning
bene�ts from a large number of negative samples to extract meaningful representations, and while SpecMoco-
Net allows a large and consistent dynamic dictionary, in our case we do not have enough spectral training
examples, which is another important reason why SpecMoco-Net performed worse than SpecRR-Net and
SpecRRMoco-Net in our case of study.

Networks based on relational reasoning learning can be viewed as simultaneously learning deep embeddings
and deep non-linear metrics (similarity functions)38. In SpecRR-Net and SpecRRMoco-Net, three relational
reasoning modules are designed to capture the underlying dependencies from multiple dimensions and at
different scales to build useful representations. Moreover, comparison with SpecSelfTime shows that our
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proposed external-variable relational reasoning module can signi�cantly improve the performance of models by
addressing the dependencies of diffraction spectra on pressure values, in this particular application. Relative to
the pretext task based on contrast learning, the relational reasoning-based pretext tasks impose more
supervision on the network using easily accessible sources of information. In the process of reasoning about
the relations between spectral entities, irrelevant and noisy features are neglected, and non-obvious properties
can be focused on, thereby gaining new knowledge. Furthermore, the difference in the structure of the two
methods may also lead to some differences in the way of updating model parameters. Ablation studies on
structural differences are necessary and interesting for further research, which is left to future work.

SpecRRMoco-Net bene�ts from both relational reasoning learning and contrastive learning, and although it
does not show better results than SpecRR-Net with the current hyperparameters and training settings, it
combines SpecRR-Net and SpecMoco-Net therefore providing a �exible framework that can potentially �t a
broader set of use cases. The success of each pre-text task in SpecRRMoco-Net drives the update of the
encoder model, improving its feature representation ability while increasing the robustness and generality of the
encoder network. Importantly, although these models are proposed for classi�cation applications on spectral
data, the architectures are general and can be easily extended to 1D time series data and various other types of
data, such as image classi�cation.

Further evaluation and interpretation of the model are given in SM-5 of the supplementary material.

Conclusions
In this paper we propose three self-supervised frameworks to classify 1D spectral data using a minimal amount
of labeled data, and we validate their performance using x-ray diffraction data of samples showing phase
transitions. These frameworks are based on relational reasoning (SpecRR-Net), contrastive learning (SpecMoco-
Net) or a linear combination of the two (SpecRRMoco-Net). They are capable of learning discriminative features
and building effective representations, therefore greatly reducing the number of labels required, making a step
towards automating the spectral classi�cation process. Moreover, as a consequence of the reduced number of
labels, scientist’s time is greatly optimized. In order to account for the relation between spectra collected along
some external variable, we extend the relational reasoning-based method to explicitly include it. In this work, we
demonstrate the importance of a proper choice of data augmentations, which must be tailored for the speci�c
case of study to ensure the retention of scienti�cally meaningful information. In particular, we discuss and
validate augmentations relevant to the case study discussed, and we prove that the three methods introduced
are effective in detecting phase transitions. This is the case even when data for which no labels are available
are used, which demonstrates good generalizability of the approaches. We furthermore compare the three
frameworks with state-of-the-art unsupervised methods.

After an initial training step, the methods proposed here can be used to accurately and automatically screen
collected data, even in real-time at high-repetition rate facilities given the inference speed, so to provide a better
understanding of the experiment and therefore enable the most effective real-time planning.

In future research, we will further validate our self-supervised classi�cation models on spectral data collected
from different experiments and spectroscopy techniques. In addition, we plan to work on an automated way of
optimizing hyperparameter settings, training strategies and augmentations.
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Figure 1

Representative diffraction spectra collected during the experiment on pure FeO powder sample. The spectral
curves in green are the ones corresponding to the original phase (before phase transition), the red ones are
collected during the phase transition, and the blue ones after the phase transition. Diffraction curves are shifted
vertically to improve visualization.
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Figure 2

Example of 1D scattering curve, and the effect of applying magnitude warping and diffraction angle warping
data augmentations to diffraction spectra.
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Figure 3

See image above for �gure legend

Figure 4

See image above for �gure legend
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Figure 5

Classi�cation results of the proposed SpecRRMoco-Net on the experimental spectral data with 2.7% labeled
data. Each column corresponds to a different data set.

Figure 6

(a) t-SNE visualization of the embedded features after the SpecRRMoco-Net encoder. Class labels were
assigned by a linear classi�er on top of the embedding representation learned from the SpecRRMoco-Net
encoder using 2.7% labeled data. (b) t-SNE visualization of the original data sets clustered by the Spectral
Clustering method. In this case, class labels were assigned by applying spectral clustering directly to the
original example dataset.
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Figure 7

Ablation study on data augmentation techniques. Results for magnitude warping (M_warp), window slicing
(Window_slice), diffraction angle warping (DiffAng_warp), jitter and scaling are reported. The last column
corresponds to the average results over each row (for each data augmentation technique). In addition to this,
diagonal elements indicate the use of only one data augmentation technique, while other non-diagonal entries
indicate the combination of two data augmentation techniques. The color scale represents the classi�cation
accuracy.
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