General Hydrochemical Characteristics
The analytical results of the physiochemical indices are shown in Table 1. values of the electrical conductivity oscillating between 121 and 283 μS / cm for all the Bouteldja boreholes and values ranging from 1975 to 2740 μS / cm in the boreholes of saline, with three groups of chemical elements. The first has dominant contents of Na + 2 - Cl- (11-24 to 417-691 mg / l), followed by HCO3- - Ca + 2 (2- 1.6 to 448-208 mg / l) and SO4-2 - Mg + 2 (5.7- 1 to 413-100) respectively.
Table 1. Results of the physiochemical analyses and statistical analyses.
Parameter
|
Units
|
Minimum
|
Maximum
|
Average
|
SD
|
Température
|
°C
|
14,5
|
24,20
|
19,826
|
2,429
|
pH
|
/
|
5,080
|
7,780
|
6,469
|
0,634
|
EC
|
µS /cm
|
120,000
|
2740,000
|
641,909
|
882,167
|
NO2
|
mgL-1
|
0,010
|
0,110
|
0,028
|
0,022
|
NO3
|
mgL-1
|
1,100
|
21,260
|
7,644
|
5,257
|
Ca
|
mgL-1
|
1,600
|
208,420
|
45,543
|
68,295
|
Mg
|
mgL-1
|
0,910
|
99,650
|
18,907
|
28,498
|
Na
|
mgL-1
|
11,700
|
417,000
|
83,356
|
111,727
|
K
|
mgL-1
|
0,200
|
4,700
|
2,245
|
1,160
|
Fe
|
mgL-1
|
0,010
|
3,370
|
0,455
|
0,717
|
HCO3
|
mgL-1
|
2,220
|
448,350
|
107,872
|
165,230
|
Cl
|
mgL-1
|
24,820
|
691,330
|
134,091
|
189,675
|
SO4
|
mgL-1
|
5,760
|
412,800
|
57,057
|
96,748
|
Explanations: EC = electrical conductivity, SD = standard deviation, Source: own study.
EC (Fig.3), shows that the salinity of the waters of the Annaba-El Tarf region is in direct connection with the effect of evaporites for most of the samples taken.
Correlation matrix.
The correlation matrix (Table. 2) shows that the conductivity is highly correlated with the ions, Cl-, HCO3-, Na +, Ca2 +, Mg2 +, K + (r> 0.8). The strong correlation between Na + and Cl- (r = 0.985) is linked to the dissolution of halite by the presence of salt formations according to the reaction:
𝑁𝑎𝐶𝑙 → 𝑁𝑎+ + 𝐶𝑙− (1)
And by a salinity of marine origin (Djabri 2004).
A very strong correlation between Ca2 + and HCO3- (r = 0.988), indicates that calcite is an important source of Ca2 +. The relationship of Ca2 + and SO42- (r = 0.804), indicates that the presence of sulfate and calcium ions in groundwater is linked to the dissolution of gypsum formations (Debieche 2002), according to the relationship:
CaSO4, 2H2O → Ca2 + SO4−2 (2)
On the other hand, a strong correlation between Ca2 + and Na + (r=0.942) , Mg2 + and Na + (r = 0.871), can also be explained by the dissolution of silicates, which is a probable source of Na + in groundwater, as well as the base exchange between Ca2 + or Mg2 + and Na+. A very strong correlation between Ca2 + and Mg2 + (r = 0.931), indicates that the dissolution of calcite and dolomite is an important process for controlling Ca2 + and Mg2 + concentrations in groundwater. The origins of calcium are comparable to that of magnesium (Maya and Loucks 1995) they can also come from the combined dissolution of calcite, dolomite and gypsum depending on the reactions:
𝐶𝑎, 𝑀𝑔 (𝐶𝑂3).2 = 𝐶𝑎+2 + 𝑀𝑔+2 + 2𝐶𝑂3 (3)
𝐶𝑎𝐶𝑂 3 (𝑆) + 𝐻2(𝐿) + 𝐶𝑂2(𝑔) = 2𝐻𝐶𝑂_ + 𝐶𝑎+2 (4)
𝐶𝑎𝐶𝑂3 = 𝐶𝑎+2 + 𝐶𝑂_2 (5)
𝑀𝑔𝐶𝑂3 = 𝑀𝑔+2 + 𝐶𝑂_2 (6)
Table 2. Matrix of the correlation coefficients of the physicochemical of water samples (source: own study)
Parameter
|
T°C
|
pH
|
CE
|
HCO3-
|
Fe
|
Cl-
|
NO2-
|
NO3-
|
SO4-
|
Ca++
|
Mg++
|
Na+
|
K+
|
T°C
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
pH
|
0,086
|
1
|
|
|
|
|
|
|
|
|
|
|
|
CE
|
0,290
|
0,734
|
1
|
|
|
|
|
|
|
|
|
|
|
HCO3-
|
0,299
|
0,786
|
0,969
|
1
|
|
|
|
|
|
|
|
|
|
Fe
|
0,262
|
0,188
|
0,062
|
0,053
|
1
|
|
|
|
|
|
|
|
|
Cl-
|
0,314
|
0,677
|
0,977
|
0,916
|
0,078
|
1
|
|
|
|
|
|
|
|
NO2-
|
0,126
|
0,383
|
0,693
|
0,578
|
0,042
|
0,745
|
1
|
|
|
|
|
|
|
NO3-
|
0,053
|
0,005
|
0,015
|
0,069
|
0,375
|
0,038
|
0,021
|
1
|
|
|
|
|
|
SO4--
|
0,114
|
0,653
|
0,772
|
0,776
|
0,055
|
0,689
|
0,351
|
0,036
|
1
|
|
|
|
|
Ca++
|
0,243
|
0,772
|
0,984
|
0,988
|
0,068
|
0,940
|
0,623
|
0,021
|
0,804
|
1
|
|
|
|
Mg++
|
0,242
|
0,673
|
0,944
|
0,917
|
0,058
|
0,895
|
0,641
|
0,076
|
0,775
|
0,931
|
1
|
|
|
Na+
|
0,349
|
0,684
|
0,973
|
0,932
|
0,039
|
0,985
|
0,706
|
0,009
|
0,665
|
0,942
|
0,871
|
1
|
|
K+
|
0,351
|
0,646
|
0,841
|
0,821
|
0,166
|
0,851
|
0,593
|
0,055
|
0,515
|
0,808
|
0,768
|
0,852
|
1
|
Binary Ratios and Geochemical Processes
The Ca + 2/Mg + 2 ratio provides information on the origin of these elements Ca + 2 and Mg + 2 from the dissolution of calcite and dolomite. If this Ca + 2 / Mg + 2 ratio ≤ 1, there is a dissolution of dolomite, on the other hand a higher ratio testifies to the dissolution of calcite, when it is greater than 2, it indicates the dissolution of silicate minerals .The application of this classification to groundwater in the Annaba-El Tarf region (Fig.4), shows that the majority of water samples analyzed (52.9%) have ratios greater than 2, thus translating dissolution of silicates followed by that of calcite (26.7%) and dolomite (20.6%).
Saturation Index
To better understand the process of mineralization of groundwater in the Annaba-El Tarf region by the dissolution / precipitation of certain minerals. The calculation of saturation indices was carried out for the waters of the boreholes of (Bouteldja, El Tarf, Les Saline and Barrahal). The calculation of saturation indices was carried out for the waters of the boreholes of (Bouteldja, El Tarf, Les Saline and Barrahal). The values of the saturation indices for each sample as well as the hydrochemical facies are presented in Table 3.
When:
IS <0, the solution is undersaturated with respect to the mineral (Dissolution of the mineral)
IS = 0, the solution and the solid phase are at equilibrium (Equilibrium)
IS> 0, the solution is supersaturated with respect to the mineral (Precipitation)
Table 3. Groundwater saturation indices for the Annaba-El-Tarf region.
locality
|
N°
|
Facies
|
carbonate minerals
|
evaporitic minerals
|
Calcite CaCO3
|
Dolomite CaMg
(CO3)2
|
Aragonite CaCO3
|
Anhydrite CaSO4
|
Gypsum CaSO4
:2H2O
|
Halite NaCl
|
Bouteldja
|
1
|
CS
|
-3,51
|
-6,55
|
-3,65
|
-4,07
|
-3,84
|
-7,51
|
2
|
CS
|
-3,16
|
-6,63
|
-3,31
|
-3,43
|
-3,18
|
-7,44
|
3
|
CS
|
-2,72
|
-5,07
|
-2,87
|
-3,43
|
-3,18
|
-7,9
|
4
|
CS
|
-3,46
|
-7,21
|
-3,61
|
-3,37
|
-3,13
|
-7,66
|
5
|
CS
|
-3,82
|
-8,28
|
-3,97
|
-3,55
|
-3,31
|
-7,93
|
6
|
CS
|
-3,51
|
-7,58
|
-3,65
|
-3,52
|
-3,28
|
-7,7
|
7
|
CS
|
-3,52
|
-7,32
|
-3,67
|
-3,16
|
-2,92
|
-7,62
|
8
|
CS
|
-3,36
|
-6,75
|
-3,51
|
-3,42
|
-3,18
|
-7,76
|
9
|
CS
|
-3,78
|
-7,12
|
-3,93
|
-3,56
|
-3,32
|
-7,78
|
10
|
CS
|
-3,3
|
-6,77
|
-3,45
|
-3,36
|
-3,12
|
-7,73
|
11
|
CS
|
-3,29
|
-6,52
|
-3,44
|
-3,39
|
-3,15
|
-7,49
|
12
|
CS
|
-4,48
|
-8,34
|
-4,63
|
-4,15
|
-3,9
|
-7,68
|
13
|
CS
|
-3,88
|
-7,14
|
-4,03
|
-3,59
|
-3,34
|
-7,63
|
14
|
CS
|
-4,52
|
-9,41
|
-4,67
|
-3,45
|
-3,22
|
-7,61
|
15
|
CS
|
-3,5
|
-7,11
|
-3,65
|
-3,3
|
-3,06
|
-7,61
|
16
|
CS
|
-3,76
|
-7,45
|
-3,9
|
-3,57
|
-3,33
|
-7,69
|
17
|
CS
|
-3,77
|
-7,51
|
-3,92
|
-3,48
|
-3,25
|
-7,78
|
18
|
CS
|
-3,88
|
-8
|
-4,03
|
-3,62
|
-3,39
|
-7,7
|
19
|
CS
|
-3,13
|
-5,95
|
-3,28
|
-3,64
|
-3,4
|
-7,76
|
20
|
CS
|
-4,07
|
-7,86
|
-4,21
|
-3,73
|
-3,5
|
-7,93
|
21
|
BS
|
-2,48
|
-4,88
|
-2,63
|
-3,3
|
-3,05
|
-7,32
|
22
|
BS
|
-3,68
|
-6,96
|
-3,83
|
-3,29
|
-3,07
|
-7,25
|
Les Saline
|
23
|
CS
|
0,53
|
1,07
|
0,39
|
-1,44
|
-1,21
|
-5,49
|
24
|
CS
|
0,39
|
0,48
|
0,24
|
-1,3
|
-1,07
|
-5,51
|
25
|
CS
|
0,26
|
0,47
|
0,11
|
-1,28
|
-1,04
|
-5,53
|
26
|
BS
|
0,32
|
0,27
|
0,18
|
-2,03
|
-1,8
|
-5,56
|
27
|
CS
|
0,19
|
0,26
|
0,04
|
-1,77
|
-1,53
|
-5,17
|
Barrahal
|
28
|
BC
|
0,31
|
0,72
|
0,17
|
-2,7
|
-2,48
|
-5,79
|
29
|
SS
|
0,84
|
1,59
|
0,69
|
-1,16
|
-0,93
|
-5,88
|
30
|
CS
|
0,29
|
0,52
|
0,14
|
-1,61
|
-1,38
|
-5,55
|
El-Taref
|
31
|
CS
|
-3,23
|
-6,37
|
-3,38
|
-3,39
|
-3,14
|
-7,64
|
32
|
BC
|
0,24
|
-0,22
|
0,09
|
-1,97
|
-1,73
|
-6,99
|
33
|
CS
|
-2,76
|
-5,4
|
-2,91
|
-3,42
|
-3,18
|
-7,45
|
34
|
CS
|
-3,44
|
-7,12
|
-3,59
|
-3,31
|
-3,08
|
-7,53
|
Evaporitic minerals
The average values of the groundwater saturation indices are greater than zero in the waters of Barrahal and Salines, minerals tend to precipitate, and the dissolution process is observed only in the waters of Bouteldja and El-Tarf (Fig 5). The dissolution of carbonate minerals (calcite, dolomite and aragonite) is an important process for controlling concentrations of Ca2+, Mg2+ and HCO3- in groundwater. The CO2 enrichment of water infiltrated into the aquifer promotes the dissolution of carbonate by releasing Ca2 + and HCO3- ions in solution (Saadia et al. 1999; Jalali 2009)
The presence of carbonate minerals partly explains the strong electrical conductivities (Fig 6). The graphic representation of carbonate minerals (calcite, aragonite and dolomite) vs pH (Fig 6), illustrates that the evolution of these minerals is proportional to the evolution of pH .This increase in pH is due to the alkalinity produced by the dissolution of carbonates.
Evaporitic minerals
The calculated values of the saturation indices for anhydrite, gypsum and halite are less than zero for all samples (Table 3). The waters are undersaturated with respect to the main evaporitic minerals (halite, gypsum and anhydrite), which induces a dissolution of these minerals. The high contents of Cl- ,Na+, Ca2 +, Mg2 +, SO 2- and their good correlations with the electrical conductivity observed in water can be explained by the dissolution of halite and gypsum (Katz,1998; Saravanan et al.2015). Fig 8 and Fig 9 shows the correlation of the saturation indices of evaporitic minerals with the electrical conductivity and the pH respectively.
Saturation indices for carbonate and evaporitic minerals
The graphical representation of saturation indices as a function of Sulphates explains the process of precipitation / dissolution in the aquifers of north eastern Algeria. Sulphates have been used in the diagrams for their content but also for their contribution in the different processes of dissolution - precipitation. Fig 10 shows the saturation indices for calcite, dolomite, gypsum and halite as a function of sulphate concentrations.
Dissolving gypsum (Fig 10 (c)), all samples are in an undersaturated state, indicating that CaSO4 is a probable source of
Ca2 + and SO42-.
The dissolution of halite takes place in the same way as gypsum (Fig 10 (d)); all samples are in a strictly undersaturated state, indicating that NaCl is the source of Na+ and Cl-. This shows that the evaporite formations are of the gypsum- saliferous type.
The representation of the saturation indices (SI) as a function of calcite, aragonite and dolomite (Fig 11 (a) and (b)) follow a positive linear trend which allows saying that the mineral phases are in the process of change with a similar tendency due to the same hydrogeochemical processes.