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Abstract
Inadequate representation of non-European ancestry populations in genome-wide association studies
(GWAS) has limited opportunities to isolate functional variants. Fine-mapping in multi-ancestry
populations should improve the efficiency of prioritizing variants for functional interrogation. To evaluate
this hypothesis, we leveraged ancestry architecture to perform comparative GWAS and fine-mapping of
obesity related phenotypes in European ancestry populations from the UK Biobank (UKBB) and multi-
ancestry samples from the Population Architecture for Genetic Epidemiology (PAGE) consortium with
comparable sample sizes. In 10 of the investigated regions with genome wide significant associations for
obesity related traits, fine-mapping in our ancestrally diverse sample led to 95% and 99% credible sets
(CS) with fewer variants than in the European ancestry sample. Lead fine-mapped variants in PAGE
regions had higher average coding scores, and higher average posterior probabilities for causality
compared to UKBB. Importantly, 99% CS in PAGE loci contained strong expression quantitative trait loci
(eQTLs) in adipose tissues or harbored more variants in tighter linkage disequilibrium (LD) with eQTLs.
Results also suggested three novel candidates for functional effect on waist-to-hip ratio adjusted for BMI
(WHRBMI-adj) (rs5781117 near gene RP11-392O17.1, rs10187501 in gene COBLL1, and rs1964599 near
gene CCDC92), all within the 99% CS. Leveraging ancestrally diverse populations with heterogeneous
ancestry architectures, coupled with functional annotation, increased fine mapping efficiency and
performance, and reduced the set of candidate variants for consideration for future functional studies.
Significant overlap in genetic causal variants across populations suggest generalizability of genetic
mechanisms underpinning obesity related traits across populations.

Background
Genome-wide association studies (GWAS) (Caballero et al. 2015; Visscher et al. 2012; Zhang et al. 2019)
have uncovered > 1000 independent genomic regions associated with body mass index (BMI) and waist-
to-hip ratio adjusted for BMI (WHRBMIadj). We expect further discoveries to follow as data from large
cohorts with millions of participants are becoming available. Yet biological translation of GWAS remains
a challenge given extensive linkage disequilibrium (LD) across the genome (Riancho 2012; Tam et al.
2019). Except for relatively rare monogenic cases inherited as Mendelian traits (Challis et al. 2004;
Huszar et al. 1997; Krude et al. 1998), obesity is a complex polygenic phenotype (Hinney et al. 2010)
involving large and disparate genomic regions. Considerable LD among associated variants (Pritchard
and Przeworski 2001), presence of multiple independent causal variants in a locus (Flister et al. 2013),
and generally small effect sizes (Hodge and Greenberg 2016; Yengo et al. 2018) create methodological
barriers to identifying functional genes and variants for polygenic traits. Consequently, only a handful of
studies of rare nonsynonymous variants (i.e., minor allele frequency (MAF) < 1%) with large effect sizes
have established causality with reasonable certainty (Emdin et al. 2018; Yengo et al. 2018).

Study population composition (Magavern et al. 2022) also complicates identification of functional genes
and variants. Genetic studies predominantly involve self-identified Non-Hispanic White populations,
groups with limited representation of global ancestral diversity (Price et al. 2008; Ralph and Coop 2013).
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Identifying causal variants is arduous when obesity influencing variants are in long haplotype blocks that
segregate together. Therefore, traditional fine-mapping methods that assign a posterior probability of
causality to each mapped variant in a region (Chen et al. 2015; Hormozdiari et al. 2014; Wakefield 2007)
solely based on European populations reference LD architecture (Benner et al. 2016; Pruim et al. 2010)
rarely leads to unambiguous characterization of a potential causal variant (Chen et al. 2019; Tam et al.
2019; Witte 2010).

Hence, it has been proposed that fine-mapping in multi-ancestry and admixed populations with shorter
haplotype blocks (Consortium 2012; Mao et al. 2017) will narrow the number of candidate variants and
increase statistical power to identify likely functional variants (Kichaev and Pasaniuc 2015; van de Bunt
et al. 2015). Additionally, with a greater proportion of discovered variants being mapped to non-coding
genomic regions (Giral et al. 2018), often with regulatory effect on genes that are distant to them in DNA
sequence (Vance et al. 2014), functional annotation may facilitate prioritization of causal variants in
GWAS regions. GWAS fine-mapping coupled with functional annotation show substantial improvements
over traditional methods in identifying likely functional variants and are increasingly adopted in large
scale studies that involve multiple study sites and tens of thousands of participants (Willems et al. 2017;
Zhao et al. 2021).

In this study, we performed fine-mapping of obesity-related phenotypes using samples from two studies,
1) Europeans from the UK Biobank (UKBB) and 2) multi-ancestry samples from the Population
Architecture for Genetic Epidemiology (PAGE) consortium. For approximate power comparability, we
considered a random subset of UKBB participants, to match the multi-ancestry sample sizes available in
PAGE. Our main goal was to leverage ancestry architecture followed by functional annotation to narrow
the list of possible causative genes and functional variants underlying GWAS signals. We additionally
hypothesized that applying fine-mapping approaches in ancestrally diverse populations would reveal
more variants with compelling evidence for functionality than in the European UKBB subset we
interrogated.

Methods

Study Cohorts
The PAGE consortium includes several studies. In brief, PAGE consists of multiple populations grouped
by self-identified race and ethnicity, European Americans (EA), African Americans (AA), Hispanic
Americans (HA), Native Americans (NAm), East Asians (ASN), and Native Hawaiians/Pacific Islander (NH)
(CALiCo-SOL and Fernandez-Rhodes ; Manolio 2009; Matise et al. 2011). All participating sites in PAGE
ascertained both males and females except for the females only Women’s Health Initiative (WHI).
Analyses were performed in all populations combined via meta-analyses.

The UKBB is a population-based study of citizens of the United Kingdom (Sudlow et al. 2015).
Approximately half a million individuals, primarily of European ancestry, were recruited between 2006 to
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2010. Genetic and phenotypic characteristics of UKBB individuals used for GWAS were defined previously
(Bycroft et al. 2018). We randomly selected a subset of unrelated European ancestry individuals for
GWAS to be comparable to our sample sizes in PAGE, thereby removing sample size as a factor
contributing to differential results (Sup. Table 1).

Phenotyping And Quality Control
We studied two anthropometric phenotypes: BMI (kg/m2; a measure of overall adiposity) and waist-to-hip
ratio adjusted for BMI (WHRBMI-adj), a proxy of central obesity. In 16 of 17 studies that contribute to
PAGE, height and weight were measured by study staff at study enrollment, to calculate BMI
(weight/height2) (Sup. Table 1). In the remaining Multi-ethnic Cohort (MEC), BMI is based on self-reported
height and weight at enrollment. Pilot analyses of BMI in MEC illustrated a comparable distribution to
national surveys (Gorber and Tremblay 2010). Waist circumference was measured at the level of the
natural waist in horizontal plane to the nearest 0.5 cm (Carty et al. 2014); no waist or hip circumference
measurement was available for the BioMe sub-cohort.

Recruitment and data collection in the UKBB sample has been previously described (Biobank 2007;
Bycroft et al. 2017). UKBB participants were randomly selected from those study participants that self-
identified as European and that clustered within the 1000 Genomes Europeans (EUR) ancestry population
when applying a k-means clustering approach to genotype data (n = 451,337). As we grouped study
participants by self-reported race /ethnicity, we additionally excluded those UKBB participants that did not
self-report as European (n = 32). We excluded women who were pregnant or unsure if they were pregnant.
We removed any BMI or WHR measures ± 6 SD from the mean by sex.

Genotyping And Quality Control
In PAGE, approximately 50,000 individuals were genotyped using the Multiethnic Genotyping Array
(MEGA) panel, as previously described (Bien et al. 2016). The remaining PAGE individuals were
genotyped with Affymetrix arrays. After quality control, genomic imputation was performed using the
1000 Genomes Phase 3 reference population; details are accessible here (Hu et al. 2021).

In the UKBB, genotyping was performed using either the Applied Biosystems UKBB Lung Exome Variant
Evaluation (UK BiLEVE) Axiom Array or UKB Axiom Array (Bycroft et al. 2018). The genotypes were
imputed using IMPUTE4 with a combination of reference panels: i) the Haplotype Reference Consortium
and ii) UK10K and the 1000 Genomes Phase 3 (Bycroft et al. 2017). For this study, we excluded non-
autosomal genetic variants, those with poor imputation (R2 < 0.4), effective sample size < 30, or MAF of < 
0.05. Criteria used for calculating effective sample size for each variant are defined in Appendix.
Approximately 32 million of the 60 million variants had MAF < 0.01 and were removed from analyses.

Gwas And Meta-analyses



Page 6/22

In PAGE, GWAS were performed with SUGEN (Lin et al. 2014). In UKBB, GWAS were performed using
SAIGE (Zhou et al. 2018). Age, sex (BMI only), study center (PAGE only) and the first 10 principal
components (PC) of ancestry were included as covariates. In PAGE, GWAS were initially performed in sex-
combined (BMI only) or sex-stratified self-identified race/ethnic group separately, and subsequently meta-
analyzed across sex (WHRBMI-adj) and self-identified race/ethnicity groups (both BMI and WHRBMI-adj)
using METAL (Willer et al. 2010). In UKBB, GWAS were similarly performed in a subset with approximate
sample size to match PAGE (Sup. Table 1). For WHR, we additionally adjusted associations for BMI
(WHRBMIadj).

Selection And Configuration Of Genomic Regions For Fine-mapping
For each trait/group combination, variants exceeding GWAS significance level (p < 5x10-8) were extracted
from PAGE and UKBB summary statistics and compiled into a single list (Sup. Table 2). GWAS variants
were then LD pruned (threshold R2 > 0.1) and grouped into independent clusters each representing a
potential functional region. Variants with the lowest p-value in each cluster were selected as the index
variant for that cluster (see Box 1), irrespective of whether this association was observed in the UKBB or
PAGE results). We further restricted analyses to loci where both PAGE and UKBB overlapping regions
harbored at least one variant exceeding GWAS significance level in both populations. The minimum base
pair (bp) distance between each pair of adjacent index variants was ≥ 300 kbp. Therefore, each
functional locus was defined as the set of variants that were located ≤ 150 kbp from each index variant
for that region (Sup. Figure 1). This method was applied to each phenotype and ancestry group
combination. Hence, each genomic region probed in UKBB GWAS was similarly fine-mapped in PAGE in
the same overlapping genomic region (i.e., in pairs).

Fine-mapping And Sensitivity Analyses
For both fine-mapping and sensitivity analyses, we used summary statistics and SLALOM (Kanai et al.
2022). This method incorporates an Approximate Bayesian Factor (ABF) (Wakefield 2007, 2009) for fine-
mapping which estimates a posterior inclusion probability (PIP) for each variant and derives the smallest
possible 95% and 99% causal set (CS) (i.e., set of variants whose cumulative posterior probability is 95%
or 99%) based on p-value, and LD assuming one functional variant per locus. Additionally, GWAS
statistics from PAGE are from a meta-analysis of populations with distinct patterns of ancestry and
admixture, genotyped on distinct platforms and imputed separately. To assess if the heterogeneous
characteristics of the contributing cohorts (e.g., difference in patterns of admixture and ancestry, sample
size, genotyping, or imputation ) may have affected fine-mapping outputs in PAGE, SLALOM performed
DENTIST (Chen et al. 2021) based DENTIST-Simplified (DENTIST-S) test to flag loci with suspect GWAS
results. According to DENTIST-S, observed statistical significance of a variant is expected to be
proportional to its LD with the lead variant (variant with highest posterior probability) assuming both
belong to the set representing the same signal. The presence of variant(s) in tighter LD with the lead but
higher than expected p-value suggest association outlier(s), and hence the quality of fine-mapping in that
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locus would be questionable. For fine-mapping, SLALOM inferred LD from gnomAD (Koch 2020) reference
African, admixed American, East Asian, and European populations averaged by each populations’ study
sample size when testing PAGE loci, but utilized UKBB-specific reference for these regions in UKBB. It also
inferred functional annotation from Variant Effect Predictor (VEP) for each fine-mapped variant. VEP is a
toolset for prioritization, and functional annotation of genomic variants in coding and non-coding
regions. (McLaren et al. 2016)

Assessing Fine-mapping Efficiency
We conducted two stages of analyses as follows:

Stage 1. We extracted the variants with the highest posterior probabilities in each region (termed the lead
fine-mapped variant, see Box1) within the 99% CS from both PAGE and UKBB. Using the 1000 Genome
multi-ancestry and EUR reference populations, we then estimated pairwise LD between the lead fine
mapped variants in the 99% CS and their LD proxies from both PAGE and UKBB, to determine if UKBB and
PAGE data were representing the same signal (threshold R2 > 0.1). We also assessed whether the lead
fine mapped variants were previously reported in the literature for obesity related traits using the GWAS-
Catalogue (Welter et al. 2014) and PhenoScanner (Staley et al. 2016). To further assess the efficiency of
fine-mapping, we performed functional annotation of all variants in the 99% CS in each region using the
Combined Annotation Dependent Depletion (CADD) tool for scoring deleteriousness of both coding and
noncoding variants (Kircher et al. 2014). Negative log CADD score values > 10 suggest a high probability
of functionality and > 20 also have experimental evidence for functionality. We defined a best non-lead
fine-mapped variant (defined here as a variant present in the 99% CS but not the lead fine-mapped variant,
but with the highest CADD, see Box1) for each region. The purpose of this exercise was to compare
SLALOM generated functional annotations from VEP to those we generated with LD proxies, and
consideration of CADD score.

Stage 2. We performed variant annotation using expression trait quantitative loci (eQTL) evidence from
obesity relevant tissues (whole blood, adipose, brain, liver, and skeletal muscle tissues) utilizing GTeX
version 8 (gtexportal.org) (Consortium 2020). Complementary to fine-mapping, CADD scores, and VEP
annotations, eQTLs were used to narrow and characterize likely causal variants or their close proxies. We
extracted eQTL summary statistics for the lead fine-mapped and index variants in each region and
assessed if they were included in 99% CS in PAGE or UKBB fine-mapping results. In regions where no
significant eQTL existed in obesity relevant tissues, we alternatively searched for splice QTLs (sQTL),
eQTL in other tissues, and eQTL from the literature.

Results
>

GWAS
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We conducted GWAS of BMI and WHRBMI-adj in the 6 separate PAGE populations and in our single UKBB
sample. Population and study-specific GWAS results in PAGE were subsequently meta-analyzed together.
Manhattan and QQ plots for GWAS results are presented in Appendix. GWAS significant variants are
reported in Sup. Table 2.

Fine-mapping
Stage 1. We selected 10 pairs of regions for fine-mapping where at least 1 variant was associated with
BMI or WHRBMIadj traits at GWAS significance level (p < 5×10 − 8) in both PAGE and UKBB (Sup.
Table 3). We then extracted 99% CS from each region in both cohorts, and performed VEP-based
functional annotation and CADD scoring. In all 10 regions, the most statistically significant index variant
in UKBB GWAS was also the lead fine-mapped variants (i.e., variants with highest posterior probability);
comparatively, in PAGE, only 8 of 10 regions identified the same index and lead fine-mapped variant
(Table 1). Also, 9 of 10 lead fine-mapped variants in UKBB were previous reported as the index SNP
associated with BMI or WHRBMIadj in the literature versus 6 of 10 in PAGE. Lead variants in UKBB and
PAGE in three regions (chr1:177739839–178039226 for BMI, chr1:219490672–219790221 and
chr12:124365252–124665152 for WHRBMIadj respectively) displayed moderate to low LD with each
other (R2 < 0.5).

Overall, the average number of variants with posterior probability > 0.1 in the PAGE fine-mapped regions
was 1.9 (vs. 2.4 in UKBB), and the median 99% CS was 15.5 (vs. 23 in UKBB). For the lead variants in
PAGE, the average posterior probability was 0.35 (vs. 0.28 in UKBB), and average CADD was 8.61 (vs.
7.23 in UKBB) (Table 2).

In pairwise comparison between the lead (Table 1) and the best non-lead variants (Sup. Table 4) in each
region, we observed that in 6 of the 10 UKBB regions, the non-lead variants demonstrate a higher
potential for functionality (or were likely closer proxies to causal variants) (highlighted rows, Sup.
Table 4), due to higher CADD scores, or being previously reported in multiple populations. In contrast, in
only 3 of the 10 PAGE loci (Sup. Table 4, highlighted rows), the non-lead variant displayed a higher
protentional of functionality compared to the lead variants for their respective regions (Table 1)
(comparing CADD scores).

Stage 2. Functional annotation was completed in all target loci to characterize likely causal variants
operating through gene expression (Sup. Table 5). Overall, in 9 out of 10 regions, the strongest candidates
for eQTL were present in PAGE 99% CS (vs 8 in UKBB) (Table 2). Similarly, the most significant eQTLs in
all 9 regions were in LD with the lead fine-mapped variants in PAGE (or were the same as lead variant),
but the same was observed in 8 regions for UKBB (excluding WHRBMIadj associated region
chr12:123880705–124180606 where UKBB and PAGE signals were in loose LD with each other and no
strong eQTL with either lead variants, therefore inconclusive) (Table 2).
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For BMI, in associated region chr1:177739839–178039226, rs543874 (nearest gene SEC16B) had a high
CADD score (18.5) and is in LD with 2 subcutaneous adipose tissue eQTL variants (rs6679120 and
rs6682862, gene SEC16B) making this a good candidate for functional studies. Importantly, this variant is
also the lead fine-mapped variant in the PAGE data. In region chr11:27535512–27834103, variant
rs10767664 (gene BDNF-AS) is the strongest candidate due to tight LD with the index variants, inclusion
in both cohorts 99% CS, and a high CADD score (22.1). Other strong QTLs in the region are independent.
Finally, for locus chr16:53650985–53916489, the lead variant (in both cohorts) rs1421085 (FTO) is the
best functional candidate because other significant QTLs in the region are independent (R2 < 0.1).
Additionally, previously reported GWAS significant obesity-associated variants in LD with rs1421085 (R2 
> 0.1), were neither significant QTLs nor had CADD scores as high as rs1421085 (19.58) (Sup. Table 6).

For WHRBMIadj, variant rs10753805 (nearest gene KIFAP3) in region chr1:170202330–170501746 (Sup.
Table 5), may be the best variant for further functional interrogation, with collective evidence from a
strong CADD score (17.4), tight LD with lead variants in both PAGE and UKBB, and being an eQTL with
adipose tissue. Other significant eQTLs in the region are functionally independent (i.e., no LD with the
index variant). In region chr 1:219317330–219616879, variant rs5781117 (near gene RP11-392O17.1) is
prioritized through its inclusion in the 99% CS (UKBB) and tight LD with the lead index variant. The other
variant in the region with a strong eQTL (rs748273) was not in the 99% CS and had a smaller CADD score
(15.5 vs 21.1 for rs5781117). For the region chr2:164522659–164822197, variant rs10187501 (in gene
COBLL1) was in tight LD with the lead fine mapped variant, was included in the 99% CS (PAGE), and
displayed a high CADD score of 19.04. At locus chr3:64567951–64867428, the fine-mapped lead variant
rs66815886 (both cohorts) is an interesting candidate for future functional interrogation. Although not
significantly associated with gene expression levels in key obesity related tissues in GTEx (only eQTL
observed in testes tissue), this variant is in LD with rs76329608 (eQTL in adipose tissue for the same
gene [ADAMTS9-AS2]). For the region chr6:43640429–43940152, the UKBB lead variant is rs998584
which was included in the 99% CS in both cohorts but with otherwise limited evidence elsewhere. For the
locus chr6:126984129–127283578, the lead variant rs577721086 (in both cohorts) is a strong functional
candidate given its CADD score of 20.4. Finally, both rs10773049 (lead variant in UKBB) and rs1964599
(lead in PAGE) [near gene CCDC92] could be close proxies to functional variants in this region because
both displayed associations with adipose tissue expression, not in LD with other observed strong eQTL in
the region or each other (Sup. Table 5).

Sensitivity Analyses
Finally, sensitivity analyses implemented in DENTIST-S suggested that one fine-mapped region in PAGE
(chr16:53650985–53950401) harbored an association outlier (Sup. Figures 2), where a variant
(rs113008794) illustrated a higher-than-expected p-value (or lower -log p-value) for statistical association
with BMI despite high LD (R2 > 0.8) with the lead fine mapped variant. Such an association outlier
suggests that the quality of fine-mapping of the FTO locus in PAGE should be interpreted with caution.
Nonetheless, such association outliers were not observed in the UKBB data for the same region, and both



Page 10/22

Discussion
In this study we performed fine-mapping of loci associated with BMI and WHRBMIadj in both the multi-
ancestry PAGE sample and a similarly sized subset of European ancestry UKBB participants. As complex
traits are influenced by a large number of genetic variants (Pasaniuc and Price 2017), functional
annotations help facilitate the prioritization of genes and variants when multiple variants are statistically
significant in a region (Trynka et al. 2013) There was significant overlap in obesity associated signals
across studies, in that lead signals were often shared (same variant or in tight LD (R2 > 0.9) with one
another). Substantial overlap in likely causal variants across populations suggest a shared relevance of
genetic mechanisms underpinning anthropometric traits.

Fine-mapping in the ancestrally diverse PAGE populations produced 95% and 99% CS with fewer variants.
Importantly, 99% CS in PAGE loci contained more variants with strong evidence for eQTL effects in
obesity relevant tissues when compared to the UKBB 99% CS. Furthermore, more lead candidate
functional variants were identified in the PAGE 99% CS in comparison to UKBB data. Taken together,
these results are markers of more efficient fine-mapping in multi-ancestry samples and are largely
consistent with prior observations (Asimit et al. 2016; Kanai et al. 2021).

For BMI associated region chr1:177770704–178070091, variant rs543874 (SEC16B) has been previously
linked to obesity (Costa-Urrutia et al. 2020; Lv et al. 2015; Mei et al. 2022); this variant was the lead fine-
mapped variant in PAGE and has been reported as the lead variant in at least two previous studies
(Fernández-Rhodes et al. 2017; Sahibdeen et al. 2018). In the region chr11:27535512–27834103,
rs7929344 (Fernández-Rhodes et al. 2017)(gene BDNF-AS) and rs1519480 (Gong et al. 2013) were
previously fine-mapped, but our 99% CS in both cohorts contained two additional variants of interest,
rs10767664 and rs6265 (BDNF-AS). The latter variant is a missense and has been associated with energy
intake (Daily and Park 2017), but rs10767664 has been frequently linked to glucose regulation and
insulin resistance (de Luis et al. 2017; de Luis et al. 2018), with presumed regulatory effects in adipose
tissue, and a high CADD score (Sup. Table 4), and therefore more likely the functional variant in the
region. Finally, in region chr16:53650985–53916489, variant rs62048402 was previously fine-mapped
(Daily and Park 2017; Gong et al. 2013), but our proposed lead fine-mapped and index variant, rs1421085
(FTO), has strong evidence for functionality for multiple reasons. First, none of the previously reported
FTO index variants in the region were in LD with rs1421085 (R2 > 0.1) and none displayed high CADD
scores. Second, the intronic variant rs1421085 has been fine mapped in previous multi-ancestry analyses
(Akiyama et al. 2014). Third, studies in mice demonstrated that variants in this region interacted with the
promoter of Irx3 (Smemo et al. 2014). In addition, functional characterization of rs1421085 in the FTO
locus demonstrated a doubling of IRX3 expression during early adipocyte differentiation (Claussnitzer et
al. 2015). Lastly, in a very recent study, human to mice conservation of the rs1421085 regulatory effect
on IRX3 gene expression has been reported (Laber et al. 2021).

populations prioritized the same variant. No association outliers were observed in WHRBMIadj associated
loci in either UKBB or PAGE.
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For WHRBMIadj, in associated region chr1:170202330–170501746, we propose rs10753805 as the most
likely functional variant. We did not find any other tightly linked fine-mapped variants within this region in
the literature. In region chr1:219317330–219616879, we propose variant rs5781117 as the most likely
functional variant. Previously reported index variant rs12025363 (Zhang et al. 2022) is in moderate LD
with our suggested fine-mapped lead variants (R2 ~ 0.4), and was not significantly associated with gene
expression in adipose tissue (RP11-392O17.1 gene). Similarly, for the region chr2:164522659–
164822197, rs10187501 (COBLL1) is also a novel observation and a candidate for causal association
with obesity (previously linked to type 2 diabetes (Ocvirk 2020), elevated CADD score, and a significant
sQTL for COBLL1 in the adipose tissue). For the region chr3:64567951–64867428, the lead fine-mapped
and proposed functional variant rs66815886 (ADAMTS9-AS2) is consistent with prior findings (Ng et al.
2017). In the region chr6:43640429–43940152, lead fine-mapped variant rs998584 (VEGF gene) has
been previously suggested as functional (Wu et al. 2019). In the region chr6:126984129–127283578,
while rs72959041 had been previously fine mapped as possibly functional for the RSPO3 gene (Horikoshi
et al. 2015), fine-mapping in both PAGE and the UKBB highlighted another known variant, rs577721086
(Christakoudi et al. 2021) and this conclusion corroborates functional evidence. Finally, in locus
12:123880705–124180606, while rs10773049 (the lead UKBB variant) was previously fine-mapped (Wu
et al. 2019), rs1964599 (the lead in PAGE) has low LD with the UKBB lead fine-mapped variant (R2 ~ 0.1)
and also displays strong evidence of functionality.

While illustrating a distinct improvement in fine-mapping efficiency in ancestrally diverse populations,
there were notable limitations in our study. First, the fine-mapping method employed in this study
assumes one causal variant per locus. Therefore, we could not characterize additional signals (if present)
and investigate the fine-mapping efficiency in such a setting, which likely represents the biological reality
of many GWAS signals. Another limiting factor was possible heterogeneity in variants’ effect size within
PAGE (Martin et al. 2019), leading to inconsistent GWAS statistical significance across populations
(Huang et al. 2022; Langlois et al. 2016; Liu et al. 2019; Tan et al. 2014) in PAGE. This has been
previously evidenced in lower predictive power of polygenic risk scores across populations (Duncan et al.
2019; Kamiza et al. 2022), and partly attributed to heterogeneity in causal architecture and gene-
environment interactions (Galinsky et al. 2019). However, in 7 of 10 loci interrogated, the lead variant in
PAGE was the same or in very tight LD with lead variants in UKBB demonstrating limited discordance.
Additionally, PAGE cohorts were genotyped using multiple genotyping arrays (Bien et al. 2016; Matise et
al. 2011) resulting in power loss in GWAS meta-analysis (due to differential variant missingness) (2 et al.
2021), and increased risk of errors further confounding GWAS (Maier et al. 2020; Wei and Nielsen 2019).
Yet, an average of 61% of variants overlapped in PAGE and UKBB and complementary functional
assessment, incorporation of expression QTLs, and literature review identified almost a complete overlap
of the candidate functional variants in the 99% CS, except for rs5781117 (where it was present in the
GWAS set but not in 99% CS). Finally, sensitivity analyses with DENTIST-S showed only one locus
(chr16:53650985–53916489, FTO) harbored association outliers, where a variant in tight LD with the lead
fine-mapped illustrated higher than expected association p-value with BMI, and therefore the fine-
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mapping results could be affected. Nonetheless, our suggested prioritized variant, rs1421085, is now a
known compelling functional variant in this region.

Nonetheless, our study has its strength. First, this was the first comprehensive fine-mapping study of
obesity associated loci that was conducted in parallel in both EA and diverse ancestry population,
purposely matched by sample size to remove methodological limitations inherent in such comparisons.
Indeed, harmonization of phenotypes and use of sample size averaged LD minimized the bias in
calibration of meta-analyzed fine-mapping. Second, Incorporation of sensitivity analysis enabled
detection of associations’ outliers and identified loci with questionable fine-mapping accuracy. Third,
comparative fine-mapping in conjunction with comprehensive functional annotation interrogation
improved fine mapping resolution to identify potentially functional variants in regions where previous
studies have been inconclusive. Finally, we encourage functional studies for 3 WHRBMIadj loci, where we
identified strong functional candidates within 99% CS in both UKBB and PAGE.

In conclusion, results illustrated improved efficiency in fine-mapping functional variants in multi-ancestry
samples in obesity associated genomic regions. While it is methodologically challenging to pinpoint
causal variants with small effect sizes in complex traits, incorporation of ancestrally diverse populations
with distinct genetic architectures and functional annotations has reduced the set of candidate variants
for causal assessment in future molecular studies.
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