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Abstract

Purpose
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates, with high death rate. The
pathogenesis of NEC is particularly complex, mainly involving inflammation and hypoxic damage. In vitro
cell model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of
different stress factors on intestinal injury in vitro.

Methods
IEC-6 cells were stimulated by exposure to different stressors, including lipopolysaccharide (LPS), cobalt
chloride (CoCl2), and a combination of both. Cell viability was detected by CCK-8 assay. The expression
of inflammatory cytokines (IL-6 and TNFα) at the gene and protein levels were measured by quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) and enzyme-linked immune-sorbent assay
(ELISA). While the expression of tight junction proteins (Claudin-1 and zonula occludens [ZO]-1) were
evaluated by qRT-PCR and western blotting, respectively.

Results
The decrease in IEC-6 cell viability was observed after stimulation by CoCl2 alone or in combination with
LPS, but not after stimulation with LPS alone. The expression of IL-6 and TNFα increased in each group,
especially in the combined stimulation group. After stimulation with CoCl2 alone or in combination with
LPS, a decrease in Claudin-1 was observed, but an increase was detected after stimulation with LPS
alone. ZO-1 decreased in both mRNA and protein levels after combined stimulation.

Conclusion
The combined stimulation of CoCl2 and LPS on IEC-6 cells could simultaneously induce severe
inflammation and barrier damage, which may better simulate the pathological process of NEC. Further
research is needed to determine whether this in vitro model can be used to study the pathogenesis of
NEC.

Introduction
Necrotizing enterocolitis (NEC), defined as an acute necrotizing intestinal disease caused by a variety of
perinatal factors, is the most common and devastating gastrointestinal pathology affecting prematurity
[1]. The pathogenesis of NEC remains incompletely understood. Multiple risk factors have been
recognized, including hypoxia and infection [2, 3]. Despite the rapid development of neonatal healthcare,
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the prevention and treatment of NEC remains a global problem [4, 5]. Therefore, the in vitro model of this
disease is very important to study the pathophysiological mechanism of this disease [6].

Continuous renewal and repair of intestinal epithelial cells is essential to maintain intestinal homeostasis
[7]. Several intestinal epithelial cell lines have been used as classical intestinal models to simulate the
pathogenesis of NEC in vitro [8]. Different stimulation methods have been proved to induce intestinal
epithelial cell damage, mainly including LPS, TNFα, H2O2 and hypoxia [9–12]. However, few studies have
compared the effects of single and combined administration on intestinal epithelial cell lines. One study
showed that the use of LPS or H2O2 alone would not damage the regeneration of intestinal epithelial
cells, while the use of multiple stress factors would damage their regeneration, as observed in NEC [13].
Recently, a new apical-out NEC in-a-dish model was reported based on hypoxia combined with LPS or
TNFα. It was found that single exposure to LPS, TNFα or hypoxia did not reduce the integrity of epithelial
barrier [14].

In this study, we compared the effects of LPS, CoCl2 (a chemically hypoxia mimetic agent) and the
combination of both on the injury of IEC-6 cells, in order to provide a preliminary basis for the mechanism
study of NEC in vitro model.

Methods

Cell culture
The rat small intestinal crypt epithelial cell line-6 (IEC-6) was purchased from FuHeng Biotechnology Co.,
Ltd (China). According to the supplier’s recommendation, cells were cultured in DMEM/ HIGH GLUCOSE
medium (HyClone, USA) supplemented with 10% fetal bovine serum (Gibco, USA) at 37℃, 5% CO2

conditions in an incubator.
Cell Counting Kit-8 (CCK-8) assay
IEC-6 cells were seeded into 96-well plates (BD Falcon, Corning Inc., Corning, NY) at a density of 0.8 × 104

cells per well for about 48 h to form a confluent monolayer. Then, cells were exposed to different
concentrations of lipopolysaccharide (LPS; from Escherichia coli 0111: B4; Sigma–Aldrich) and cobalt
chloride (CoCl2; Sigma–Aldrich) individually or together for 24 h. Subsequently, cell viability was detected
using a CCK8 assay kit (Beyotime, Shanghai, China) following the manufacturer’s instructions.

Quantitative Reverse Transcription-polymerase Chain Reaction (Qrt-
pcr)
To examine the expression level of mRNA, total RNA was extracted from IEC-6 cells using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) and reversely transcribed to cDNA using the All-in-one First Strand cDNA
synthesis SuperMix kit (Novoprotein, China). qRT-PCR was conducted with SYBR qPCR SuperMix
(Novoprotein, China). The expression levels of mRNA were normalized to β-actin copies and then
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calculated using the 2−△△Ct method. The sequences of forward (F) and reverse (R) primers for each gene
were listed in Table 1. All experiments were performed in triplicate.

Enzyme-linked Immunosorbent Assay (Elisa)
The supernatant of cell culture was collected by centrifugation at 1000×g for 15 min. The levels of IL-6
and TNFα were detected using ELISA kits (RK00020, ABclonal, Wuhan, China; P16599, CUSABIO, Wuhan,
China) following the manufacturer’s instructions. The optical density of each well was determined using
Multifunctional microplate reader (TECAN Infinite 200 Pro, Switzerland) set to 450 nm.

Western Blot Analysis
The whole protein of IEC-6 cells was extracted using RIPA buffer (Beyotime, Shanghai, China) with
protease inhibitor cocktail (ab271306, Abcam). The protein concentration in solution was determined by
the BCA protein assay kit (Beyotime, Shanghai, China) and 5 × loading buffer (Beyotime, Shanghai,
China) was added to prepare protein samples. The protein of each sample was separated by SDS-PAGE
electrophoresis and then transferred onto a PVDF membrane (Millipore, MA, USA).

The membrane was blocked in blocking solution (5% non-fat milk in TBST buffer) for 1 h at room
temperature and then incubated with different antibodies on the shaker at 4 ℃ overnight. The antibodies
comprise Claudin-1 (28674-1-AP, Proteintech, Hubei, China), ZO-1 (21773-1-AP, Proteintech, Hubei, China)
and β-actin (AC026, ABclonal, Wuhan, China). Subsequently, the membrane was washed by TBST buffer
and then incubated with HRP-conjugated secondary antibody for 1 h at room temperature. The specific
protein bands were visualized using ECL detection reagents (Merck Millipore, USA) and Syngen
GeneGnome XRQ system (SYNGENE, UK).

Statistical analysis
GraphPad Prism version 8.3.0 was used to analyze all data. Consistent with normal distribution, the data
were described as mean ± standard deviation and compared between groups using one-way analysis of
variance (ANOVA). While non-normal distribution of quantitative data were expressed as median with
interquartile range and compared between groups using non-parametric Mann-Whitney U test. The
difference with a p-value < 0.05 was statistically significant.

Results

Cell viability of IEC-6 following administration of LPS, CoCl2
individually or together
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To determine the proper concentration of LPS and CoCl2, we used CCK8 assay to detect IEC-6 cells
viability. As Fig. 1 shows, different concentrations of LPS (10, 25, 50, 100, 200, 400 µg/ mL ) did not
cause significant cytotoxicity (Control: 1.28 [1.17–1.34], 10 µg/ mL LPS: 1.31 [1.06–1.53], 25 µg/ mL
LPS: 1.44 [1.18–1.52], 50 µg/ mL LPS: 1.62 [1.36–1.66], 100 µg/ mL LPS: 1.66 [1.37–1.69], 200 µg/ mL
LPS: 1.59 [1.29–1.77], 400 µg/ mL LPS: 1.46 [1.42–1.49]) (Fig. 1A). However, the viability of IEC-6 cells
significantly decreased after stimulation by CoCl2 alone (Control: 1.59 ± 0.19; 50 µM CoCl2: 1.81 ± 0.14;
100 µM CoCl2: 1.69 ± 0.04; 200 µM CoCl2: 1.48 ± 0.11; 400 µM CoCl2: 1.02 ± 0.12, p < 0.001; 800 µM CoCl2:
0.27 ± 0.02, p < 0.0001; 1600 µM CoCl2: 0.29 ± 0.01, p < 0.0001]) (Fig. 1B) or in combination with LPS
(Control: 2.01 ± 0.02; 50 µM CoCl2 + 10 µg/ mL LPS: 2.01 ± 0.05; 100 µM CoCl2 + 10 µg/ mL LPS: 1.98 ± 
0.03; 200 µM CoCl2 + 10 µg/ mL LPS: 1.81 ± 0.04, p < 0.001; 400 µM CoCl2 + 10 µg/ mL LPS: 1.33 ± 0.05,
p < 0.0001) (Fig. 1C). Based on the above results, we selected 10 µg/ mL LPS and 400 µM CoCl2 as the
concentration for follow-up study of single or combined stimulation.

mRNA levels of inflammatory cytokines and tight junctions in IEC-6 cells exposed to LPS, CoCl2
individually or together

qRT-PCR was conducted to evaluate the mRNA levels of inflammatory cytokines (IL-6 and TNFα) and
tight junctions (Claudin-1 and ZO-1) in IEC-6 cells exposed to different treatment. The relative gene
expression of IL-6 significantly increased in each group, especially in the combined stimulation group (10
µg/ mL LPS: 4.81 [4.76–4.87]; 400 µM CoCl2: 42.03 [36.64–43.79], p < 0.0001; 400 µM CoCl2 + 10 µg/ mL
LPS: 75.63 [57.92–75.63], p < 0.0001) (Fig. 2A). Similarly, the relative gene expression of TNFα
significantly increased in each group, also especially in the combined stimulation group (10 µg/ mL LPS:
4.80 ± 0.67, p < 0.0001; 400 µM CoCl2 1.94 ± 0.62, p < ; 400 µM CoCl2 + 10 µg/ mL LPS: 4.98 ± 0.41, p < 
0.0001) (Fig. 2B). The relative gene expression of Claudin-1 showed a significantly decrease after
stimulation with CoCl2 alone or in combination with LPS, but a significantly increase after stimulation
with LPS alone (10 µg/ mL LPS: 1.81 [1.81–1.90], p < 0.0001; 400 µM CoCl2: 0.18 [0.15–0.19], p < 0.0001;
400 µM CoCl2 + 10 µg/ mL LPS: 0.13 [0.10–0.14], p < 0.0001) (Fig. 2C). While, the relative gene expression
of ZO-1 was most significantly down-regulated in the combination group (10 µg/ mL LPS: 0.79 [0.73–
0.95], p < 0.0001; 400 µM CoCl2: 1.09 [0.94–1.09], p < 0.05; 400 µM CoCl2 + 10 µg/ mL LPS: 0.54 [0.54–
0.56], p < 0.001) (Fig. 2D).

Secretion Of Il-6 And Tnfα In Iec-6 Cells Exposed To Lps, Cocl2
Individually Or Together
Using ELISA, we detected the levels of IL-6 and TNFα proteins secreted into the culture supernatant.
Compared to the control group, the relative protein expression of IL-6 in different stimulation groups
increased significantly, especially in the combined stimulation group (Control: 4.80 ± 2.56; 10 µg/ mL
LPS: 29.32 ± 3.16, p < 0.05; 400 µM CoCl2: 54.29 ± 12.69, p < 0.001; 400 µM CoCl2 + 10 µg/ mL LPS: 88.66 
± 8.10, p < 0.0001) (Fig. 3A). Similarly, the relative protein expression of TNFα significantly increased in
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each stimulation group, also especially in the combined stimulation group (Control: 1.65 ± 0.36; 10 µg/
mL LPS: 12.21 ± 1.63, p < 0.01; 400 µM CoCl2: 5.41 ± 0.84; 400 µM CoCl2 + 10 µg/ mL LPS: 23.58 ± 5.44, p 
< 0.0001) (Fig. 3B).

Protein levels of Claudin-1 and ZO-1 in IEC-6 cells exposed to LPS, CoCl2 individually or together

Immunoblotting was used to investigate the protein levels of Claudin-1 and ZO-1 in IEC-6 cells. As Fig. 4
shows, after stimulation with CoCl2 alone or in combination with LPS, a significant decrease in Claudin-1
was observed (400 µM Cocl2: 0.25 ± 0.07, p < 0.05; 400 µM CoCl2 + 10 µg/ mL LPS: 0.29 ± 0.05, p < 0.05),
but a significant increase was detected after stimulation with LPS alone (10 µg/ mL LPS: 1.75 ± 0.38, p < 
0.05). ZO-1 protein level showed a decreasing trend in each stimulation group, especially after combined
stimulation (10 µg/ mL LPS: 0.85 ± 0.29; 400 µM CoCl2: 0.75 ± 0.23; 400 µM CoCl2 + 10 µg/ mL LPS: 0.68 
± 0.17), but with no statistical significance.

Discussion
Since NEC mainly occurs in premature infants, we selected IEC-6 cell lines as model cells in this study.
They are non-transformed intestinal epithelial cells derived from rat intestinal crypts and have immature
crypt-like phenotype [8, 15]. Epidemiological studies have shown that hypoxia and infection are
significant risk factors [2, 3, 16]. Simulated hypoxia is an important basis for the study of NEC in vitro [12,
17]. Physical hypoxia inevitably requires expensive special hypoxia culture equipment and consumes a
large amount of hypoxia gas [18], we chose CoCl2 to stimulate IEC-6 cells in our study to induce chemical
hypoxia, which may better simulate the pathological characteristics of NEC with chronic hypoxia. On the
other hand, the induction of inflammation is also a key to the study of NEC mechanism [19]. LPS has
been proved to induce increased TLR4 expression in IEC-6 cells, which can activate the natural immune
process and cause inflammation [20]. Therefore, we chose LPS to stimulate IEC-6 cells in our study to
induce inflammation. Then, we chose single or combined factors to stimulate IEC-6 cells and observe the
reactivity.

Different from most previous literature reports, our study showed that the application of LPS alone at
concentrations ranging from 10 µg/ mL to 400 µg/ mL for 24 h did not reduce the viability of IEC-6 cells.
On the contrary, compared with the control group, the viability of cells in the LPS group increased to a
certain extent, although this increase did not reach statistical significance. This suggested that LPS alone
may only induce mild and reversible cell damage. Similarly, after 24 h of stimulation by CoCl2 alone, the
viability of IEC-6 cells was also increased to a certain extent at low concentrations ranging from 50 µM to
100 µM. However, at high concentrations ranging from 200 µM to 1600 µM, cell viability decreased in a
dose dependent manner. According to the use concentration of LPS reported in the previous literature [21],
we chose to combine the specified LPS concentration at 10 µg/ mL with the gradient concentration of
CoCl2. The viability of IEC-6 cells decreased to 66.17% when LPS combined with 400 µM concentration of
CoCl2. Therefore, we determined the concentrations of the two stimuli for subsequent studies.
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Inflammatory reaction and intestinal barrier destruction are key characteristics of NEC [2, 22]. We
compared the expression of inflammatory factors at mRNA and protein levels in IEC-6 cells stimulated by
single application of LPS and CoCl2 or both. The results showed that IL-6 and TNFα were increased in
different degrees in each group. Among them, the expression of IEC-6 and TNFα in the combined
stimulation group was the highest, suggesting that the combination of LPS and CoCl2 can better simulate
the intense inflammatory immune response of NEC. Intestinal barrier integrity is maintained by tight
junctions composed of transmembrane, scaffold and adaptor proteins [23]. The decrease of Claudin
family proteins and ZO-1 expression has been widely reported to be highly related to the impairment of
intestinal barrier function [24, 25]. We further detected the expressions of Claudin-1 and ZO-1 at mRNA
and protein levels. Inconsistent with many other studies, LPS alone did not result in the significant
reduction of Claudin-1 and ZO-1 in IEC-6 cells. Even interestingly, Claudin-1 levels was found to be higher
than those in the control group. This indicates that the inflammatory response induced by LPS alone may
not be strong enough to destroy the integrity of the intestinal barrier, and may even promote the
regeneration of intestinal epithelium. At the same time, we found that Claudin-1 and ZO-1 decreased in
CoCl2 alone or in combination with LPS stimulation. It suggested that hypoxia may be an indispensable
factor leading to the destruction of intestinal barrier.

To our knowledge, the effects of single and combined stimulation on IEC-6 cells have not been reported in
vitro. This study showed that the combined stimulation of LPS and hypoxia can induce severe
inflammatory reaction in IEC-6 cells and damage intestinal epithelial cell barrier. NEC is a complex
multifactorial disease involving a variety of environmental and pathophysiological factors [26].
Consistently, the experimental NEC in vivo model is based on the combined induction of multiple factors
[13, 14], which supports the view that multiple stimuli may be required to simulate the pathogenesis of
NEC in vitro model. This study has some limitations. First of all, the occurrence of NEC involves many
types of intestinal epithelial cells [8, 27]. We only compared the stimulation effects of single factor and
combined factors on IEC-6 cells, which cannot represent the responsiveness of other types of intestinal
epithelial cells to different stimuli. In addition, there are various ways to stimulate intestinal epithelial
cells in vitro. We chose LPS and CoCl2 to simulate inflammation and hypoxia, but did not study about
other stimulation modes, such as TNFα, IFNγ and H2O2.

In conclusion, our study provided some basis for stimulating intestinal epithelial cells by multiple factors
to better simulate NEC in vitro model, which may be beneficial to further research on the mechanism of
NEC and explore potential prevention or treatment methods.
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Figures

Figure 1

Cell viability of IEC-6 following administration of LPS, CoCl2 individually or together. (a, b) Cells were
exposed to different concentrations of LPS and CoCl2 individually for 24 h. ***p < 0.001, ****p < 0.0001,
compared with the control group. (c) Cells were exposed to different concentrations of CoCl2 combined
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with a specific concentration of LPS for 24 h. ***p < 0.001, ****p < 0.0001, compared with the control
group.

Figure 2

mRNA levels of inflammatory cytokines and tight junctions in IEC-6 cells exposed to LPS, CoCl2
individually or together. The mRNA expressions of IL-6 (a), TNFα (b), ZO-1 (c) and Claudin-1 (d) in
different groups. *p < 0.05, ***p < 0.001, ****p < 0.0001, compared with the control group.

Figure 3
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Secretion of IL-6 and TNFα in IEC-6 cells exposed to LPS, CoCl2 individually or together. Relative
expressions of IL-6 (a) and TNFα (b) from cell supernatant in different groups. *p < 0.05, **p < 0.01, ***p < 
0.001, ****p < 0.0001, compared with the control group.

Figure 4

(a)Protein levels of Claudin-1 and ZO-1 in IEC-6 cells exposed to LPS, CoCl2 individually or together.
Representative immunoblotting analysis of Claudin-1 and ZO-1 in different groups. (b, c) Quantification
analysis of Claudin-1 and ZO-1 in different groups. *p < 0.05, compared with the control group.


