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Abstract

The automatic planning community has developed a defacto standard

planning language called PDDL. Using the PDDL tools, the reliabil-

ity of PDDL descriptions can only be posteriori examined. However,

the Event-B method supports a rich refinement technique that is math-

ematically proven. This allows the step-by-step correct construction

of Event-B models. In order to specify and solve the planning prob-

lems, a development process based on the combination of Event-B and

PDDL is proposed. Our development process begins with modeling

the planning problem by an Event-B abstract model. Through succes-

sive refinements, an Event-B ultimate model correct by construction is

obtained. Then, using our Event-B2PDDL Eclipce plugin, the Event-B

ultimate model can be automatically translated into a PDDL descrip-

tion. Thus, the resulting PDDL description can be considered correct

by construction. Finally, using the PDDL planner tool on this gener-

ated PDDL description, plan-solutions related to the planning problems

initially described by an Event-B model can be produced. Our process

is successfully experimented on a set of representative case studies.

Keywords: Correct by construction, Event-B, Code generation, PDDL,
Automatic planning, Refinement
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1 Introduction

In Artificial Intelligence (AI), planning designates a field of research that
aims at automatically generate, via a formalized procedure, a hinged result
called plan. This is intended to orientate the action of one or more execu-
tors (robots or humans). Such executors are called upon to act in a particular
world to achieve a predefined goal. Actually, automatic planning is a full-
fledged discipline in AI. It allows to model and solve planning problems
in many fields including robotics, crisis management, logistics, web services
composition, resource management, assembly of complex objects, storage man-
agement, games, etc. In [1], a more or less exhaustive list of planning domains
is established.

The automatic planning community has developed a defacto standard plan-
ning language called PDDL (Plannig Domain Definition Language) [2]. This
standard allows to formally describe planning problems. In addition, this com-
munity has been interested in generating plans. Moreover, it has developed
validation tools [3] to check whether a given solution plan can be derived from
a PDDL description. The formal PDDL language is used to describe the two
components of a planning problem: state and state change operators. The state
is described by the types and logical predicates. State change operators are
described in PDDL by actions with Pre/Post semantics. The pre-condition
describes the applicability condition and the post-condition describes the effect
of the action. Besides problems related to difficulties of reading, writing and
developing of complex PDDL descriptions, these complex descriptions are sub-
ject to errors that are difficult to identify in a priori time. This is because
the planners and validators tools associated with the PDDL language make it
possible, at most, to detect errors a posteriori. In addition, the locating errors
in a PDDL description are not easy. This is also true for PDDL error correc-
tion. Based on a literature (see Section 2), we can conclude that the PDDL
language can be used to describe the states and actions of planning prob-
lem. However, it cannot specify all the state’s semantic aspects. In particular,
it cannot be used for specifying the intra-atomic and inter-atomic semantic
properties. In the same context, the Event-B formal method [4] supports the
paradigm correct by construction [5]. Indeed, a very rich refinement technique
with mathematical proofs is supported by the Event-B method. This allows
incremental development through successive refinements with mathematical
proof.

In this work, a development process based on the coupling of Event-B
method and PDDL language is proposed. Our process begins with modeling
the planning problem by an Event-B abstract mode. Through successive refine-
ments, an Event-B ultimate model correct by construction and valid using
the Event-B proof/validation tools is obtained. As a second step, using our
Event-B2PDDL Eclipce plugin, the ultimate Event-B model described by a
subset of Event-B can be easily translated into PDDL. Thus, the resulting
PDDL description is considered to be correct by construction. Finally, using
the PDDL planner tool on this generated PDDL description, plan-solutions
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related to the planning problems initially described by an Event-B model can
be produced. The remainder of this paper is structured as follows: Section 2
examines the related work referring to PDDL and Event-B. Section 3 presents
the PDDL language and its verification and validation tools. Section 4 presents
the Event-B formal method with its modeling, refinement, proof and valida-
tion steps. The set representation versus the predicative one is discussed in
Section 5. Our formal development process for planning problems is presented
in Section 6. Finally, Section 7 presents the conclusion and provides some
implications for further studies.

2 Related Work

Several Integrated Development Environments (IDE) supporting PDDL exist
[6] [7]. Such environments provide functionality for editing PDDL descriptions
(both Domain and Problem parts), lexical-syntax checking of PDDL text, gen-
erating plans using a planner that accepts PDDL descriptions, and viewing
the state space associated with the planning problem described by PDDL. The
latter functionality allows, among other things, to provide information to the
user related to the ”execution” of PDDL actions. This allows the user to detect
errors related to the specification of a PDDL action such as incorrect precon-
dition, incorrect post-condition and incorrect precondition and post-condition.
In addition, the visualization of the state space makes it possible to explain
the behavior of the PDDL planner to find a solution plan. This reduces the
opacity of the PDDL planners. In fact, these planners are used as black boxes
when there is no visualization.

The automatic planning community has developed many planners that
accept PDDL descriptions [2]. These software tools, based on state space and
planning graph search and SAT solvers, are rarely or no longer used by other
software platforms such as robotic architectures, web architectures and soft-
ware engineering architectures. The PDDL4J toolkit [8] written in Java is
factorizing techniques from automatic planning: planning algorithms, planning
heuristics, a number of planners, and the syntactic and semantic facilities of
planning domain description languages such as PDDL. The correction of plan-
solutions generated by PDDL planners is entrusted to validators (see Section
3). The authors of [9] recommend the use of the proof assistant Isabelle/HOL
to formally develop a certified validator. To achieve this, they formalize the
PDDL language in HOL.

In more or less completed jobs, automatic scheduling is seen as a model
checking problem. For example, the work described in [10] explores the use
of two model-checkers ProB and NuSMV for modeling and solving planning
problems. It empirically compares these two model-checkers on five planning
problems described by B (for ProB) and BDD (Binary Decision Diagrams for
NuSMV). Similarly, an approach for translating PDDL to CSP to use the PAT
model-checker in the planning domain is proposed in [11].
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Unlike the B-method, the Event-B-method does not have a standard code
generator. Indeed, the ultimate Event-B model depends on the targeted code:
sequential, concurrent, distributed, etc. The work described in [12] allows
Event-B to be translated into imperative languages that support sequen-
tial programming. The authors of [13] provides an approach for translating
Event-B to BIP that supports distributed programming.

In general, even a confirmed modeler has a difficulty in carrying out a math-
ematically proven refinement process. To meet these limitations, automatic
refinement is recommended. The BART tool [14] is used to assist B modeles
in the refinement process, especially for B models close to the B0 language.
In [15] a process allowing the formal decomposition of a centralized Event-
B specification is proposed. Such a process combines manual and automatic
refinement.

3 PDDL for automatic planning

PDDL is a formal declarative language that is proposed by the automatic
planning community. It has been designed to allow the common representa-
tion of planning problems in International Conference on Automated Planning
and Scheduling Competitions (ICAPSC). The PDDL language is based on the
first-order logic to formalize data and on the Precondition/Post-condition spec-
ification to formalize treatments. A PDDL specification consists of two parts:
domain and problem (See Table 1). The domain part encompasses the static
and dynamic aspects of a planning domain. In the first part we define the set
of types, predicates and possible actions. The problem part includes the defi-
nition of an initial state and the logical condition of the goal states of a given
planning problem. In [16], a formal process based on the PDDL language that
favors the obtaining of reliable PDDL descriptions is proposed. This process
is successfully experimented on a set of representative case studies such as the
Hanöı Towers.

Table 1: PDDL description structure

Construction of domain Construction of problem

define (domain < domainnName >)
(: requirements < requirements list >)
(: types < types list >)
(: predicates < predicates code >)
(: functions < functions code >)
(: action < first action code >)
[...]
(: action < last action code >))

define (problem < problem name >)
(: domain < domain name >)
(: objects < objets code >)
(: init < initial state code >)
(: goal < gool code >)
(: metric < metric code >)

Two complementary tools are associated with the PDDL language. The
first, called planner [17] is based on heuristic planning algorithms. A planner
accepts as input a PDDL description (both domain and problem parts) and
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produces, as output, plan-solutions. In addition, to generate a plan-solution, a
planner provides more or less elaborate lexico-syntactic checks. In this work,
we used the planners tool provided online by the two platforms: Web Planner
[6] and Planning Domains [7]. The second, called validator [3] is used to check
whether a given solution plan can be generated from a PDDL description.

4 Formal specification in Event-B

The Event-B method [4] encompasses a formal language and a formal devel-
opment process. The Event-B formal language allows formalizing both data
and treatments. On one hand, the data are described using a logico-set lan-
guage (first-order predicates and set theory). On the other hand, treatments
are described using the event concept. The event concept consists of three
parts: local parameters, a guard and an action. The first two parts are pred-
icates described using the Event-B logico-set language and the third part
is described using a simple Event-B action language. Five actions types are
proposed in Event-B: deterministic assignment (:= ), two non-deterministic
assignments ( :∈ and : |), parallel action (||) and (SKIP) action. In Event-B,
data and processing are grouped in two syntactic constructions CONTEXT
and MACHINE.

The formal development process supported by Event-B via its Rodin plat-
form is based on successive refinements with mathematical proofs. Such process
starts with a coherent abstract model formalizing the concerned application.
The coherence of this model is obtained by discharging the Proof Obliga-
tions (POs) associated with it. These POs are considered as correction criteria
defined by the Event-B theory. Technically speaking, these POs are mathemat-
ical lemmas, automatically generated by Rodin’s Proof Obligation Generator
component, to be discharged automatically or interactively using the proofs
provided by Rodin. Then, a multi-step refinement strategy is applied. These
steps form a refinement chain. Each step takes an abstract model as input
and produces a refined or concrete model as output. The refinement relation-
ship between the two abstract and refined models is formally verified by the
appropriate POs. The final refinement step produces a correct by construction
concrete model with respect to the initial abstract model. This is explained by
the fact that the refinement relationship is transitive.

In an Event-B specification, the CONTEXT construction brings together
the modeling elements related to the static aspects of the application to be
modeled. Such elements concern sets, constants, axioms and theorems. In this
context, Axioms are supposedly true properties attached to sets and constants.
The theorems must be demonstrated automatically or interactively using the
proofs of the Rodin platform. However, an Event-B MACHINE construction
brings together modeling elements related to the dynamic aspects of the pro-
cessed application. Such elements concern variables, invariant, theorems and
events. The variables form the state of the machine. The machine invariant
includes invariance properties describing intra and inter-variable constraints
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of the machine. The theorems must be deduced logically within the machine.
Events can act on the state of the machine by preserving its invariant. A
particular event called INITIALISATION allows initializing its state by estab-
lishing its invariant. Evidently, an Event-B machine can use modeling elements
coming out from an Event-B context via the SEES relationship.

4.1 Case study: Sliding Puzzle Game

Sliding puzzle is a solitaire game in the form of a checkerboard created around
1870 in the United States by Sam Loyd. This problem consists of moving num-
bered tokens on an n × n grid to achieve a given configuration. The constraints
imposed on the displacements are as follows:

• A movement can be carried out horizontally or vertically (diagonal move-
ments are prohibited).

• To move a token numbered t i, the destination location on the grid must be
empty.

The 9 square (3×3) Sliding Puzzle Game is modeled in Event-B by a context
called problem (See Figure 1) and a machine called T1 (See Figure 2). In this
abstract Event B, the state of this game is modeled by the variable grid of
bijective function type whose starting set is a Cartesian product 1..3×1..3 and
the ending set is from 0..8. Both initial and goal states are considered as two
constants initial state and goal state introduced in the problem context. The
(T1) machine contains two events INITIALISATION and goal, respectively,
to initialize grid to initial state and to see if grid is a goal state, i.e. coincides
with goal sate. The move event allows calculating all the following situations
of the Sliding Puzzle Game starting from the current situation in grid. It is a
non-deterministic event with four local parameters:

• row and column enabling to locate the empty square in grid
• r and c allowing to designate the chosen neighbor of the empty square in
the grid.

CONTEXT problem

CONSTANTS initial sate, goal state

AXIOMS
axm1 : initial state ∈ 1 .. 3× 1 .. 3↣↠ TILE

axm2 : goal state ∈ 1 .. 3× 1 .. 3↣↠ TILE

axm3 : initial state = {1 7→ 1 7→ 4, 1 7→ 2 7→ 0, 1 7→ 3 7→ 8, 2 7→ 1 7→ 6,
2 7→ 2 7→ 3, 2 7→ 3 7→ 2, 3 7→ 1 7→ 1, 3 7→ 2 7→ 5, 3 7→ 3 7→ 7}

axm4 : goal state = {1 7→ 1 7→ 1, 1 7→ 2 7→ 2, 1 7→ 3 7→ 3, 2 7→ 1 7→ 4,
2 7→ 2 7→ 5, 2 7→ 3 7→ 6, 3 7→ 1 7→ 7, 3 7→ 2 7→ 8, 3 7→ 3 7→ 0}

END

Fig. 1: Event B abstract context of the Sliding Puzzle Game
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MACHINE T1
SEES problem

VARIABLES grid

INVARIANTS
inv1 : grid ∈ 1 .. 3× 1 .. 3↣↠ 0 .. 8
DLF : ∃r, c, row, column·(r ∈ 1 .. 3 ∧ c ∈ 1 .. 3 ∧ row ∈ 1 .. 3 ∧ column ∈ 1 .. 3 ∧
((r = row + 1 ∧ c = column) ∨ (r = row − 1 ∧ c = column) ∨
(r = row ∧ c = column+ 1) ∨ (r = row ∧ c = column− 1)) ∧
grid(row 7→ column) = 0)
EVENTS
INITIALISATION ≜

act1 : grid ∈ 1 .. 3× 1 .. 3↣↠ 0 .. 8
END
move ≜

ANY r, c, row, column

WHEN
grd1 : r ∈ 1 .. 3
grd2 : c ∈ 1 .. 3
grd3 : row ∈ 1 .. 3
grd4 : column ∈ 1 .. 3
grd5 : (r = row + 1 ∧ c = column) ∨ (r = row − 1 ∧ c = column) ∨

(r = row ∧ c = column+ 1) ∨ (r = row ∧ c = column− 1)
grd6 : grid(row 7→ column) = 0
THEN
act1 : grid := grid◁− row 7→ column 7→ grid(r 7→ c),

r 7→ c 7→ grid(row 7→ column)
END
goal ≜

grd1 : grid = goal state

THEN
skip

END
END

Fig. 2: Event B abstract machine of the Sliding Puzzle Game

4.2 Set representation versus predicative representation

In Event-B, the data are formalized due to its logic-set language: first-order
predicate calculus augmented by set theory (sets, relations and functions in
the mathematical sense). The set data include constants and variables of a
set type (abstract sets introduced in the SETS clause of an Event-B context
and predefined set), function (partial, total, injective, surjective, bijective and
lambda), relation and surjective relation. While predictive data include con-
stants and variables of type BOOL (predefined set with FALSE and TRUE)
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and total function. The latter has as starting set either an abstract set or the
cartesian product of several abstract sets. Its ending set is imperatively BOOL.
In the formal Event-B development process based on successive refinements
with mathematical proofs, the set data are generally used in the beginning of
the refinement chain and the predicative data are used in the end of the said
chain.

5 Combining Event-B and PDDL for automatic
planning

In this Section, a development process that couples Event-B and PDDL to
specify and solve planning problems is proposed (See Figure 3). The Event-B
method is used to develop an Event-B model for a planning problem. Through
successive refinements, an Event-B ultimate model correct by construction
and valid using the Event-B proof/validation tools is obtained. As a sec-
ond step, the Event-B ultimate model can be easly translated into a PDDL
description. Finally, using the PDDL planner tool on this generated PDDL
description, plan-solutions related to the planning problems initially described
by Event-B can be produced. Our process combines manual refinement and
automatic refinement. The manual refinement ultimately produces the ulti-
mate set-model. Depending on the planning problems, this manual refinement
could involve, the decomposition of an event, the reinforcement of guards and
the enrichment of the state (addition of variables and/or invariant properties).
As for automatic refinement, it concerns the refinement of data allowing going
from a set representation to a predicative representation. In particular, the
automatic data refinement tool shall solve the problem of rewriting events fol-
lowing the introduction of a predictive variable and the gluing invariant. For
reasons related to the automatic discharging proof obligations, this tool must
work step by step taking into account the types of variables and set constants.

5.1 Event-B2PDDL translation rules

In this section, a set of intuitive rules allowing the systematic translation
of Event-B elements to PDDL elements is proposed. Regarding the Event-B
domain elements, the following structural rules is proposed:

• Rule 1: An Event-B abstract set can be specified by a PDDL type.
• Rule 2: An Event-B constant can be specified by a PDDL constant.
• Rule 3: An Event-B constant or variable of type BOOL can be specified by
a PDDL predicate which does not contain parameters. A predicate can be
true or false.

• Rule 4: An Event-B function can be defined in a context as a constant
or in a machine as a variable. An Event-B total function having the type
”BOOL” as an end set can be specified by a PDDL predicate.

• Rule 5: An Event-B event can be specified by a PDDL action. This requires
the translation of the Event-B formulas into PDDL.
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Fig. 3: Process coupling Event-B and PDDL

• Rule 6: An Event-B formula can be translated into PDDL by a predi-
cate or by an expression. The relevant predicates are used at the level of
event guards. Indeed, the other predicates expressing theorems, axioms and
invariants are ignored. In the ultimate Event-B model to be translated into
PDDL, the predicates are built on total functions whose starting set is the
Cartesian product of zero or more abstract or enumerated sets and the end-
ing set is BOOL. The Event-B expressions to be translated into PDDL are
either Boolean constants (TRUE, FALSE), or functional expressions using
the overload operator.

Tables 2 and 3 illustrate these translation rules.

5.2 Event-B2PDDL automatisation

In order to automate our Event-B to PDDL translation rules, we have mod-
elled, implemented and tested an Eclipce plugin called Event-B2PDDL [18].
It accepts as input an Event-B concert model and produces a PDDL descrip-
tion acceptable by the PDDL planner tool. To do so, a set of Eclipce APi
and Xtext and Xpand MDE languages [19] are used. The Xtext language is
used to create an integrated development environment specific to an Xtext
grammar of the Event-B source language. However, the Xpand tool proposes
a template language specialized in code generation. These two languages are
powerful complementary MDE languages. Indeed, the Xtend language is based
on the Java language. This favors the use of adequate Java libraries. In addi-
tion, the Xpand language supports the main language features like syntax
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Table 2: From Event-B to PDDL translation rules

Event-B formulas PDDL formulas

Sets translation

SETS < TY PE1 > < TY PE2 > ... (: types < TY PE1 > < TY PE2 >)
Constants translation

CONSTANTS
cst1 cst2 ...
AXIOMS
axm1 : partition (TY PE1, cst1, cst2, ...)

(: constants
< cst1 > < cst2 > ...
− < TY PE1 >)

Bool Variables translation

CONSTANTS name1
AXIOMS name1 ∈ BOOL
VARIABLES name2
INVARIANTS name2 ∈BOOL

(: predicates
(name1)
(name2)
...)

Formulas translation

P ∧Q ( and P Q )
P ∨Q ( or P Q )
P =⇒ Q ( imply P Q )
¬P ( not P )
∀ z • P =⇒ Q ( forall ( ? z ) ( imply P Q ))
∃ z • P ∧Q ( exists ( ? z ) ( and P Q ))
E = F ( = E F )
E / = F ( not( = E F ))
b := TRUE ( b )
b := FALSE ( not ( b ))
f ( x ) := TRUE ( f?x )
f ( x ) := FALSE ( not ( f?x))
f := f ◁−{ x 7→ TRUE, y 7→ FALSE} ( and ( f?x ) ( not ( f?y )))

Functions translation

VARIABLES
name function1
INVARIANTS inv name function1 :
name function1 ∈TYPE1×TYPE2

... →BOOL
name function2 ...

(: predicates
(name function1
?var1 −TYPE1
?var2 −TYPE2 ...)

(name function2 ...) )

colouring, error highlighting, navigation, refactoring, code completion, plug-
gable type system and dynamic dispatch of functions. These features enable
an easy implementation of Xpand programs. In our tool, the Xtend tool is
used to implement our translation tool and produce the PDDL models in a
top-down way.

5.3 Event-B2PDDL validation

Our proposed process based on the coupling of Event-B and PDDL is validated
on a set of representative case studies (available at [18]). The choice of these
case studies is based on the verification of planning-specific problems, and
properties common to all applications. In particular, our process is validated
on the Hanöı Towers planning problem and on the Sliding Puzzle Game (See
Section 4.3).
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Table 3: Events translation

Event-B formulas PDDL formulas

evt name = STATUS ordinary
ANY
var1 var2
WHERE
grd1 : var1 ∈ TY PE1
grd2 : var2 ∈ TY PE2
grd3 : < GD1 >
grd4 : < GD2 > ....
THEN act1 :< ACT1 >
act2 : < ACT2 > ....END

(: action < evtname >
: parameters (?var1 − TY PE1
?var2− TY PE2
...)
: precondition
(and (< GD1 >)
(< GD2 >)
.....)
: effect
(and (< ACT1 >) (< ACT2 >)
.....))

The ProB tool [20] allows the animation of the Event-B models proven by
the Rodin platform proofs. Such animation is considered as a certain ”execu-
tion” of the Event-B models. Indeed, the ProB animator is equipped with a
constraint solver capable of establishing solutions for event guards. The trig-
gering of a triggerable event chosen by the modeler leads to the execution of
the action associated with this event by ProB. Knowing that a triggerable
event is an event whose guard is satisfied. Thus, we have successfully used the
ProB’s animator on the different models of these case studies. In particulier
in the Sliding Puzzle Game application, eight Event-B models are used: an
initial abstract model (T1); an ultimate model (T8) and six intermediate mod-
els (T2, T3, T4, T5, T6 and T7). The ProB’s animator is successfully used
on these different models. Table 4 summarizes the POs linked to the different
Event-B models of the Sliding Puzzle Game application. We have used the
external provers of the RODIN platform, in particular the SMT provers and
the ProB counter-prover, to discharge the POs in an interactive way. Moreover,
we introduced lemmas in order to discharge the DLF (DeadLock Free) theo-
rems associated to the different machines. Thus, all the machines forming the
Sliding Puzzle Game application are non-blocking. This allows access to all the
attainable states of the state space related to the Sliding Puzzle Game. The
cyclic character of the Sliding puzzle state space (for example, move left fol-
lowed by move right) fully justifies the absence of blocking of Event-B models
with Sliding Puzzle Game. The static predicates neighbor left, neighbor right,
neighbor up and neighbor down are modeled by Event-B constants. The ini-
tialization of these constants is the respon-sibility of the modeler. In order
to reduce the risk of error, we have established properties relative to these
constants considered as theorems. The eight Event-B models are available at
[18].

Thus, applying our Event-B2PDDL Eclipce plugin on the (T8) ultimate
Event-B model, we obtained the PDDL description. The Domain (respectively
Problem) construct of this PDDL genrated description is presented on the
Figure 4 (respectively on Figure 5). Finally, we submitted the PDDL generated
description to the WEB PLANNER [6]. This planner established a solution
plan including a sequence, of length 25 trips. Such plan-solution explains the
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Table 4: POs associated to Event-B models of Sliding Puzzle Game

Machine POs Automatic

POs

Interactive

POs

Not dis-

charged POs

T1 6 1 5 0
T2 10 4 6 0
T3 45 36 9 0
T4 86 19 67 0
T5 16 1 15 0
T6 29 10 19 0
T7 54 8 46 0
T8 42 9 33 0

direction of the legal movements of the tiles via the names of the operators
executed, i.e. move right, move left, move up and move down.

(define (domain n− sliding − puzzle)
(:types position tile)
(:predicates (at ?position − position ?tile − tile )
(empty ?position − position)
(neighbor left ?p1 − position ?p2 − position)
(neighbor right ?p1 − position ?p2 − position)
(neighbor up ?p1 − position ?p2 − position)
(neighbor down ?p1 − position ?p2 − position))
(:action moveleft

:parameters (?from ?to − position ?tile − tile)
:precondition (and (neighbor left ?from ?to) (at ?from ?tile) (empty ?to))
:effect (and
(at ?to ?tile) (empty ?from) (not (at ?from ?tile)) (not (empty ?to))))

(:action move right

:parameters (?from ?to − position ?tile − tile)
:precondition (and (neighbor right ?from ?to) (at ?from ?tile) (empty ?to))
:effect (and
(at ?to ?tile) (empty ?from) (not (at ?from ?tile)) (not (empty ?to))))

(:action move up

:parameters (?from ?to − position ?tile − tile)
:precondition (and (neighbor up ?from ?to) (at ?from ?tile) (empty ?to))
:effect (and
(at ?to ?tile) (empty ?from) (not (at ?from ?tile)) (not (empty ?to))))

(:action move down

:parameters (?from ?to − position ?tile − tile)
:precondition (and (neighbor down ?from ?to) (at ?from ?tile) (empty ?to))
:effect (and
(at ?to ?tile) (empty ?from) (not (at ?from ?tile)) (not (empty ?to)))))

Fig. 4: PDDL domain construct related to the SPG
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(define( problem p− sliding − puzzle)
(:domain n− sliding − puzzle)
(:objects p 1 1 p 1 2 p 1 3 p 2 1 p 2 2 p 2 3 p 3 1 p 3 2 p 3 3 − position

t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 − tile)
(:init (empty p 1 2)
(at p 1 1 t 4) (at p 1 3 t 8) (at p 2 1 t 6) (at p 2 2 t 3)
(at p 2 3 t 2) (at p 3 1 t 1) (at p 3 2 t 5) (at p 3 3 t 7)
(neighbor left p 1 1 p 1 2) (neighbor right p 1 2 p 1 1)
(neighbor left p 1 2 p 1 3) (neighbor right p 1 3 p 1 2)
(neighbor left p 2 1 p 2 2) (neighbor right p 2 2 p 2 1)
(neighbor left p 2 2 p 2 3) (neighbor right p 2 3 p 2 2)
(neighbor left p 3 1 p 3 2) (neighbor right p 3 2 p 3 1)
(neighbor left p 3 2 p 3 3) (neighbor right p 3 3 p 3 2)
(neighbor up p 1 1 p 2 1) (neighbor down p 2 1 p 1 1)
(neighbor up p 1 2 p 2 2) (neighbor down p 2 2 p 1 2)
(neighbor up p 1 3 p 2 3) (neighbor down p 2 3 p 1 3)
(neighbor up p 2 1 p 3 1) (neighbor down p 3 1 p 2 1)
(neighbor up p 2 2 p 3 2) (neighbor down p 3 2 p 2 2)
(neighbor up p 2 3 p 3 3) (neighbor down p 3 3 p 2 3))
(:goal (and
(at p 1 1 t 1) (at p 1 2 t 2) (at p 1 3 t 3) (at p 2 1 t 4)
(at p 2 2 t 5) (at p 2 3 t 6) (at p 3 1 t 7) (at p 3 2 t 8))))

Fig. 5: PDDL problem construct related to the SPG

6 Conclusion

The planning community has developed languages (in this case PDDL), plan-
ners and validators for the description of planning problems and the generation
and validation of plan-solutions. However, the reliability of PDDL descriptions
is dealt with a posteriori. In this work, we proposed a process based on the
combining of Event-B and PDDL for the development of planning problems.
The Event-B formal method is used upstream and PDDL is generated from
the ultimate Event-B model, which is the result of a chain of Event-B models
linked by the formal refinement relationship in the sense of the Event-B the-
ory. Our process coupling Event-B and PDDL has been successfully applied to
several test cases such as the Hanöı Towers planning problem and the Sliding
Puzzle Game.

Currently, we intend to revisit our Event-B2PDDL plugin to make it a
software engineering tool worthy of its name. To achieve this, it is necessary
to identify and justify the subset of Event-B translatable into PDDL. Like the
formal method B which proposes a subset of B called B0 translatable in an
imperative programming language like C and Ada, the subset of Event-B trans-
latable in PDDL will be called Event-B0. This is being finalized. In addition,
the Event-B0 is designed to allow the bilateral passage between Event-B and
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PDDL. The transformation of PDDL to Event-B0 (and therefore the Event-B)
promotes formal verification of the PDDL descriptions. Finally, our Event-B
and PDDL coupling process is reusing known and recognized tools in the field
of automatic planning, namely planners accepting PDDL descriptions.
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