The materials of the cylinder to be analyzed were selected from the appropriate material. The mechanical properties of the cylinder materials are given in Table 1 below.
2.1. Stress analysis in cylinders
Two-dimensional equilibrium equation in cylindrical coordinates [8];
$$\frac{\text{d}\left({{\sigma }}_{\text{r}}\right)}{\text{d}\text{r}}-\frac{1}{\text{r}}\frac{\left({\text{d}{\tau }}_{\text{r}{\theta }}\right)}{\text{d}{\theta }}+\frac{\left({{\sigma }}_{\text{r}}-{{\sigma }}_{{\theta }}\right)}{\text{r}}+\text{R}=0 \left(1\right)$$
$$\frac{{\text{d}{\tau }}_{\text{r}{\theta }}}{\text{d}\text{r}}-\frac{1}{\text{r}}\frac{\left({\text{d}{\tau }}_{{\theta }}\right)}{\text{d}{\theta }}+\frac{\left({2{\tau }}_{\text{r}{\theta }}\right)}{\text{r}}+\text{R}=0 \left(2\right)$$
$$\frac{\text{d}\left({{\sigma }}_{\text{r}}\right)}{\text{d}\text{r}}-\frac{\left({{\sigma }}_{\text{r}}-{{\sigma }}_{{\theta }}\right)}{\text{r}}+{\rho }{\left(\text{r}\right){\omega }}^{2}{\text{r}}^{2}=0 \left(3\right)$$
Stresses in the radial and tangential directions;
$${{\epsilon }}_{\text{r}}=\frac{1}{\text{E}\left(\text{r}\right)}{[{\sigma }}_{\text{r}-\text{V}}{({\sigma }}_{{\theta }}{+{\sigma }}_{\text{Z}}\left)\right] \left(4\right)$$
$${{\epsilon }}_{{\theta }}=\frac{1}{\text{E}\left(\text{r}\right)}{[{\sigma }}_{{\theta }-\text{V}}{({\sigma }}_{\text{r}}{+{\sigma }}_{\text{Z}}\left)\right] \left(5\right)$$
$${{\epsilon }}_{\text{z}}=\frac{1}{\text{E}\left(\text{r}\right)}{[{\sigma }}_{\text{z}-\text{V}}{({\sigma }}_{\text{r}}{+{\sigma }}_{{\theta }}\left)\right] \left(6\right)$$
\({{\epsilon }}_{\text{z}}=0\) , Eq. 7 is obtained as follows.
$${{\sigma }}_{\text{z}=\text{V}}{({\sigma }}_{\text{r}}{+{\sigma }}_{{\theta }}\left) \right(7)$$
If \({{\sigma }}_{\text{z}}\) obtained above is put in their place, then;
$${{\epsilon }}_{\text{r}}=\frac{1+\text{v}}{\text{E}\left(\text{r}\right)}\left[\right(1-\text{v}\left){({\sigma }}_{\text{r}}{-\text{v}{\sigma }}_{{\theta }}\right)\left] \right(8)$$
$${{\epsilon }}_{{\theta }}=\frac{1+\text{v}}{\text{E}\left(\text{r}\right)}\left[\right(1-\text{v}\left){({\sigma }}_{{\theta }}{-\text{v}{\sigma }}_{\text{r}}\right)\left] \right(9)$$
For the connection between stress strain
$${{\epsilon }}_{\text{r}}=\frac{\text{d}\text{u}}{\text{d}\text{r} } \left(10\right)$$
$${{\epsilon }}_{\text{r}}=\frac{\text{u}}{\text{r} } \left(11\right)$$
For the stress analysis equation in rotating cylinders;
\({\text{r}}^{2}\frac{{\text{d}}^{2}F}{\text{d}{\text{r}}^{2}}+\text{r}\left[1-\text{r}\frac{{\text{E}}^{{\prime }}\left(r\right)}{\text{E}\left(\text{r}\right)}\frac{\text{d}F}{\text{d}\text{r}}\right]+\left[\text{v}\left(\text{r}\right)\frac{{\text{E}}^{{\prime }}\left(r\right)}{\text{E}\left(\text{r}\right)}-1\right]\text{F}={\rho }{\left(\text{r}\right){\omega }}^{2}{\text{r}}^{3}[\text{r} \frac{{\text{E}}^{{\prime }}\left(r\right)}{\text{E}\left(\text{r}\right)}-\frac{{{\rho }}^{{\prime }}\left(\text{r}\right)}{{\rho }\left(\text{r}\right)}-3--\frac{\text{v}}{1-\text{v} }\) (12)]
In Eq. 12, the elastistie modulus and density vary according to the functions.
$$\text{E}\left(\text{r}\right)={\text{E}}_{0}\frac{{\text{r}}^{\text{n}}}{{r}_{0}^{n}} \left(13\right)$$
$${\rho }\left(\text{r}\right)={{\rho }}_{0}\frac{{\text{r}}^{{\gamma }}}{{r}_{0}^{{\gamma }}} \left(14\right)$$
if r = et transformation is performed, \({\text{E}}_{0}\),\(\)modulus of elasticity, ,\({{\rho }}_{0}\) density reference value, n and γ are optional constants.
$${\text{r}}^{2}\frac{{\text{d}}^{2}F}{\text{d}{\text{t}}^{2}}-\text{n}\frac{\text{d}F}{\text{d}\text{t}}+\left(\text{n}\text{v}-1\right)\text{F}={[r}_{0}{{\omega }}^{2}\left[n-{\gamma }-3-\frac{\text{v}}{1-\text{v}}\right]/\left({r}_{0}^{{\gamma }}\right){]e}^{\left(3+{\gamma }\right)\text{t}}$$
15
$$\text{F}={\text{C}}_{1}{\text{r}}^{(\text{n}+\text{k})/2}+{\text{C}}_{2}{\text{r}}^{(\text{n}-\text{k})/2}+\text{A}{\text{r}}^{(3+{\gamma } )} \left(16\right)$$
$$\text{A}=-\frac{{{\rho }}_{0}{{\omega }}^{2}}{{r}_{0}^{{\gamma }}\left[\right(3+{{\gamma })}^{2}-n\left(3+{\gamma }\right)+\text{v}\text{n}-1]}\left[n- {\gamma }-3-\frac{1}{1-v}\right] \left(17\right)$$
For radial and tangential stress values;
$${{\sigma }}_{\text{r}}={\text{C}}_{1}{\text{r}}^{(\text{n}+\text{k}-2)/2}+{\text{C}}_{2}{\text{r}}^{(\text{n}-\text{k}-2)/2}+\text{A}{\text{r}}^{(2+{\gamma })} \left(18\right)$$
$${{\sigma }}_{{\theta } }\left(\text{M}\text{P}\text{a}\right)=\frac{\text{n}+\text{k}}{2}{\text{C}}_{1}{\text{r}}^{(\text{n}+\text{k}-2)/2}+\frac{\text{n}-\text{k}}{2}{\text{C}}_{2}{\text{r}}^{(\text{n}-\text{k}-2)/2}+\left(3+{\gamma }\right)\text{A}{\text{r}}^{(2+{\gamma })}+{\rho }\left(\text{r}\right){{\omega }}^{2}{\text{r}}^{2}$$
19
C1 and C2 are integral constants. For boundary conditions;
C1 = A[-\({r}_{i}^{({\gamma }+2)}{r}_{0}^{(\text{n}-\text{k}-2)/2}+{r}_{i}^{(\text{n}-\text{k}-2)/2}]{r}_{0}^{({\gamma }+2)}\) (20)
$${\text{C}}_{1}=A\left[\frac{{r}_{i}^{\left({\gamma }+2\right)}{r}_{0}^{\frac{\text{n}-\text{k}-2}{2}}+{r}_{0}^{\left({\gamma }+2\right)}{r}_{i}^{\frac{\text{n}-\text{k}-2}{2}}}{{r}_{i}^{\frac{\text{n}+\text{k}-2}{2}}{r}_{0}^{\frac{\text{n}-\text{k}-2}{2}}-{r}_{0}^{\frac{\text{n}+\text{k}-2}{2}}{r}_{i}^{\frac{\text{n}-\text{k}-2}{2}}}\right] \left(21\right)$$
$${\text{C}}_{2}=A\left[\frac{-{r}_{0}^{\left({\gamma }+2\right)}{r}_{İ}^{\frac{\text{n}+\text{k}-2}{2}}+{r}_{İ}^{\left({\gamma }+2\right)}{r}_{0}^{\frac{\text{n}+\text{k}-2}{2}}}{{r}_{i}^{\frac{\text{n}+\text{k}-2}{2}}{r}_{0}^{\frac{\text{n}-\text{k}-2}{2}}-{r}_{0}^{\frac{\text{n}+\text{k}-2}{2}}{r}_{i}^{\frac{\text{n}-\text{k}-2}{2}}}\right] \left(22\right)$$